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Abstract

In this paper, we develop a mathematical tool that can be used to state necessary conditions of9
asymptotic stability of isolated stationary solutions of a class of unilateral dynamical systems. More
precisely, nonlinear evolution variational inequalities are considered. Instability criteria are also given.11
Applications can be found in mechanics or electrical circuits.
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1. Introduction17

The stability of stationary solutions of dynamical systems constitutes a very impor-
tant topic in Applied Mathematics and Engineering. It is well-known that in the case of a19
large class of nonlinear differential equations, the spectrum of “linearized” operators de-
termines the Lyapunov stability or instability of an equilibrium. This is known as the Lya-21
punov’s linearization method [28,27,34]. However, many important problems in engineering
(see [4,10,11,14,13,17,29,33]) involve inequalities in their mathematical formulation and23
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consequently possess intrinsic nonsmoothness which cannot be removed by change of co-1
ordinates, or by feedback. The models corresponding to such problems are called unilateral
dynamical systems or nonregular dynamical systems. A large class of unilateral dynamical3
systems can be represented under the formalism of evolution variational inequalities, see
e.g. [3,14,13]. The question of stability of stationary solutions of evolution variational in-5
equalities is much more complicated to be investigated, as it is the case in general for hybrid
dynamical systems, see e.g. [20,21].7

The research efforts to develop general mathematical approaches to study stability of
stationary solutions of evolution variational inequalities are relatively new. It seems that9
the first contribution acting in this sense was made by Quittner [23,25,24] for a class of
parabolic variational inequalities in Hilbert spaces. More recently, Lyapunov approach and11
Krakovskii–LaSalle invariance theory have been generalized to evolution variational in-
equalities and corresponding unilateral dynamical systems (see [1,12,6,8,15,22] and the13
references cited therein). In [12] sufficient conditions for stability of linear evolution vari-
ational inequalities have been derived, and we now propose to study necessary conditions.15

Our aim in this paper is to state necessary conditions of asymptotic stability for a class
of unilateral dynamical systems. More precisely, we consider the problem: Let � : Rn →17
R ∪ {+∞} be a proper, convex and lower semi-continuous function. Let F : Rn → Rn be
a nonlinear continuous operator. Let x0 ∈ Rn be given. We consider the problem P(x0):19
Find a unique continuous mapping t �→ u(t) such that

du

dt
∈ L∞

loc(0, +∞; Rn), (1)21

u(t) ∈ D(��), ∀t �0, (2)〈
du

dt
(t) + F(u(t)), v − u(t)

〉
+ �(v) − �(u(t))�0, ∀v ∈ Rn, a.e. t �0 (3)23

and

u(0) = x0. (4)25

The variational inequality in (3) can also be formulated as the set-valued differential equation

du

dt
(t) + F(u(t)) ∈ −��(u(t)), a.e. t �0, (5)27

where �� denotes the subdifferential of �. It is assumed that F(0) ∈ −��(0) i.e. the origin
0 of the system is a trivial stationary solution of (5).29

If � ≡ 0 then (5) reduces to a standard system of differential equations and it is well
known (see e.g. [19]) in this case that if 0 is an isolated zero of F and is asymptotically31
stable, then there exists �0 > 0 such that

deg(F, B�, 0) = 1, ∀� ∈ (0,�0],33

where deg(F, B�, 0) denotes the Brouwer degree of F with respect to the open ball B� :=
{x ∈ Rn : ‖x‖ <�} and 0.35



UNCORRECTED P
ROOF

NA4429

ARTICLE IN PRESS
D. Goeleven, B. Brogliato / Nonlinear Analysis ( ) – 3

Our goal in this paper is to generalize this famous result to the model in (4) and (5). More1
precisely, let us define the mapping � as

�(x) := x − P�(x − F(x)),3

where P� := (idRn + ��)−1 and idRn denotes the identity mapping on Rn. We will prove
that if 0 is an isolated zero of � and is asymptotically stable, then there exists �0 > 0 such5
that

deg(�, B�, 0) = 1, ∀� ∈ (0,�0].7

This result constitutes the main result of the paper and is given in Theorem 5.
In Section 2, we recall the fundamental properties of the Brouwer degree we will use in9

this paper. In Section 3, we discuss the main properties of the operator P�. In Section 4, we
present a concise review of some recent results in stability theory of unilateral dynamical11
systems. In Section 5, we introduce the Poincaré operator associated to problem (5). In
Section 6, we prove our main result.13

In this paper, we develop also several approaches to compute the number deg(�, B�, 0).
If � can be easily evaluated then a first approach consist to use some practical results15
of degree theory to compute deg(�, B�, 0) (see Section 6). The approach is of partic-
ular interest if � ≡ �Rn+ , with �Rn+ denoting the indicator function of Rn+, since in17
this case:

�i (x) = min{xi, Fi(x)}.19

This case is of particular interest for the study of complementarity dynamical systems [16].
More generally, if � ≡ �K where K denotes a closed convex set, then we develop21

a second approach (see Section 7) that uses a result of Quittner [24] which reduces the
computation of deg(�, B�, 0) to the one of deg(�L, B�, 0) where �L is defined by23

�L(x) = x − PK0(x − JF (0)x),

where K0 is the closed convex cone defined by K0 = ⋃
�>0 �K and JF (0) denotes the25

Jacobian matrix of F at 0.
If � is a convex and continuous function then we develop a third approach (see Section27

8) by showing that deg(�, B�, 0) can be computed by using some appropriate “Lyapunov
function”.29

The case of linear complementarity problems is discussed in Section 9. Finally, in Section
10, using our main result together with recent invariant results (see [1]), we prove some31
instability theorems.

Several examples and applications are given so as to illustrate the theoretical results.33

Notations. In the sequel the scalar product on Rn is denoted by 〈·, ·〉 (with the associated
norm ‖ · ‖). For r > 0, we set Br := {x ∈ Rn : ‖x‖ < r}. Then B̄r = {x ∈ Rn : ‖x‖�r}35
and �Br = {x ∈ Rn : ‖x‖ = r}.
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The identity mapping on Rn is denoted by idRn . Let K be a nonempty closed convex1
subset of Rn. The dual set of K is defined by K∗ := {w ∈ Rn : 〈w, x〉�0, ∀x ∈ K}. The
recession cone of K is defined by K∞ := ⋃

�>0 (1/�)(K − x0) where x0 is any element of3
K. We denote by �K the indicator function of K, i.e. �K(x)=0 if x ∈ K and �K(x)=+∞
if x /∈ K .5

For a function V ∈ C1(Rn; R) we denote by V ′(x) the gradient of V at x ∈ Rn.

We denote by d(s,M) the distance from a point s ∈ Rn to a set M ⊂ Rn, that is7
d(s,M) := infm∈M‖s − m‖.

2. Preliminaries on topological degree theory9

Let D ⊂ Rn be an open and bounded set. Let f ∈ C1(D; Rn) ∩ C0(D̄; Rn) be given.
Set Af (D) := {x ∈ D̄ : f (x) = 0} and Bf (D) := {x ∈ D : det Jf (x) = 0} where Jf (x)11
denotes the Jacobian Matrix of f at x defined by (Jf )ij := (�fi/�xj )(x), i, j ∈ {1, . . . , n}. If
Af (D)∩Bf (D)=∅ and 0 /∈ f (�D) then Af (D) is a finite set and the Brouwer topological13
degree of f with respect to D and 0 is well-defined by the formula

deg(f, D, 0) =
∑

x∈Af (D)

sgn(det Jf (x)),
15

where sgn(t) = 1 for t > 0 and sgn(t) = −1 for t < 0. More generally, if f : D̄ → Rn is
continuous and 0 /∈ f (�D) then the Brouwer topological degree of f with respect to D and17
0 is well-defined (see e.g. [18]) and denoted by deg(f, D, 0).

Let us now recall some properties of the topological degree we will use later in19
this paper.

1. If 0 /∈ f (�D) and deg(f, D, 0) �= 0 then there exists x ∈ D such that f (x) = 0.21
2. Let � : [0, 1]×D̄ → Rn; (�, x) �→ �(�, x), be continuous such that, for each � ∈ [0, 1],

one has 0 /∈�(�, �D). Then the map � �→ deg(�(�, .), D, 0) is constant on [0, 1].23
3. If 0 ∈ D then

deg(idRn , D, 0) = 1.25

4. If 0 /∈ f (�D) and �> 0 then

deg(�f, D, 0) = deg(f, D, 0)27

and

deg(−�f, D, 0) = (−1)n deg(f, D, 0).29

5. Let D′ ⊂ D be an open set such that Af (D) ⊂ D′. Then

deg(f, D, 0) = deg(f, D′, 0).31

6. Let A ∈ Rn×n be a nonsingular matrix. If 0 ∈ D then deg(A., D, 0) = sgn(det A).
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7. Let f : [−r, +r] → R be a continuous function. Suppose that f (−r) �= 0 and f (+r) �=1
0. Then

deg(f, ] − r, +r[, 0) = 0 if f (−r)f (+r) > 0,3

deg(f, ] − r, +r[, 0) = +1 if f (−r) < 0 and f (+r) > 0,

deg(f, ] − r, +r[, 0) = −1 if f (−r) > 0 and f (+r) < 0.5

3. Generalized projection operator and its inverse

Let � : Rn → R ∪ {∞} be a proper, convex and lower semi-continuous mapping. We7
denote by dom{�} the domain of �, i.e.

dom{�} := {x ∈ Rn : �(x) < + ∞}.9

We denote by �� the convex subdifferential of �. Recall that

��(x) = {w ∈ Rn : �(v) − �(x)�〈w, v − x〉, ∀v ∈ Rn}.11

We denote by D(��) the domain of �� and by R(��) the range of ��, i.e.

D(��) := {x ∈ Rn : ��(x) �= ∅}, R(��) :=
⋃

x∈Rn

��(x).
13

Recall that

D(��) ⊂ dom{�} ⊂ D(��). (6)15

Let y ∈ Rn be given. We consider the variational inequality problem: Find x ∈ Rn such
that17

〈x − y, v − x〉 + �(v) − �(x)�0, ∀v ∈ Rn. (7)

Problem (7) has a unique solution (see e.g. [14,30]) that we denote by P�(y). The operator19

P� : Rn → Rn; y �→ P�(y)

is thus well-defined. It is clear that21

P�(Rn) ⊂ D(��) (8)

and23

P�(y) = (idRn + ��)−1(y).

If � ≡ �K where K is a nonempty closed convex set and �K denotes the indicator25
function of K, then

P� ≡ P�K
≡ PK ,27
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where PK denotes the projection operator onto K which is defined by the formula1

‖x − PKx‖ = min
w∈K

‖x − w‖.

Let � : Rn → Rn be a continuous mapping and consider the inequality problem: Find3
x̄ ∈ Rn such that

〈�(x̄), v − x̄〉 + �(v) − �(x̄)�0, ∀v ∈ Rn. (9)5

It is clear that problem (9) is equivalent to the nonlinear equation: Find x̄ ∈ Rn such that

x̄ − P�(x̄ − �(x̄)) = 0. (10)7

Proposition 1. The operator P� is nonexpansive, i.e.

‖P�v − P�y‖�‖v − y‖, ∀v, y ∈ Rn.9

Proof. Let v, y ∈ Rn be given. We set x := P�(v) and x∗ := P�(y). We have

〈x − v, w − x〉 + �(w) − �(x)�0, ∀w ∈ Rn (11)11

and

〈x∗ − y, w − x∗〉 + �(w) − �(x∗)�0, ∀w ∈ Rn. (12)13

Setting w := x∗ in (11) and w := x in (12), we obtain the relations 〈x − v, x − x∗〉 −
�(x∗) + �(x)�0 and −〈x∗ − y, x − x∗〉 − �(x) + �(x∗)�0, from which we deduce that15
‖x − x∗‖2 �‖x − x∗‖‖v − y‖. It follows that

‖P�(v) − P�(y)‖�‖v − y‖. �17

Let us now denote by A� : Rn → 2Rn

the set-valued operator defined by

A�(x) = {f ∈ Rn : 〈x − f, v − x〉 + �(v) − �(x)�0, ∀v ∈ Rn}. (13)19

We see that

A−1
� (f ) = P�(f ). (14)21

It is also easy to see that

(tA�)−1(tf ) = P�(f ), ∀t > 0. (15)23

Note that

A�(x) = �
{‖.‖2

2
+ �(.)

}
(x), ∀x ∈ Rn,25

so that A� is maximal monotone. It results that for any t > 0, the operator (idRn + tA�)−1

is a well-defined single-valued operator.27
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4. Unilateral dynamical systems1

Let us first recall a general existence and uniqueness of solutions result (see e.g. [15]).

Theorem 1. Let � : Rn → R ∪ {+∞} be a proper, convex and lower semi-continuous3
function. Let F : Rn → Rn be a continuous operator such that for some 	̄ ∈ R, F + 	̄I

is monotone. Let x0 ∈ D(��) be given. There exists a unique u ∈ C0([0, +∞); Rn) such5
that

du

dt
∈ L∞

loc(0, +∞; Rn), (16)7

u is right-differentiable on [0, +∞), (17)

u(t) ∈ D(��), ∀t �0, (18)9 〈
du

dt
(t) + F(u(t)), v − u(t)

〉
+ �(v) − �(u(t))�0, ∀v ∈ Rn, a.e. t �0, (19)

u(0) = x0. (20)11

Remark 1. Suppose that F : Rn → Rn can be written as

F(x) = Ax + �′(x) + F1(x), ∀x ∈ Rn,13

where A ∈ Rn×n is a real matrix, � ∈ C1(Rn; R) is convex and F1 is Lipschitz continuous,
i.e.15

‖F1(x) − F1(y)‖�k‖x − y‖, ∀x, y ∈ Rn,

for some constant k > 0. Then F is continuous and F + 	̄I is monotone provided that17

	̄� sup
‖x‖=1

〈−Ax, x〉 + k.

The variational inequality in (19) can also be written as the differential inclusion19

du

dt
(t) + F(u(t)) ∈ −��(u(t)), a.e. t �0. (21)

Suppose that the assumptions of Theorem 1 are satisfied and denote by u(.; x0) the unique21
solution of Problem P(x0) (see (1)–(4)). Let us here also denote by S(F,�) the set of
stationary solutions of (19), i.e.23

S(F,�) = {x̄ ∈ Rn : 〈F(x̄), w − x̄〉 + �(w) − �(x̄)�0, ∀w ∈ Rn}.
Note that25

S(F,�) = {x̄ ∈ Rn : x̄ = P�(x̄ − F(x̄)}.
For x0 ∈ D(��), we denote by 
(x0) the orbit27


(x0) := {u(�; x0); ��0}.
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Let us now assume, without loss of generality, that the trivial solution 0 is a stationary1
solution of (19), i.e.

F(0) ∈ −��(0). (22)3

Then

u(.; 0) ≡ 0.5

We may now define as in [15] the stability of the trivial solution. The stationary solution
0 is called stable if small perturbations of the initial condition u(t0) = 0 lead to solutions7
which remain in the neighborhood of 0 for all t �0, precisely:

Definition 1. The equilibrium point x = 0 is said to be stable in the sense of Lyapunov if9
for every �> 0 there exists 
 = 
(�) > 0 such that for any x0 ∈ D(��) with ‖x0‖�
 the
solution u(·; x0) of problem P(x0) satisfies ‖u(t; x0)‖��, ∀t �0.11

If in addition the trajectories of the perturbed solutions are attracted by 0 then we say
that the stationary solution is asymptotically stable, precisely:13

Definition 2. The equilibrium point x = 0 is asymptotically stable if (1) it is stable and
(2) there exists �> 0 such that for any x0 ∈ D(��) with ‖x0‖�� the solution u(·; x0) of15
problem P(x0) fulfills

lim
t→+∞ ‖u(t; x0)‖ = 0.17

Definition 3. The equilibrium point x = 0 is unstable if it is not stable.

The following result generalizes to unilateral systems the Lyapunov’s direct method. The19
approach makes an essential use of some auxiliary function V ∈ C1(Rn; R).

Theorem 2 (Goeleven et al. [15]). Suppose that the assumptions of Theorem 1 together21
with condition (22) hold. Suppose that there exists �> 0 and V ∈ C1(Rn; R) such that

(1) V (0) = 0;23
(2) V (x) > 0, ∀x ∈ D(��) ∩ B�, x �= 0;
(3) 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x))�0, ∀x ∈ D(��) ∩ B�.25

Then the trivial solution of (16)–(19) is stable.

Remark 2. (i) Assumptions (1) and (2) in Theorem 2 ensure the existence of a mapping a :27
[0,�] → R satisfying a(0)=0 and a(t) > 0, ∀t ∈ (0,�] and such that V (x)�a(‖x‖), ∀x ∈
D(��)∩B̄�. The mapping a(.) defined by a(r)=inf{V (x) : r �‖x‖��} (r �0) is suitable.29

(ii) Assumption (3) in Theorem 2 implies that 〈F(x), V ′(x)〉 + 〈w, V ′(x)〉�0, ∀w ∈
��(x), ∀x ∈ D(��) ∩ B̄�.31

(iii) If K denotes a nonempty closed convex set and � ≡ �K then assumption (3) in
Theorem 2 implies that 〈F(x), V ′(x)〉�0, ∀x ∈ K ∩ B̄� and x −V ′(x) ∈ K, ∀x ∈ K ∩ B̄�.33
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This last expression ensures that −V ′(x) ∈ TK(x), ∀x ∈ �K ∩ B̄� which characterizes the1
level sets of V with respect to the boundary of K.

(iv) A more general version of Theorem 2 is given in [15].3

Let V ∈ C1(Rn; R) be given. We set

E(F,�, V ) := {x ∈ D(��) : 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x)) = 0}. (23)5

Recall here that a set D ⊂ D(��) is invariant provided that

x0 ∈ D ⇒ 
(x0) ⊂ D.7

We recall a recent result that generalizes to unilateral systems the famous Krakovskii–LaSalle
invariance principle.9

Theorem 3 (Invariance Theorem, Adly and Goeleven [1]). Suppose that the assumptions
of Theorem 1 hold. Let � ⊂ Rn be a compact set and V ∈ C1(Rn; R) a function such that

11
(1) �(.) − �(. − V ′(.)) is lower semicontinuous on D(��) ∩ �;
(2) 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x))�0, ∀x ∈ D(��) ∩ �;13
(3) D(��) is closed.

We denote by M(F,�, V ,�) the largest invariant subset of E(F,�, V )∩�. Then for each15
x0 ∈ D(��) such that 
(x0) ⊂ �, we have

lim
�→+∞ d(u(�; x0),M(F,�, V ,�)) = 0.17

5. The Poincaré operator

Let T > 0 be given. Theorem 1 enables us to define the one parameter family {S(t) :19
0� t �T } of operators from D(��) into Rn, as follows:

∀y ∈ D(��), S(t)y = x(t; y), (24)21

x(.; y) being the unique solution on [0, T ] of the evolution problem P(y). Note that

∀y ∈ D(��), S(0)y = y.23

According to (24), the unique solution of problem (16 )–(19) satisfies, in addition, the
periodicity condition25

u(0) = u(T )

if and only if y is a fixed point of S(T ), that is27

S(T )y = y.

Thus the problem of the existence of a periodic solution for the evolution problem (16)–(19)29
is reduced to that of the existence of a fixed point for S(T ). The operator S(T ) is called
“Poincaré Operator”.31
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Lemma 1 (See e.g., Showalter [30]). Let 0� t1 < t2 < + ∞ be given and let a, b ∈1
L1(t1, t2; R) with b(t)�0 a.e. t ∈ [t1, t2]. Let the absolutely continuous function w :
[t1, t2] → R+ satisfy3

(1 − �)
dw

dt
(t)�a(t)w(t) + b(t)w�(t), a.e. t ∈ [t1, t2],

where 0��< 1. Then5

w1−�(t)�w1−�(t1)e
∫ t
t1

a(s) ds +
∫ t

t1

e
∫ t
s a(q) dqb(s) ds, ∀t ∈ [t1, t2].

Theorem 4. Suppose that the assumptions of Theorem 1 hold. Then for 0� t1 < t2 < + ∞,7
y, z ∈ D(��), we have

‖S(t2)y − S(t2)z‖�
√

e2	̄(t2−t1)‖S(t1)y − S(t1)z‖.9

Proof. Let 0� t1 < t2 < + ∞, y, z ∈ D(��) be given. We know that〈
d

dt
S(t)y + F(S(t)y), v − S(t)y

〉
+ �(v) − �(S(t)y)�0, ∀v ∈ Rn, a.e. t �0

(25)11

and 〈
d

dt
S(t)z + F(S(t)z), h − S(t)z

〉
+ �(h) − �(S(t)z), ∀h ∈ Rn, a.e. t �0. (26)13

Setting v = S(t)z in (25) and h = S(t)y in (26), we obtain the relations

−
〈

d

dt
S(t)y + F(S(t)y), S(t)z − S(t)y

〉
− �(S(t)z) + �(S(t)y)�0, a.e. t �015

and 〈
d

dt
S(t)z + F(S(t)z), S(t)z − S(t)y

〉
− �(S(t)y) + �(S(t)z)�0, a.e. t �0.17

It results that〈
d

dt
(S(t)z − S(t)y), S(t)z − S(t)y

〉
�	̄‖S(t)z − S(t)y‖2 − 〈[F + 	̄I ](S(t)z)

− [F + 	̄I ](S(t)y), S(t)z − S(t)y〉
a.e. t �0.19

Our hypothesis ensure that F + 	̄I is monotone. It results that

d

dt
‖S(t)z − S(t)y‖2 �2	̄‖S(t)z − S(t)y‖2, a.e. t �0. (27)21
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Using Lemma 1 with w(.) := ‖S(.)z − S(.)y‖2, a(.) := 2	̄, b(.) = 0, � = 0, we get1

‖S(t2)z − S(t2)y‖2 �‖S(t1)z − S(t1)y‖2e2	̄(t2−t1).

The conclusion follows. �3

A consequence of Theorem 4 is that

‖S(t)y − S(t)z‖�
√

e2	̄t‖y − z‖, ∀y, z ∈ D(��), t ∈ [0, T ].5

The Poincaré operator S(T ) : Rn → Rn; y → S(T )y is thus Lipschitz continuous on
D(��), i.e.7

‖S(T )y − S(T )z‖�
√

e2	̄T ‖y − z‖, ∀y, z ∈ D(��). (28)

Remark 3. (i) Note that if F is continuous and monotone then (28) holds with 	̄ = 0. In9
this case, the Poincaré operator S(T ) is nonexpansive on D(��).

(ii) If F is continuous and strongly monotone, i.e. there exists �> 0 such that11

〈F(x) − F(y), x − y〉��‖x − y‖2, ∀x, y ∈ Rn

then (28) holds with 	̄=−�< 0 and the Poincaré operator S(T ) is a contraction on D(��).13

6. Necessary conditions of asymptotic stability

We suppose that:
15

(h1) � : Rn → R ∪ {+∞} is convex and lower semi-continuous;
(h2) D(��) is closed;17
(h3) 0 ∈ D(��);
(h4) There exists a neighborhood N of 0 and a constant C1 > 0 such that19

|�(x1) − �(x2)|�C1‖x1 − x2‖, ∀x1, x2 ∈ N ∩ dom{�}.

Condition (h2) together with (6) ensure that D(��) = dom{�}. Thus D(��) is also21
convex. The projection operator PD(��) onto D(��) is well-defined. Recall that

P 2
D(��) = PD(��),23

‖PD(��)x − PD(��)y‖�‖x − y‖, ∀x, y ∈ Rn

and25

〈PD(��)x − x, w − PD(��)x〉�0, ∀w ∈ D(��).

We suppose also that
27

(h5) F : Rn → Rn is a continuous operator such that for some 	̄ ∈ R, F +	̄I is monotone;
(h6) F is locally Lipschitz at 0.29
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Finally, we suppose that

1
(h7) 0 is an isolated stationary solution of (19), i.e.

0 = P�(−F(0)) (29)3

and there is a neighborhood V of 0 such that

x �= P�(x − F(x)), ∀x ∈ V\{0}. (30)5

Note that the relation in (29) can also be written as

〈F(0), w〉 + �(w) − �(0)�0, ∀w ∈ Rn.7

Let us now define the continuous mapping � : Rn → Rn by

�(x) := x − P�(x − F(x)). (31)9

If (h7) is satisfied then for r > 0 small enough, deg(�(.), Br , 0) is well defined and
constant. We set11

�(�, 0) := deg(�(.), Br , 0) for r > 0 small enough. (32)

Remark 4. If n = 1 then �(�, 0) can be computed by using property 7 (see Section 2) of13
degree. More precisely,

�(�, 0) = 0 if �(−r)�(+r) > 0, for r > 0 small enough,15

�(�, 0) = +1 if �(−r) < 0 and �(+r) > 0, for r > 0 small enough,

�(�, 0) = −1 if �(−r) > 0 and �(+r) < 0, for r > 0 small enough.17

Example 1. (i) Let F and � be defined by F(x) = 2x and �(x) = �R+ . Here

�(x) = x − max{0, −x}.19

For r > 0, we have �(−r) = −2r < 0 and �(r) = r > 0 and thus �(�, 0) = +1.
(ii) Let F and � be defined by F(x) = −2x and �(x) = �R+ . Here21

�(x) = x − max{0, 3x}.
For r > 0, we have �(−r) = −r < 0 and �(r) = −2r < 0 and thus �(�, 0) = 0.23

More generally, let us define for �> 0 the sets

Pi(−�) := {x ∈ [−�, +�]n : xi = −�}, i ∈ {1, . . . , n}25

and

Pi(+�) := {x ∈ [−�, +�]n : xi = +�}, i ∈ {1, . . . , n}.27
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Note that1

n⋃
i=1

(Pi(−�) ∪ Pi(+�)) = �(] − �, +�[n).

Proposition 2. Suppose that there exists �0 > 0 such that3

�i (x)�i (y) < 0, ∀x ∈ Pi(−�), y ∈ Pi(+�), � ∈ (0, �0], (i ∈ {1, . . . , n}). (33)

Then5

�(�, 0) =
n∏

i=1

�i ,

where �i := sgn(�i (x̄
i )) with x̄i denoting any element of Pi(+�̄) and �̄ any real in (0, +�0].7

Proof. Let 0 < ���0 be given. Assumption (33) together with the continuity of �i ensure
that sgn (�i (.)) is constant on Pi(+�). Let xi

� be any element of Pi(+�), we get (see Theorem9
(c) in [19]):

deg(�(.), ] − �, +�[n, 0) =
n∏

i=1

sgn(�i (x
i
�)).

11

Moreover condition (33) implies that �(x) �= 0, ∀x ∈] − �0, +�0[n, x �= 0 and property 5
(see Section 2) of degree ensures that � → deg(�(.), ]− �, +�[n, 0) is constant on (0, +�0].13

Let r0 > 0 be such that Br0 ⊂]−�0, +�0[. Then 0 /∈�(�Br) and �(�, 0)=deg(�(.), Br , 0)

for all 0 < r �r0. Let r ∈ (0, r0] be given, there exists � ≡ �(r) ∈ (0, r) such that ] −15
�, +�[n ⊂ Br . It is also clear from (33) that A�(Br) = {0} ⊂] − �, +�[n. Then using
property 5 (see Section 2) of degree, we obtain17

�(�, 0) = deg(�(.), ] − �, +�[n, 0) = deg(�(.), ] − �̄, +�̄[n, 0) =
n∏

i=1

�i . �

Proposition 3. Suppose that there exists �0 > 0 such that19

�i (x)�i (y) > 0, ∀x ∈ Pi(−�), y ∈ Pi(+�), � ∈ (0, �0], (i ∈ {1, . . . , n}). (34)

Then21

�(�, 0) = 0.

Proof. Let r0 > 0 such that Br ⊂] − �0, +�0[n (0 < r �r0). As in the proof of Proposition23
2 we see that �(�, 0) = deg(�(.), Br , 0) for all 0 < r �r0. Let r ∈ (0, r0) be given. There
exists � ≡ �(r) ∈ (0, r) such that25

deg(�(.), Br , 0) = deg(�(.), ] − �, +�[n, 0).
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Let us now consider the continuous homotopy H : [0, 1] × [−�, +�]n → Rn defined by1

Hi(�, x) = �
(
�i (−�ei) + xi + �

2�
(�i (�ei) − �i (−�ei))

)
+ (1 − �)�i (x),

where ei denotes the ith unit vector of Rn. We claim that if x ∈ �(]−�, +�[n) and � ∈ [0, 1]3
then H(�, x) �= 0. Indeed, if x ∈ �(]− �, +�[n) then either there exists k ∈ {1, . . . , n} such
that x ∈ Pk(−�) or there exists l ∈ {1, . . . , n} such that x ∈ Pl(+�). If x ∈ Pk(−�) then5
xk = −� and Hk(�, x) = ��k(−�ek) + (1 − �)�k(x). Here x and −�ek ∈ Pk(−�) and the
continuity of � together with (34) ensure that �k(−�ek) and �k(x) are nonzero and have7
the same sign. Thus Hk(�, x) �= 0 and therefore H(�, x) �= 0. If x ∈ Pl(+�) then xl = +�
and Hl(�, x) = ��l (�el) + (1 − �)�l (x). Here x and �el ∈ Pl(−�) and the continuity of9
� together with (34) ensure that �l (�el) and �l (x) are nonzero and have the same sign. It
results that Hl(�, x) �= 0 and consequently H(�, x) �= 0. Thus from property 2 in Section11
2, we obtain

�(�, 0) = deg(�(.), ] − �, +�[n, 0)

= deg(H(0, .), ] − �, +�[n, 0) = deg(H(1, .), ] − �, +�[n, 0).13

It is now clear that H(1, .) �= 0 on ] − �, +�[n. Indeed,

Hi(1, x) = �i (−�ei) + xi + �
2�

(�i (�ei) − �i (−�ei))

=
(

1 − xi + �
2�

)
�i (−�ei) + xi + �

2�
�i (�ei),15

and (xi + �)/2� ∈ (0, 1) for x ∈] − �, +�[n. Thus Hi(1, x) �= 0 since condition (34) entails
that �i (−�ei) and �i (�ei) are nonzero and have same sign. It results from property 1 in17
Section 2, that deg(H(1, .), ] − �, +�[n, 0) = 0. The conclusion follows. �

Example 2. (i) Let F and � be defined by F(x1, x2) = (2x1, 3x2) and �(x) = �R+×R+ .19
Here

�(x) = (x1 − max{0, −x1}, x2 − max{0, −2x2}).21

For �> 0, we see that �1(x) = −2�< 0 if x ∈ P1(−�), �1(x) = �> 0 if x ∈ P1(+�),
�2(x) = −3�< 0 if x ∈ P2(−�) and �2(x) = �> 0 if x ∈ P2(+�). Applying Proposition 2,23
we get �(�, 0) = 1.

(ii) Let F and � be defined by F(x1, x2)= (−2x1 +x2, −x2) and �(x)=�R+×R+ . Here25

�(x) = (x1 − max{0, 3x1 − x2}, x2 − max{0, 2x2}).
For �> 0, we see that �1(x) = −�< 0 if x ∈ P1(−�), �1(x) = x2 − 2�� − �< 0 if27
x ∈ P1(+�), �2(x) = −�< 0 if x ∈ P2(−�) and �2(x) = −�< 0 if x ∈ P2(+�). Applying
Proposition 3, we obtain �(�, 0) = 0.29

The use of Propositions 2 and 3 is of particular interest if � ≡ �Rn+ since in this case �i

can be easily evaluated by the formula31

�i (x) = xi − max{0, xi − Fi(x)} = min{xi, Fi(x)}. (35)
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Let us now prove our main result by following a methodology that has been originated1
by Quittner [24] in the framework of parabolic variational inequalities involving unilateral
constraints defined by a closed and convex set.3

Theorem 5. Suppose that assumptions (h1)–(h7) are satisfied. If the trivial stationary so-
lution of (19) is asymptotically stable then5

�(�, 0) = 1.

Proof. The mapping F(.) is locally Lipschitz at 0 and thus there exists �0 > 0 and C0 > 07
such that

‖F(x) − F(y)‖�C0‖x − y‖, ∀x, y ∈ B�0 . (36)9

From assumption (h4), we see that there exists �1 > 0 and C1 > 0 such that

|�(x) − �(y)|�C1‖x − y‖, ∀x, y ∈ dom{�} ∩ B�1 . (37)11

The trivial stationary solution is isolated and thus, there exists �2 > 0 such that

x �= P�(x − F(x)), ∀x ∈ B�2\{0}. (38)13

The trivial stationary solution is stable and thus, there exists �3 > 0 such that

|S(t)x0|� min

{
1, �0,

�1

2(C0 + 1)

}
, ∀x0 ∈ B�3 ∩ D(��). (39)15

The trivial stationary solution is attractive and thus, there exists �4 > 0 such that

lim
t→+∞ S(t)x0 = 0, ∀x0 ∈ B�4 ∩ D(��). (40)17

Set

r0 := min

{
�0

2
,

�1

2(1 + C0)
, �2, �3, �4

}
.19

Let 0 < r �r0 be given. From (38), we get the existence of 
 := 
(r) > 0 such that

‖x − P�(x − F(x))‖�
,
r

8
�‖x‖�r . (41)21

We set

G := idRn − F , (42)23

so that � = idRn − P�(G).
To prove our result, we will use the following claims. The proofs of these claims are25

given in the appendix.

Claim 1.27

deg(idRn − S(t)PD(��)., Br , 0) = 1, ∀t > 0,

where S(.) is defined in Section 5.29



UNCORRECTED P
ROOF

16 D. Goeleven, B. Brogliato / Nonlinear Analysis ( ) –

NA4429

ARTICLE IN PRESS

Claim 2.1

deg(idRn − P�G(PD(��).), Br , 0)

= deg(idRn − (idRn + tA�)−1(idRn + tG)PD(��)., Br , 0), ∀t > 0.

Claim 3.3

deg(idRn − P�G(PD(��).), Br , 0) = deg(idRn − P�G(.), Br, 0).

Claim 4. Let x ∈ �Br(r �r0) be given. We set5

u(t) := S(t)PD(��)x, t �0

and7

v(t) := (idRn + tA�)−1(idRn + tG)PD(��)x, t > 0.

The following estimations hold:
9

(a) ‖PD(��)x‖�r0;
(b) ‖P�G(PD(��)x)‖��1;11
(c) ‖u(t)‖� min{1, �0, �1/2(C0 + 1)}, ∀t �0;
(d) ‖u(t) − PD(��)x‖��

√
t, ∀t �0, with13

� := √
2(r0 + 1)(C1 + 	̄(r0 + 1) + C0r0 + ‖F(0)‖);

(e) ‖P�G(u(t))‖��1, ∀t �0;15
(f) Let t∗ ∈ (0, (1/2	̄) ln(4)] be given. If ‖u(t∗)‖�r/4 then ‖u(t)‖�r/8, ∀t ∈ (0, t∗].
(g) v(t) ∈ D(��) and17 〈

v(t) − PD(��)x

t
, w − v(t)

〉
+ 〈v(t) − G(PD(��)x), w − v(t)〉

+ �(w) − �(v(t))�0, ∀w ∈ Rn, ∀t > 0;

(h) ‖v(t) − PD(��)x‖��
√

t; ∀t > 0, with19

� :=
√

(C0r0)
2

2
+ ‖F(0)‖r0 + C1r0.

Set21

T ∗ := min

{(
�0

2�

)2

,

(
�1

2(1 + C0)�

)2
}

.

Then23
(i) ‖v(t)‖� min{�0, �1/(1 + C0)}, ∀t ∈ (0, T ∗];
(j) ‖P�(G(v(t))‖��1, ∀t ∈ (0, T ∗].25
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Claim 5. Let 0 < r �r0 be given and set
1

C := max{ 2
3�(1 + C0)(‖F(0)‖ + C0 + C1), �(1 + C0)(‖F(0)‖

+ �1 + (1 + C0)�0 + C1)}
and3

T := min

{
1

2	̄
ln(4), T ∗, 
4

2C2(�∗ + 1)2 ,

4

2C2( 1
�∗ + 1)2

}
,

with �∗ = 4
3 (�0 + r)/r , �∗ = 7r/8(1 + r), 	̄ in Theorems 1 and 4, T ∗ in Claim 4(h) and 
5

in (41). For any t ∈ (0, T ], we have

deg(idRn − (idRn + tA�)−1(idRn + tG)PD(��)., Br , 0)

= deg(idRn − S(t)PD(��)., Br , 0).7

We are now able to use Claims 1–5 in order to conclude the proof of our result.
Let 0 < r �r0 be given and compute T ≡ T (r) as in Claim 5. We have9

�(�, 0) = deg(�, Br , 0) = deg(idRn − P�G(.), Br, 0). (43)

From Claim 3 and (43), we see that11

�(�, 0) = deg(idRn − P�G(PD(��).), Br , 0). (44)

Let us now choose t ∈ (0, T ]. From Claim 2 and (44), we obtain13

�(�, 0) = deg(idRn − (idRn + tA�)−1(idRn + tG)PD(��)., Br , 0). (45)

Claim 5 and (45) ensure that15

�(�, 0) = deg(idRn − S(t)PD(��)., Br , 0). (46)

Finally, Claim 1 and (46) yield17

�(�, 0) = 1. � (47)

The following result is an equivalent formulation of Theorem 5.19

Corollary 1. Suppose that assumptions (h1)–(h7) are satisfied. If �(�, 0) �= 1 then the
trivial stationary solution of (19) is not asymptotically stable.21

Example 3. (i) The necessary condition of asymptotic stability �(�, 0)=1 is satisfied with
the data given in Examples 1(i) and 2(i).23

(ii) The trivial stationary solution of (19) with the data given in Example 1(ii) or Example
2(ii) is not asymptotically stable.25
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7. The case � = �K with K closed and convex1

It is known that if K is a polyhedron, then the system in (19) is equivalent to a comple-
mentarity system [12], whose study has a significant interest for control applications. Let3
us first state a result of Quittner [24].

Lemma 2 (Quittner). Let K ⊂ Rn be a closed and convex set such that 0 ∈ K . Set5

K0 :=
⋃
�>0

�K . (48)

Suppose that G : Rn → Rn satisfies
7

(1) G is continuous;
(2) G(0) = 0;9
(3) JG(0) exists;
(4) deg(idRn − PK0(JG(0).), Br , 0) exists for r > 0 small enough.11

Then, for all r > 0 sufficiently small, 0 /∈ (idRn − PK(G(.)))(�Br) and

deg(idRn − PK(G(.)), Br , 0) = deg(idRn − PK0(JG(0).), Br , 0).13

Note that the original result of Quittner has been stated in a more general framework for
compact continuous mapping G defined on Hilbert spaces.15

Let us now remark that Lemma 2 can be used together with Corollary 1 and Propositions
2 and 3.17

Example 4. Let F and K be defined by F(x1, x2) = (−2 sin(x1) + x2, − sin(x2)) and
K = {(x1, x2) ∈ R2 : 0�x1, 0�x2 �1 − x1}. Then19

K0 = R+ × R+

and21

JF (0) =
(−2 1

0 −1

)
.

Using the results of Example 2(ii) and Lemma 2, we get �(�, 0)=0. It results that the trivial23
stationary solution of (19) is not asymptotically stable.

Let us here remark that if K ⊂ Rn is a closed convex set with 0 ∈ K then � := �K25
satisfies conditions (h1)–(h4) of Section 6. We see also that if the assumptions of Lemma 2
are satisfied for G := idRn − F then condition (h7) is also satisfied.27

Theorem 6. Let K ⊂ Rn be a closed and convex set such that 0 ∈ K and K0\{0} �= ∅ with
K0 in (48). Suppose that conditions (h5)–(h6) are satisfied. Suppose also that F(0)=0 and29
JF (0) exists.
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If there exists �< 0 and U� ∈ K0\{0} such that
1

(1) 〈U�, h〉 > 0, ∀h ∈ K0\{0};
(2) JF (0)TU� = �U�.3

Then the trivial stationary solution of (19) is not asymptotically stable.

Proof. Set A := I −JF (0) and define h : [0, 1]×Rn → Rn by h(�, x)=�x −PK0(�Ax +5
(1−�)U�). We claim that if x ∈ �Br , r > 0 and � ∈ [0, 1] then h(�, x) �= 0. Indeed, suppose
on the contrary that7

�x = PK0(�Ax + (1 − �)U�).

Then � �= 0 since otherwise get 0 = PK0(U�) = U� and a contradiction. Thus � �= 0 and9
since K0 is a cone, we get

x = 1

�
PK0(�Ax + (1 − �)U�) = PK0

(
Ax + (1 − �)

�
U�

)
.11

Thus x ∈ K0 and〈
x − Ax − (1 − �)

�
U�, v − x

〉
�0, ∀v ∈ K0.13

Setting v := x + U� ∈ K0 + K0 ⊂ K0, we obtain

〈JF (0)x, U�〉� (1 − �)

�
‖U�‖2 �0.15

Thus

〈x, JF (0)TU�〉 = �〈x, U�〉�0.17

Here since x ∈ �Br, r > 0, then x ∈ K0\{0} and thus from assumption (1), we obtain that
〈x, U�〉 > 0 so that ��0 and a contradiction.19

Then

deg(idRn − PK0(idRn − JF (0).), Br , 0) = deg(h(1, .), Br , 0)

= deg(h(0, .), Br , 0) = deg(−PK0(U�), Br , 0) = deg(−U�, Br , 0) = 0.21

Using Lemma 2, we see that �(�, 0) = 0 and the conclusion follows from Corollary 1. �

Example 5. Let F and K be defined by F(x1, x2)=(−2 sin(x1)−10x2, cos(x1)−sin(x2)−23
1) and K = {(x1, x2) ∈ R2 : 0�x1, 0�x2 �1 − x1}. Then

K0 = R+ × R+25

and

JF (0) =
(−2 −10

0 −1

)
.27
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Theorem 6 can be applied to ensure that the trivial stationary solution of (19) is not asymp-1
totically stable. It is indeed easy to see that � = −2 is an eigenvalue of JF (0)T and that the
corresponding eigenvector U� = (1, 10)T satisfies conditions (1) and (2) of Theorem 6.3

Theorem 7. Let K ⊂ Rn be a closed and convex set such that 0 ∈ K and K∗
0 ∩K0\{0} �= ∅.

Suppose that conditions (h5)–(h6) are satisfied. Suppose also that F(0) = 0, JF (0) exists5
and

(1) 〈JF (0)x, x〉 < 0, ∀x ∈ K0, x �= 0,7

then the trivial stationary solution of (19) is not asymptotically stable.

Proof. Let U ∈ K∗
0 ∩K0\{0} be fixed. Set A := I −JF (0) and define h : [0, 1]×Rn → Rn9

by h(�, x) = �x − PK0(�Ax + (1 − �)U). We claim that if x ∈ �Br , r > 0 and � ∈ [0, 1]
then h(�, x) �= 0. Indeed, suppose on the contrary that �x = PK0(�Ax + (1 − �)U). It is11
clear that � �= 0. Indeed, suppose that �=0. Then 0 =PK0U =U and a contradiction. Thus
� �= 0 and13

x = PK0

(
Ax + (1 − �)

�
U

)
.

Thus x ∈ K0 and15 〈
x − Ax − (1 − �)

�
U, v − x

〉
�0, ∀v ∈ K0.

Setting v := 2x, we obtain since U ∈ K∗
017

〈JF (0)x, x〉� (1 − �)

�
〈U, x〉�0. (49)

Here x ∈ K0\{0} and from assumption (1), we obtain 〈JF (0)x, x〉 < 0 which is a contra-19
diction to (49).

Then21

deg(idRn − PK0(idRn − JF (0).), Br , 0) = deg(h(1, .), Br , 0)

= deg(h(0, .), Br , 0) = deg(−PK0(U), Br, 0) = deg(−U, Br, 0) = 0.

Using Lemma 2, we see that �(�, 0) = 0 and the conclusion follows from Corollary 1. �23

Remark 5. It is clear that if the matrix JF (0) is negative definite, then assumption (1) in
Theorem 7 is satisfied.25

Example 6. Let F and K be defined as in Example 4. Theorem 7 can also be applied to
ensure that the trivial stationary solution of (19) is not asymptotically stable. Indeed, here27
K0 ∩ K∗

0 \{0} = R+ × R+\{(0, 0)} and the matrix JF (0) is negative definite.
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8. The case � convex and dom{�} = Rn1

Let us here suppose that � : Rn → R is convex with dom{�}=Rn. Then � is continuous
and D(��) = Rn (see Theorem 10.1 in [26]). Moreover � is Lipschitzian, relative to every3
bounded set (see Theorem 10.4 in [26]). It results that � satisfies conditions (h1)–(h4) of
Section 6.5

Proposition 4. Let L > 0 be given and assume that G : [0, L] × Rn → Rn; (�, y) �→
G(�, y) is a continuous function on [0, L] × Rn. Then the application7

(�, y) �→ P��(G(�, y))

is continuous on [0, L] × Rn.9

Proof. Let {yn} ⊂ Rn and {�n} ⊂ [0, L] be given sequences such that yn → y∗ and
�n → �∗ as n → +∞. We claim that P�n�(G(�n, yn)) → P�∗�(G(�∗, y∗)) as n → +∞.11
Indeed, setting xn := P�n�(G(�n, yn)) and x∗ := P�∗�(G(�∗, y∗)), we have

〈xn − G(�n, yn), v − xn〉 + �n�(v) − �n�(xn)�0, ∀v ∈ Rn (50)13

and

〈x∗ − G(�∗, y∗), v − x∗〉 + �∗�(v) − �∗�(x∗)�0, ∀v ∈ Rn. (51)15

Let us first check that the sequence {xn} is bounded. Indeed, suppose on the contrary that
‖xn‖ → +∞ as n → +∞. Setting v := 0 in (50), we obtain17

−〈xn − G(�n, yn), xn〉 + �n[�(0) − �(xn)]�0

and thus19

‖xn‖2 �‖G(�n, yn)‖‖xn‖ + �n[�(0) − �(xn)].
It results that21

1� ‖G(�n, yn)‖
‖xn‖ + �n

‖xn‖2 [�(0) − �(xn)].

For n large enough, 1/‖xn‖ ∈ (0, 1] and using the convexity of �, we get23

�
(

xn

‖xn‖
)

� 1

‖xn‖�(xn) +
(

1 − 1

‖xn‖
)

�(0)

and thus25

�(0) − �(xn)

‖xn‖ ��(0) − �
(

xn

‖xn‖
)

.

We obtain27

1� ‖G(�n, yn)‖
‖xn‖ + �n

[
�(0) − �(xn/‖xn‖)

‖xn‖
]

. (52)
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Here1

lim
n→+∞

�(xn/‖xn‖)
‖xn‖ = 0

since the sequence xn/‖xn‖ remains in a compact set and � is continuous. Taking now the3
limit as n → +∞ in (52), we obtain the contradiction 1�0. The sequence {xn} is thus
bounded.5

Setting v := x∗ in (50) and v := xn in (51), we obtain the relations

〈xn − G(�n, yn), xn − x∗〉 − �n�(x∗) + �n�(xn)�0 (53)7

and

−〈x∗ − G(�∗, y∗), xn − x∗〉 − �∗�(xn) + �∗�(x∗)�0. (54)9

Thus

‖xn − x∗‖2 �‖G(�n, yn) − G(�∗, y∗)‖‖xn − x∗‖
+ (�n − �∗)�(x∗) + (�∗ − �n)�(xn). (55)11

The sequence {xn} is bounded and thus the sequence {�(xn)} is bounded too since � is
continuous. Moreover ‖G(�n, yn) − G(�∗, y∗)‖ → 0 and (�n − �∗) → 0 as n → +∞.13
Then (55) yields xn → x∗ as n → +∞. �

Proposition 5. Suppose that F : Rn → Rn is continuous. Suppose also that there exists15
�> 0 and a continuous mapping H : Rn → Rn such that

(1) �(x) �= 0, ∀x ∈ B̄�, x �= 0;17
(2) H(x) �= 0, ∀x ∈ B̄�, x �= 0;
(3) 〈F(x), H(x)〉 + �(x) − �(x − H(x))�0, ∀x ∈ B̄�.19

Then

�(�, 0) = deg(H, Br, 0), ∀r ∈ (0,�].21

Proof. Let r ∈ (0,�] be given. Let h : [0, 1] × B̄r → Rn; (�, y) → h(�, y) := y −
P��(y − �F(y) − (1 − �)H(y)). Proposition 4 ensures that h is continuous. Let us now23
check that h(�, x) �= 0, ∀x ∈ �Br, � ∈ [0, 1]. Indeed, suppose on the contrary that there
exists x ∈ Rn, ‖x‖ = r and � ∈ [0, 1] such that h(�, x) = 0, that is25

x = P��(x − �F(x) − (1 − �)H(x)).

We first remark that � �= 0. Indeed, suppose that �=0. Then x =P0(x −H(x))=x −H(x).27
This yields H(x) = 0 which is a contradiction to assumption (2) since here x �= 0. We
remark now that � �= 1. Indeed, suppose that � = 1. Then x = P�(x − F(x)) and thus29
�(x) = 0 which is a contradiction to assumption (1) since here x �= 0.

Thus 0 < �< 1 and31

〈�F(x) + (1 − �)H(x), v − x〉 + ��(v) − ��(x)�0, ∀v ∈ Rn.
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Setting v := x − H(x), we obtain1

�[〈F(x), H(x)〉 + �(x) − �(x − H(x))]� − (1 − �)‖H(x)‖2 < 0,

which is a contradiction to assumption (3).3
Thus

deg(idRn − P�(idRn − F), Br, 0) = deg(h(1, .), Br , 0)

= deg(h(0, .), Br , 0)

= deg(idRn − P0(idRn − H), Br, 0)

= deg(H, Br, 0). �5

Proposition 6. Suppose that F : Rn → Rn is continuous. Suppose also that there exists
�> 0 and a continuous mapping H : Rn → Rn such that7

〈F(x), H(x)〉 + �(x) − �(x − H(x)) > 0, ∀x ∈ B̄�, x �= 0. (56)

Then9

�(�, 0) = deg(H, Br, 0), ∀r ∈ (0,�].

Proof. The result is a consequence of Proposition 5. It is clear that if (56) holds then condi-11
tions (2) and (3) of Proposition 5 are satisfied. We claim that condition (1) of Proposition 5
holds too. Indeed, suppose on the contrary that there exists x ∈ B̄�\{0} such that �(x) = 0.13
Then

〈F(x), v − x〉 + �(v) − �(x)�0, ∀v ∈ Rn.15

Setting v = x − H(x), we get

〈F(x), H(x)〉 + �(x) − �(x − H(x))�0.17

which is a contradiction to (56). �

9. The case of linear complementarity problems19

In view of applications like stabilization, we examine in this section the case when the
vector field is linear invariant with matrix A ∈ Rn×n, and �(·) = �K(·) with K = Rn+. The21
following holds:

Proposition 7. Let F : Rn → Rn be defined by F(x) = Ax with A ∈ Rn×n and23
�(·) = �K(·) with K = Rn+. If A satisfies the conditions (i) Aii > 0, 1� i�n, and (ii)
|Aij /Aii | < 1/n for all 1� i�n, 1�j �n, i �= j , then �(�, 0) = 1.25

Proof. The proof uses Proposition 2. As we have seen in (35), we have �i (x) = min{xi,

eT
i Ax}, with ei the ith unit vector of Rn. Let us now calculate �i (x) and �i (y) for the27
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vectors x and y as in (33). Taking into account the definitions of the sets Pi(−�) and Pi(+�),1
�> 0, we obtain

�i (x) = min{−�, eT
i Ax + Aii(−� − xi)}3

with x ∈ [−�, +�]n, and

�i (y) = min{�, eT
i Ay + Aii(� − yi)}5

with y ∈ [−�, +�]n (in both these expressions we do not consider the variables x and y
in the sets Pi(−�) and Pi(+�), respectively, but as free vectors of Rn satisfying ‖x‖∞(:=7
max1� i �n {|xi |})�� and ‖y‖∞ ��). The condition �i (x)�i (y) < 0 can then be written as

max{�, −eT
i Ax + Aiixi + Aii�} × min{�, eT

i Ay − Aiiyi + Aii�} > 0. (57)9

The inequality in (57) is equivalent to

(a) max{�, −eT
i Ax + Aiixi + Aii�} > 0 and (b) min{�, eT

i Ay − Aiiyi + Aii�} > 011

or

(c) max{�, −eT
i Ax + Aiixi + Aii�} < 0 and (d) min{�, eT

i Ay − Aiiyi + Aii�} < 013

for all ‖x‖∞ �� and ‖y‖∞ ��. The inequality in (c) is impossible to fulfill and the inequality
in (a) is always satisfied, since �> 0. We are therefore left with the inequality (b) only,15
which is satisfied if and only if eT

i Ay −Aiiyi >−Aii� for all y ∈ Rn with ‖y‖∞ ��. Using
assumption (i), we see that this condition can be rewritten as17 (

eT
i

A

Aii

− eT
i

)
y + �> 0 (58)

for all ‖y‖∞ ��. Equivalently19 (
eT
i

A

Aii

− eT
i

)
y + 1 > 0 (59)

for all ‖y‖∞ �1. It is clear that inequality (59) is satisfied if and only if21 ∣∣∣∣
(

eT
i

A

Aii

− eT
i

)
y

∣∣∣∣ < 1, ∀y ∈ Rn, ‖y‖∞ �1. (60)

Assumption (ii) ensures that23 ∥∥∥∥AT

Aii

ei − ei

∥∥∥∥∞
= max

1� j �n

∣∣∣∣Aij

Aii

− �ij

∣∣∣∣ < 1

n
,

where �ij is the Kronecker symbol. If ‖y‖∞ �1 then25 ∣∣∣∣
(

eT
i

A

Aii

− eT
i

)
y

∣∣∣∣ �n

∥∥∥∥AT

Aii

ei − ei

∥∥∥∥∞
‖y‖∞ �n

∥∥∥∥AT

Aii

ei − ei

∥∥∥∥∞
< 1,

so that (60) is satisfied. Finally, Proposition 2 ensures that �(�, 0) = 1. �27
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Remark 6. (i) From Proposition 3 in [12], it follows that if A is diagonal with positive1
entries, then the equilibrium x=0 is asymptotically stable. Incidentally one sees that Aij =0,
i �= j , implies that |Aij /Aii | = 0 < 1/n so that the necessary conditions for asymptotic3
stability are satisfied.

(ii) The conditions (i) and (ii) are not necessary conditions for asymptotic stability. Indeed5
matrices A which satisfy (i) and Aij �0 for all 1� i�n, 1�j �n are strictly copositive on
K and guarantee asymptotic stability (see Proposition 3 in [12]).7

(iii) Condition (ii) implies that A is diagonally dominant.

Example 7. Let us consider a planar case with A ∈ R2×2. The above conditions read9
A11 > 0, A22 > 0, |A12|/A11 < 1

2 and |A21|/A22 < 1
2 . We see that A is a P-matrix [9]

since both principal minors are positive, as Aii > 0 (i = 1, 2) and det(A) = A11A22(1 −11
A12A21/A11A22) > 0. Notice that there exist P-matrices which are not positive definite,
like for instance13

A =
(

1 −3
0 1

)

[9, p. 147]. Also P -matrices may have complex eigenvalues with negative real parts, for15
instance

A =
(

1 −3
1 −2

)
, �1 = − 1

2 + j
√

3
2 , �2 = − 1

2 − j
√

3
2 .17

However, it can be shown that the above conditions guarantee that the eigenvalues of A have
positive real parts. Let 
1 and 
2 be the two eigenvalues of A. Then A11A22 −A12A21 =
1
219
and A22 + A11 = 
1 + 
2. Since A is a P-matrix, its real eigenvalues are positive. Thus if
the eigenvalues have negative real parts, they must be complex conjugate and in such a case21
A22A11 − A12A21 = 
1
2 > 0 and A22 + A11 = 
1 + 
2 < 0 so that A22 < − A11. This is a
contradiction since A22 > 0 and A11 > 0. We conclude that in the planar case, the necessary23
conditions of Proposition 7 imply that A is a P -matrix with (positive) real eigenvalues.

We now make use of Proposition 3 to derive conditions for under which the stationary25
solution is not asymptotically stable.

Proposition 8. Let F : Rn → Rn be defined by F(x) = Ax with A ∈ Rn×n and �(·) =27
�K(·) with K = Rn+. If A satisfies conditions (i) Aii < 0, 1� i�n, and (ii) |Aij /Aii | < 1/n

for all 1� i�n, 1�j �n, i �= j , then �(�, 0) = 0 and the stationary solution of (19) is not29
asymptotically stable.

Proof. The proof uses Proposition 3. The calculations are similar to those in the proof of31
Proposition 7. The conditions in (a)–(d) now are

(a′) max{�, −eT
i Ax + Aiixi + Aii�} > 0 and (b′) min{�, eT

i Ay − Aiiyi + Aii�} < 033

or

(c′) max{�, −eT
i Ax + Aiixi + Aii�} < 0 and (d′) min{�, eT

i Ay − Aiiyi + Aii�} > 035
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for all ‖x‖∞ �� and ‖y‖∞ ��. Inequality (c′) cannot be satisfied since �> 0. Inequality1
(a′) is always satisfied. Inequality (b′) is equivalent to having eT

i Ay − Aiiyi + Aii�< 0 for
all ‖y‖∞ ��. Using assumption (i), this can be rewritten as3

(
eT
i

A

Aii

− eT
i

)
y + 1 > 0, ∀y ∈ Rn, ‖y‖∞ �1. (61)

As in the proof of Proposition 7, we see that assumption (ii) ensures that (61) holds. We5
conclude that both (i) and (ii) assure that �i (x)�i (y) > 0 for all x ∈ Pi(−�) and y ∈
Pi(+�) and all 1� i�n, so that �(�, 0) = 0 and the stationary solution of (19) cannot be7
asymptotically stable. �

Application 1 (Asymptotic stabilization). Let us here consider a controlled system with9
transition matrix A ∈ Rn×n, input matrix B ∈ Rn×1, and a feedback controller u(.)=Ux(.)

with U ∈ R1×n. The corresponding mathematical model is of the form given in (19) with11
F(x) = (A + BU)x. Assume that the pair (A, B) has the so-called controller form [31],
i.e. Ai,i+1 = 1 and Aij = 0 for all j �= i + 1 and all 1� i�n − 1, Anj = �j where the �j ’s13
are the coefficient of the characteristic polynomial of A, and B = en. One can show that the
closed-loop system does not satisfy the conditions of Proposition 2. Or, that it does satisfy15
the conditions of Proposition 3. Consequently, a controlled evolution variational inequality
as in (19) with A and B in a controller form cannot be asymptotically stabilized by constant17
feedback. This is a major discrepancy with unconstrained systems. This shows that having
(A, B) a controllable pair (for the unconstrained system) is not at all sufficient to guarantee19
the asymptotic stabilization of a controlled variational inequality. This is in accordance with
the results in [7] on controllability of planar variational inequalities.21

Conditions (i) and (ii) of Proposition 7 now read as conditions for asymptotic stabilization:
given a pair (A, B), find a matrix U ∈ R1×n such that23

(a) Aii + BiUi > 0, 1� i�n,

(b) |Aij + BiUj | < 1

n
(Aii + BiUi), ∀i �= j, 1� i�n, 1�j �n, (62)

so that there exists a constant feedback control. We can now set some conditions to be25
satisfied by (A, B) so that the feedback guarantees �(�, 0) = 1:

(1) A �= 0 (from (62)(a) and combining with (62)(b)).27
(2) If Aii = 0 for some i, then necessarily Bi �= 0 (from (62)(a)).
(3) If Bi = 0 for some i, then necessarily Aii �= 0 (from (62)(a)).29
(4) Controllability of (A, B) (the Kalman matrix is of rank n) is not sufficient.
(5) Controllability of (A, B) (the Kalman matrix is of rank n) is not necessary: there exist31

pairs (A, B) such that the Kalman matrix has rank < n, and which satisfy the conditions
in (62) or the sufficient condition of Proposition 7.33

Item (5) can be proved by choosing a planar example with A11 > 0, A12=0, A21 �= 0, A22 �=
0, and B1=0, B2 �= 0.We have rank(B AB)=1, even if 0 < |A21+B2U1| < 1

2 (A22+B2U2).35
Let us choose U2 = sgn(B2)(�−A22)/|B2|, �> 0, and U1 = sgn(B2)(�−A21)/|B2|, ��0,
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�< �/2. Then the sufficient condition of Remark 6(i) is satisfied if � = 0, and conditions1
(i) are (ii) of Proposition 7 are satisfied if �< �/2.

10. Instability results3

Inasmuch as stability is usually a desired property, it is important to dispose of some
mathematical results which can be used to recognize instability. Here we use Theorem 55
together with Theorem 3 in order to state conditions ensuring instability.

Theorem 8. Suppose that assumptions (h1)–(h7) are satisfied. Suppose in addition that7
there exists �> 0 and V ∈ C1(Rn; R) such that

(1) �(.) − �(. − V ′(.)) is lower semicontinuous on D(��) ∩ B�;9
(2) 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x))�0, ∀x ∈ D(��) ∩ B�;
(3) M(F,�, V , B�) = {0},11

where (see Section 4) M(F,�, V , B�) denotes the largest invariant subset of E(F,�, V )∩
B� = {x ∈ D(��) ∩ B� : 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x)) = 0}.13

If �(�, 0) �= 1 then the trivial stationary solution of (19) is unstable.

Proof. Suppose on the contrary that the trivial stationary solution of (19) is stable. Then15
we may find �> 0 such that if x0 ∈ B� then 
(x0) ⊂ B�. We may apply Theorem 3 (with
� := B̄�) to get limt→+∞ d(S(t)x0,M(F,�, V , B̄�)) = 0. Here M(F,�, V , B�) = {0}17
and thus the trivial stationary solution of (19) is attractive. It results that the trivial stationary
solution of (19) is asymptotically stable and we obtain a contradiction to �(�, 0) �= 1. �19

Corollary 2. Suppose that assumptions (h1)–(h7) are satisfied. Suppose in addition that
there exists �> 0 and V ∈ C1(Rn; R) such that

21
(1) �(.) − �(. − V ′(.)) is lower semicontinuous on D(��) ∩ B�;
(2) 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x)) > 0, x ∈ D(��) ∩ B�, x �= 0.23

If �(�, 0) �= 1 then the trivial stationary solution of (19) is unstable.

Proof. The result is a direct consequence of Theorem 8 since condition (2) ensures that25
M(F,�, V , B�) = {0}. �

The following result is a direct consequence of the previous one.27

Corollary 3. Let K ⊂ Rn be a closed convex set such that 0 ∈ K . Suppose that assumptions
(h5)–(h7) are satisfied. Suppose in addition that there exists �> 0 and V ∈ C1(Rn; R) such29
that

(1) V ′(x) ∈ −K∞, x ∈ K ∩ B�;31
(2) 〈F(x), V ′(x)〉 > 0, x ∈ K ∩ B�, x �= 0;

If �(�, 0) �= 1 then the trivial stationary solution of (19) is unstable.33
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Example 8. The trivial stationary solution of (19) with the data given in Example 2(ii) is1
unstable. Indeed, we know that here �(�, 0) = 0 and it is easy to see that the conditions of
Corollary 3 hold with V (.) := − 1

2‖.‖2.3

Theorem 9. Suppose that � : Rn → R is convex and dom{�}=Rn. Suppose that assump-
tions (h5)–(h7) are satisfied. Suppose in addition that there exists �> 0 and V ∈ C1(Rn; R)5
such that

(1) V ′(x) �= 0, ∀x ∈ B�, x �= 0;7
(2) 〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x))�0, x ∈ B�;
(3) M(F,�, V , B�) = {0};9
(4) deg(V ′, Br , 0) �= 1 for r > 0 small enough.

Then the trivial stationary solution of (19) is unstable.11

Proof. The result is a consequence of Theorem 8 and Proposition 5 with H := V ′. �

Corollary 4. Suppose that� : Rh→R is convex and dom{�}=Rn. Suppose that assumptions13
(h5)–(h7) are satisfied. Suppose in addition that there exists �> 0 and a nonsingular and
symmetric matrix A ∈ Rn×n such that15

〈F(x), Ax〉 + �(x) − �(x − Ax)�0, x ∈ B�.

If M(F,�, 1
2 〈A., .〉, B�) = {0} and det A < 0 then the trivial stationary solution of (19) is17

unstable.

Proof. The result is a consequence of Theorem 9 with V (.)= 1
2 〈A., .〉. Here deg(V ′, Br , 0)=19

deg(A., Br, 0) = sgn(det A) = −1, ∀r > 0. �

The following result is a direct consequence of Corollary 4.21

Corollary 5. Suppose that � : Rn → R is convex and dom{�}=Rn. Suppose that assump-
tions (h5)–(h7) are satisfied. Suppose in addition that there exists �> 0 and a nonsingular23
and symmetric matrix A ∈ Rn×n such that

〈F(x), Ax〉 + �(x) − �(x − Ax) > 0, x ∈ B�\{0}.25

If det A < 0 then the trivial stationary solution of (19) is unstable.

Example 9. Let F and � be defined by27

F(x) =
(

a c

c b

) (
x1
x2

)

and29

�(x) = d|x2|,
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with a < 0, b > 0, c ∈ R and d > 0. Setting1

A =
(−1 0

0 1

)
,

we see that 〈F(x), Ax〉 + �(x) − �(x − Ax) = −ax2
1 + bx2

2 + d|x2| > 0, ∀(x1, x2) ∈3
R2\{(0, 0)}. Here det A = −1 and thus the trivial stationary solution of (19) is unstable.

Application 2 (Second-order dynamical systems in mechanics). Let us here deal with the5
following class of second-order dynamical systems:

Let � : Rm → R be a convex function with dom(�) = Rm. Let M, C, K ∈ Rm×m7
be given matrices. We consider the problem: Find a function t �→ q(t) (t �0) with q ∈
C1([0, +∞); Rm), and such that9

d2q

dt2 ∈ L∞
loc(0, +∞; Rm), (63)

dq

dt
is right-differentiable on [0, +∞), (64)11

M
d2q

dt2 (t) + C
dq

dt
(t) + Kq(t) ∈ −��

(
dq

dt
(t)

)
, a.e. t �0. (65)

The model in (65) can be used in Mechanics to describe the motion of various systems13
having frictional contact. For such problems, m is the number of degrees of freedom of the
system, M is the mass matrix of the system, C is the viscous damping matrix of the system15
and K is the stiffness matrix. The term ��(.) is used to model the unilaterality of the contact
induced by friction forces.17

Let us first assume that:

(H1) M is symmetric and positive definite;19
(H2) K is symmetric and nonsingular;
(H3) xTCx + �(x) − �(0) > 0, ∀x ∈ Rm, x �= 0;21
(H4) 0 ∈ ��(0).

Let23

�(M, K) := {� ∈ C : det(�M + K) = 0} = {�1, . . . , �m}.
Using assumptions (H1) and (H2), we may assert that (see e.g. [2]):25

�(M, K) ⊂ R\{0},
and there exists a nonsingular matrix R ∈ Rm×m such that27

RTMR = I and RTKR = K0,

where I denotes the m × m identity matrix and K0 is the diagonal matrix defined by29
(K0)ii = �i , (i ∈ {1, . . . , m}).
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Setting1

q := Rz,

we may rewrite (65) as follows:3

d2z

dt2 (t) + RTCR
dz

dt
(t) + K0z(t) ∈ −RT��

(
R

dz

dt
(t)

)
, a.e t �0. (66)

Let us here define the convex function � : Rm → R by the formula5

�(w) = (� ◦ R)(w), ∀w ∈ Rm.

Then (see Theorem 23.9 in [26]),7

��(w) = RT��(Rw), ∀w ∈ Rm.

Let us now set9

x1 := z, x2 := dz

dt
, x = (x1 x2)

T, ẋ1 = dx1

dt
, ẋ2 = dx2

dt
. (67)

It is clear that (66) is equivalent to the following first-order system:11 {
ẋ1 − x2 = 0,

ẋ2 + RTCRx2 + K0x1 ∈ −��(x2).
(68)

It results that our problem can be written as in (19) with n = 2m and where F and � are13
defined by

F(x) =
(

0 −I

K0 RTCR

) (
x1
x2

)
15

and

�(x) = �(x2).17

Let V be defined by

V (x) = 1
2 〈Ax, x〉,19

where

A =
(

K0 0
0 I

)
.21

We see that

V ′(x) = Ax �= 0, ∀x ∈ Rn, x �= 0, (69)23

deg(V ′, Br , 0) = sgn(det A) = sgn(det K0), ∀r > 0 (70)

and25

〈F(x), V ′(x)〉 + �(x) − �(x − V ′(x)) = xT
2 RTCRx2 + �(x2) − �(0)

�0, ∀x ∈ Rn. (71)
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Here1

S(F,�) = {(x1, 0) : K0x1 ∈ −��(0)}
and3

E(F,�, V ) = {x ∈ Rn : xT
2 RTCRx2 + �(x2) − �(0) = 0} = {(x1, 0); x1 ∈ Rm}.

Moreover, it can be proved that the largest invariant subset M(F,�, V ) of E(F,�, V )5
coincides with the set of stationary solutions of (19) (see the proof of Theorem 9 in [1]),
that is7

M(F,�, V ) = S(F,�).

Our theory can be applied provided that the trivial stationary solution of (68) is isolated in9
S(F,�). Let us so now assume in place of (H4) that

(H4)
′ ��(0) = {0}.11

Then S(F,�) = {0}. So, if assumptions (H1)–(H3), (H4)
′ are satisfied, then properties

(69)–(71) hold, M(F,�, V ) = {0} and we may apply Theorem 9 to conclude that if13

det K0 < 0

then the trivial stationary solution of (68) is unstable.15

11. Uncited references

[5,32].17

Appendix A.

Proof of Claim 1. We first prove that there exists T ∗ > 0 such that19

‖S(T ∗)PD(��)x‖� r

2
, ∀x ∈ Br .

Indeed, the stability of 0 as a solution of (19) ensures the existence of �> 0 such that if21
‖S(t̄)PD(��)x‖�� for some t̄ > 0 then ‖S(t)PD(��)x‖�r/2, ∀t � t̄ . Let X ∈ Br be given.
The attractivity of 0 as a solution of (19) ensures the existence of T := T (X) > 0 such that23
‖S(T )PD(��)X‖��/2. Setting � := (�/2)

√
e−2	̄T , we see that, for v ∈ B(X,�) := {z ∈

Rn : ‖z − X‖ <�}, we have (see (28))25

‖S(T )PD(��)v‖�‖S(T )PD(��)v − S(T )PD(��)X‖ + ‖S(T )PD(��)X‖
�

√
e2	̄T ‖PD(��)v − PD(��)X‖ + �

2
�

√
e2	̄T ‖v − X‖ + �

2
��.
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We see that1

Br ⊂
⋃

X∈Br

B(X,�)

and since Br is compact, we find X1, X2, . . . , XN ( and corresponding Ti,�i) such that3

Br ⊂
N⋃

i=1

B(Xi,�i ).

Setting T ∗ := max{T1, T2, . . . , TN }, we see that if x ∈ Br then x ∈ B(Xi,�i ) for some5
i ∈ {1, . . . , N}. Then ‖S(Ti)PD(��)x‖�� and thus ‖S(t)PD(��)x‖�r/2, ∀t �T ∗(�Ti).

Let us now check that7

deg(idRn − S(T ∗)PD(��)., Br , 0) = 1.

Let us define the continuous homotopy h : [0, 1] × Rn → Rn by9

h(�, x) := x − �S(T ∗)PD(��)x.

We claim that h(�, x) �= 0, ∀� ∈ [0, 1], x ∈ �Br . Indeed, suppose on the contrary that there11
exists x ∈ �Br and � ∈ [0, 1] such that

x = �S(T ∗)PD(��)x.13

Here x = �S(T ∗)PD(��)x + (1 − �)0 and thus x ∈ D(��) since S(T ∗)PD(��)x ∈ D(��),
0 ∈ D(��) (by assumption (h3)), � ∈ [0, 1] and D(��) is convex. It results that x=�S(T ∗)x15
and thus

‖x − �S(T ∗)x‖ = 0.17

However,

‖x − �S(T ∗)x‖�‖x‖ − �‖S(T ∗)x‖�‖x‖ − ‖S(T ∗)x‖� r

2
> 0,19

which is a contradiction. Thus from properties 2 and 3 (Section 2) we get

deg(idRn − S(T ∗)PD(��)., Br , 0) = deg(h(1, .)., Br , 0)

= deg(h(0, .), Br , 0) = deg(idRn , Br , 0) = 1.21

We end the proof of Claim 1 by remarking that

deg(idRn − S(t)PD(��)., Br , 0) = deg(idRn − S(T ∗)PD(��)., Br , 0), ∀t > 0.23

Indeed, let t > 0 be given and define the continuous homotopy g : [0, 1] × Rn → Rn by

g(�, x) := x − S(�t + (1 − �)T ∗)PD(��)x.25

We see that g(�, x) �= 0, ∀� ∈ [0, 1], x ∈ �Br . Indeed, suppose on the contrary that there
exists x ∈ �Br and � ∈ [0, 1] such that x = S(�t + (1 − �)T ∗)PD(��)x. Then x ∈ D(��)27
and thus

x = S(�t + (1 − �)T ∗)x.29
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That means that the application � → S(�)x is periodic with period �t + (1 − �)T ∗ (see1
Section 5) and nontrivial since ‖S(0)x‖=‖x‖= r > 0. This is a contradiction to (40). Thus
from property 2 in Section 23

deg(idRn − S(t)PD(��)., Br , 0) = deg(g(1, .), Br , 0)

= deg(g(0, .), Br , 0) = deg(idRn − S(T ∗)PD(��)., Br , 0). �

Proof of Claim 2. Let t > 0 be given and define the homotopy H : [0, 1] × Rn → Rn by5

H(�, x) := x − (�idRn + tA�)−1(�idRn + tG)PD(��)x,

where G is defined in (42). We first remark that H is continuous. Indeed, let xn → x and7
�n → � and set fn := (�nidRn + tG)PD(��)xn and vn := (�nidRn + tA�)−1fn. It is clear
that9

fn → f := (�idRn + tG)PD(��)x.

We claim that11

vn → v := (�idRn + tA�)−1f .

Indeed, we have13

vn := (�nidRn + tA�)−1fn ⇔ fn − �nvn

t
∈ A�vn

⇔
〈
vn −

(
fn − �nvn

t

)
, w − vn

〉
+ �(w) − �(vn)�0, ∀w ∈ Rn. (72)

Setting w = 0 in (72), we get15 〈
vn −

(
fn − �nvn

t

)
, vn

〉
��(0) − �(vn)

and then using (29), we obtain17

(t + �n)‖vn‖2 �‖fn‖‖vn‖ + t[〈−F(0), vn〉 + �(0) − �(vn)] + t〈F(0), vn〉
�‖fn‖‖vn‖ + t‖F(0)‖‖vn‖.

It results that the sequence {vn} is bounded.19
Setting w = v in (72), we get

〈tvn + �nvn − fn, v − vn〉 + t (�(v) − �(vn))�0. (73)21

We remark also that v = (�idRn + tA�)−1f if and only if〈
v −

(
f − �v

t

)
, w − v

〉
+ �(w) − �(v)�0, ∀w ∈ Rn,23

and thus

〈tv + �v − f, vn − v〉 + t (�(vn) − �(v))�0. (74)25
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So, from (73)1

〈tvn + �nvn, vn − v〉� t (�(v) − �(vn)) + 〈fn, vn − v〉
and from (74)3

−〈tv + �v, vn − v〉� t (�(vn) − �(v)) − 〈f, vn − v〉.
Thus5

〈t (vn − v) + �nvn − �v, vn − v〉�〈fn − f, vn − v〉.
We obtain7

(t + �)‖vn − v‖2 � |� − �n| ‖vn‖ ‖vn − v‖ + ‖fn − f ‖ ‖vn − v‖.

The sequence {vn} is bounded and thus {vn} ⊂ BK for some constant K > 0. It results that9

‖vn − v‖�K|� − �n| + ‖fn − f ‖
and thus vn → v as n → ∞.11

We check now that H(�, x) �= 0, ∀� ∈ [0, 1], x ∈ �Br . Suppose on the contrary that
there exists x ∈ �Br and � ∈ [0, 1] such that13

x = (�idRn + tA�)−1(�idRn + tG)PD(��)x.

Then15

�(PD(��)x − x) + tG(PD(��)x)

t
∈ A�(x).

Recalling that A−1
� = P�, we get17

x = P�

(
�(PD(��)x − x) + tG(PD(��)x)

t

)
. (75)

Thus from (8) x ∈ D(��) and (75) reduces to19

x = P�(G(x)),

which is a contradiction to (38).21
Then

deg(idRn − (idRn + tA�)−1(idRn + tG)PD(��)., Br , 0) = deg(H(1, .), Br , 0)

= deg(H(0, .), Br , 0) = deg(idRn − (tA�)−1(tG(PD(��).)), Br , 0)

= deg(idRn − P�G(PD(��).), Br , 0). �23

Proof of Claim 3. Let us consider the continuous homotopy G : [0, 1] × Rn → Rn by

G(�, x) := x − P�(G(�x + (1 − �)PD(��)x).25
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We claim that G(�, x) �= 0, ∀� ∈ [0, 1], x ∈ �Br . Suppose on the contrary that there exists1
x ∈ �Br and � ∈ [0, 1] such that

x = P�G(�x + (1 − �)PD(��)x).3

Then x ∈ D(��) and thus

x = P�G(x),5

which is a contradiction to (38). Thus

deg(idRn − P�G(PD(��).), Br , 0) = deg(G(0, .), Br , 0)

= deg(G(1, .), Br , 0) = deg(idRn − P�G(.), Br, 0). �7

Proof of Claim 4. (a) Recalling that PD(��)0 = 0, we obtain

‖PD(��)x‖ = ‖PD(��)x − PD(��)0‖�‖x‖�r �r0.9

(b) Recalling that P�G(0) = 0 (see (29) and (42)), we get

‖P�G(PD(��)x)‖ = ‖P�G(PD(��)x) − P�G(0)‖�‖G(PD(��)x) − G(0)‖
�‖PD(��)x‖ + ‖F(PD(��)x) − F(0)‖�r0(1 + C0)�

�1

2
< �1.11

(c) This follows from (a) and (39).
(d) We know that13

u(0) = PD(��)x (76)

and15 〈
du

ds
(s), w−u(s)

〉
+〈F(u(s)), w−u(s)〉+�(w)−�(u(s))�0, a.e. s�0. (77)

Setting w = PD(��)x in (77), we obtain17 〈
d

ds
(PD(��)x − u(s)), PD(��)x − u(s)

〉
�〈F(u(s)), PD(��)x − u(s)〉

+ �(PD(��)x) − �(u(s)), a.e. s�0.

Using (a), (c) and (37), we obtain19

�(PD(��)x) − �(u(s))�C1‖PD(��)x − u(s)‖�C1(r0 + 1).

We have also21

〈F(u(s)), PD(��)x − u(s)〉
= 〈F(u(s)) − F(PD(��)x), PD(��)x − u(s)〉 + 〈F(PD(��)x), PD(��)x − u(s)〉
�	̄‖PD(��)x − u(s)‖2 + ‖F(PD(��)x)‖‖PD(��)x − u(s)‖
�	̄(r0 + 1)2 + (r0 + 1)(‖F(PD(��)x) − F(0)‖ + ‖F(0)‖)
�	̄(r0 + 1)2 + (r0 + 1)(C0r0 + ‖F(0)‖).
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Thus1

1

2

d

ds
‖PD(��)x−u(s)‖2 �(r0+1)(C1+	̄(r0+1)+C0r0 + ‖F(0)‖), a.e. s�0.

Consequently, for t > 0, we have3 ∫ t

0

d

ds
‖PD(��)x − u(s)‖2 ds�2(r0 + 1)(C1 + 	̄(r0 + 1) + C0r0 + ‖F(0)‖)t .

Using now (76), we obtain5

‖PD(��)x − u(t)‖��
√

t .

(e) Using (c) and recalling that P�G(0) = 0, we get7

‖P�G(u(t))‖ = ‖P�G(u(t)) − P�G(0)‖
�‖G(u(t)) − G(0)‖�‖u(t)‖ + ‖F(u(t)) − F(0)‖
�‖u(t)‖(1 + C0)�

�1

2
< �1.

(f) Let t ∈ (0, t∗] be given. Using Theorem 4, we obtain9

‖S(t∗)PD(��)x − S(t∗)0‖�
√

e2w(t∗−t)‖S(t)PD(��)x − S(t)0‖.

Thus11

‖u(t)‖�
√

e2	̄t
√

e−2	̄t∗‖u(t∗)‖�
√

e−2	̄t∗ r

4
� r

8
.

(g) From the definition of v(t), we see that13

PD(��)x − v(t) + tG(PD(��)x)

t
∈ A�(v(t)).

Thus15 〈
v(t) − PD(��)x

t
, w − v(t)

〉
+ 〈v(t) − G(PD(��)x), w − v(t)〉

+ �(w) − �(v(t))�0, ∀w ∈ Rn.

It results also that17

v(t) − PD(��)x

t
+ v(t) − G(PD(��)x) ∈ −��(v(t))

and thus v(t) ∈ D(��).19
(h) Applying the result in (g) with w := PD(��)x, we obtain

1

t
〈v(t) − PD(��)x, PD(��)x − v(t)〉 + 〈v(t) − G(PD(��)x), PD(��)x − v(t)〉
+ �(PD(��)x) − �(v(t))�0.21
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Thus1

1

t
‖v(t) − PD(��)x‖2 + ‖v(t) − PD(��)x‖2

�〈PD(��)x − G(PD(��)x), PD(��)x − v(t)〉 + �(PD(��)x) − �(v(t))

= 〈F(PD(��)x), PD(��)x − v(t)〉 + �(PD(��)x) − �(v(t))

= 〈F(PD(��)x) − F(0), PD(��)x − v(t)〉 + 〈F(0), PD(��)x〉 − 〈F(0), v(t)〉
+ �(0) − �(v(t)) + �(PD(��)x) − �(0)

�‖F(PD(��)x) − F(0)‖‖PD(��)x − v(t)‖ + ‖F(0)‖‖PD(��)x‖
+ |�(PD(��)x) − �(0)|

�C0r0‖PD(��)x − v(t)‖ + ‖F(0)‖r0 + C1r0

� (C0r0)
2

2
+ ‖PD(��)x − v(t)‖2

2
+ ‖F(0)‖r0 + C1r0.

Thus3

1

t
‖v(t) − PD(��)x‖2 � (C0r0)

2

2
+ ‖F(0)‖r0 + C1r0.

Therefore5

‖v(t) − PD(��)x‖��
√

t .

(i) Let t ∈ (0, T ∗] be given. From (a) and (h), we deduce that7

‖v(t)‖��
√

t + r0.

Thus9

‖v(t)‖� �0

2
+ r0 ��0

and11

‖v(t)‖� �1

2(1 + C0)
+ r0 � �1

1 + C0
.

(j) Let t ∈ (0, T ∗] be given. Using (i), we get13

‖P�(G(v(t)))‖ = ‖P�(G(v(t))) − P�(G(0))‖�‖G(v(t)) − G(0)‖
�‖v(t)‖ + ‖F(v(t)) − F(0)‖�(1 + C0)‖v(t)‖��1. �

Proof of Claim 5. Let us define the homotopy W : [0, 1] × Rn → Rn by15

W(�, x) := x − �(idRn + tA�)−1(idRn + tG)PD(��)x − (1 − �)S(t)PD(��)x.

Note that W(�, x) = x − �H(1, x) − (1 − �)S(t)PD(��)x where H is defined in Claim17
2. The continuity of W follows from the continuity of the Poincaré operator S(t) and the
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continuity of H (see Claim 2). We claim that W(�, x) �= 0, ∀� ∈ [0, 1], x ∈ �Br . Indeed,1
suppose on the contrary that there exists x ∈ �Br and � ∈ [0, 1] such that

x = �(idRn + tA�)−1(idRn + tG)PD(��)x + (1 − �)S(t)PD(��)x.3

Setting

u(t) := S(t)PD(��)x5

and

v(t) := (idRn + tA�)−1(idRn + tG)PD(��)x,7

we may write

x = �v(t) + (1 − �)u(t).9

The following calculations will show that this equality is impossible to satisfy on the time
interval (0, T̄ ]. Here u(t) ∈ D(��) and v(t) ∈ D(��) (see Claim 4(g)). Thus x ∈ D(��)11
since D(��) is convex. It results that

PD(��)x = x.13

Moreover, from Claims 1 and 2, we deduce that � ∈ (0, 1). We know that〈
du

ds
(s), w − u(s)

〉
+ 〈F(u(s)), w − u(s)〉 + �(w) − �(u(s))�0,

∀w ∈ Rn, a.e. s�0, (78)15

and thus∫ t

0

〈
du

ds
(s), w − u(s)

〉
ds +

∫ t

0
�(w) ds −

∫ t

0
�(u(s)) ds

� −
∫ t

0
〈F(u(s)), w − u(s)〉 ds, ∀w ∈ Rn.17

On the other hand∫ t

0

〈
du

ds
(s), u(s) − x

〉
ds =

∫ t

0

〈
d

ds
(u(s) − x), u(s) − x

〉
ds

= 1

2

∫ t

0

d

ds
‖u(s) − x‖2 ds

= 1

2
‖u(t) − x‖2 − 1

2
‖u(0) − x‖2

= 1

2
‖u(t) − x‖2 �0.19

Thus ∫ t

0

〈
du

ds
(s), w − x

〉
ds�

∫ t

0
�(u(s)) ds −

∫ t

0
�(w) ds −

∫ t

0
〈u(s) − G(u(s)),

× w − u(s)〉 ds, ∀w ∈ Rn. (79)21
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Let us set1

�(t) :=
∫ t

0

〈
du

ds
(s), P�(G(x)) − x

〉
ds.

Setting w := P�(G(x)) in (79), we see that3

�(t)�
∫ t

0
�(u(s)) ds −

∫ t

0
�(P�(G(x))) ds −

∫ t

0
〈u(s) − G(u(s)), P�(G(x))

− u(s)〉 ds

=
∫ t

0
�(u(s)) ds −

∫ t

0
�(P�(G(x))) ds −

∫ t

0
〈u(s) − G(u(s)), P�(G(u(s)))

− u(s)〉 ds −
∫ t

0
〈u(s) − G(u(s)), P�(G(x)) − P�(G(u(s)))〉 ds.

By definition of P�, we have5

〈P�(G(u(s))) − G(u(s)), w − P�(G(u(s)))〉 + �(w) − �(P�(G(u(s))))�0,

∀w ∈ Rn.

Setting w := u(s), we get7

〈P�(G(u(s))), G(u(s))〉� − 〈P�(G(u(s))), u(s)〉 + 〈G(u(s)), u(s)〉
+ ‖P�(G(u(s)))‖2 + �(P�(G(u(s)))) − �(u(s)).

Thus9

�(u(s)) − �(P�(G(x))) + 〈u(s) − G(u(s)), u(s) − P�(G(u(s)))〉
= �(u(s)) − �(P�(G(x))) + ‖u(s)‖2 + 〈G(u(s)), P�(G(u(s)))〉

− 〈G(u(s)), u(s)〉 − 〈u(s), P�(G(u(s)))〉
��(P�(G(u(s)))) − �(P�(G(x))) + ‖u(s)‖2 − 2〈P�(G(u(s))), u(s)〉

+ ‖P�(G(u(s)))‖2

= �(P�(G(u(s)))) − �(P�(G(x))) + ‖u(s) − P�(G(u(s)))‖2.

Thus11

�(t)�
∫ t

0
�(P�(G(u(s)))) − �(P�(G(x))) + ‖u(s) − P�(G(u(s)))‖2 ds

−
∫ t

0
〈u(s) − G(u(s)), P�(G(x)) − P�(G(u(s)))〉 ds.

Using Claim 4(e) and (a)–(d), we see that13

�(P�(G(u(s)))) − �(P�(G(x)))�C1‖P�(G(u(s))) − P�(G(x))‖
�C1‖G(u(s)) − G(x)‖�C1‖u(s) − x‖ + C1‖F(u(s)) − F(x)‖
��(C1 + C1C0)

√
s.
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Using Claim 4(c), (a) and (d), we obtain also1

〈u(s) − G(u(s)), P�(G(x)) − P�(G(u(s)))〉
�‖F(u(s))‖‖P�(G(x)) − P�(G(u(s)))‖
�(‖F(0)‖ + C0‖u(s)‖)‖G(x) − G(u(s))‖
�(‖F(0)‖ + C0)(‖x − u(s)‖ + ‖F(x) − F(u(s))‖)
�(‖F(0)‖ + C0)(1 + C0)‖x − u(s)‖�(‖F(0)‖ + C0)(1 + C0)�

√
s.

Thus3

�(t)�
∫ t

0
‖u(s) − P�(G(u(s)))‖2 ds − 2

3
�(1 + C0)(‖F(0)‖ + C0 + C1)t

3/2.

If ‖u(t)‖�r/4 then using Claim 4(f), we may assert that ‖u(s)‖�r/8, ∀s ∈ (0, t] and then5
using (41), we obtain that

�(t)�
2t − Ct3/2 if ‖u(t)‖� r

4
. (80)7

It is also clear that

�(t)� − Ct3/2 if ‖u(t)‖ <
r

4
. (81)9

By Claim 4(g), we know that

〈
v(t) − x

t
, w − v(t)

〉
+ 〈v(t) − G(x), w − v(t)〉 + �(w) − �(v(t))�0,

∀w ∈ Rn.11

Moreover,

〈
v(t) − x

t
, w − v(t)

〉
=

〈
v(t) − x

t
, w − x

〉
+

〈
v(t) − x

t
, x − v(t)

〉

�
〈
v(t) − x

t
, w − x

〉
= − (1 − �)

�t
〈u(t) − x, w − x〉

= − (1 − �)

�t

∫ t

0

〈
du

ds
(s), w − x

〉
ds.13

Setting � := (1 − �)/�, we see that

− �
t

∫ t

0

〈
du

ds
(s), w − x

〉
ds + 〈v(t) − G(x), w − v(t)〉 + �(w) − �(v(t))�0,

∀w ∈ Rn.15
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Setting w := P�(G(x)), we get1

�(t)� t

�
[〈v(t) − G(x), P�(G(x)) − v(t)〉 + �(P�(G(x))) − �(v(t))]

= t

�
[〈v(t) − G(v(t)), P�(G(x)) − v(t)〉 + 〈G(v(t)) − G(x), P�(G(x))

− v(t)〉 + �(P�(G(x))) − �(v(t))]
= t

�
[〈v(t) − G(v(t)), P�(G(v(t))) − v(t)〉 + �(P�(G(v(t)))) − �(v(t))

+ 〈v(t) − G(v(t)), P�(G(x)) − P�(G(v(t)))〉 + 〈G(v(t))

− G(x), P�(G(x)) − v(t)〉 + �(P�(G(x))) − �(P�(G(v(t))))].
We know that3

〈P�(G(v(t))) − G(v(t)), w − P�(G(v(t)))〉 + �(w) − �(P�(G(v(t))))�0,

∀w ∈ Rn.

Setting w := v(t), we see that5

〈P�(G(v(t))) − G(v(t)), P�(G(v(t))) − v〉 + �(P�(G(v(t)))) − �(v(t))�0

and thus7

〈v(t) − G(v(t)), P�(G(v(t))) − v(t)〉 + �(P�(G(v(t)))) − �(v(t))

� − ‖P�(G(v(t))) − v(t)‖2.

Thus9

�(t)� − t

�
‖P�(G(v(t))) − v(t)‖2 + t

�
[〈v(t) − G(v(t)), P�(G(x))

− P�(G(v(t)))〉 + 〈G(v(t)) − G(x), P�(G(x)) − v(t)〉
+ �(P�(G(x))) − �(P�(G(v(t))))].

Using Claim 4(a), (h) and (i), we see that11

〈v(t) − G(v(t)), P�(G(x)) − P�(G(v(t)))〉
�‖F(v(t))‖‖G(x) − G(v(t))‖
�(‖F(0)‖ + C0�0)(‖x − v(t)‖ + ‖F(x) − F(v(t))‖)
�(‖F(0)‖ + C0�0)(1 + C0)�

√
t .

Using Claim 4(a), (b) and (i), we obtain also that13

〈G(v(t)) − G(x), P�(G(x)) − v(t)〉
�(‖P�(G(x))‖ + ‖v(t)‖)(‖x − v(t)‖ + ‖F(x) − F(v(t))‖)
�(�1 + �0)(1 + C0)�

√
t .

Moreover, using Claim 4(b), (g), (a), (i) and (h), we get15

|�(P�(G(x))) − �(P�(G(v(t))))|�C1‖P�(G(x)) − P�(G(v(t)))‖
�C1‖G(x) − G(v(t))‖�C1(1 + C0)‖x − v(t)‖�C1(1 + C0)�

√
t .



UNCORRECTED P
ROOF

42 D. Goeleven, B. Brogliato / Nonlinear Analysis ( ) –

NA4429

ARTICLE IN PRESS

Thus1

�(t)� − t

�
‖P�(G(v(t))) − v(t)‖2 + 1

�
t3/2[�(1 + C0)(‖F(0)‖ + �1

+ (1 + C0)�0 + C1)]
� − t

�
‖P�(G(v(t))) − v(t)‖2 + C

�
t3/2

Thus3

�(t)� − 
2 t

�
+ C

�
t3/2 if ‖v(t)‖� r

8
(82)

and5

�(t)� C

�
t3/2 if ‖v(t)‖ <

r

8
. (83)

If ‖u(t)‖�r/4 and ‖v(t)‖�r/8 then from (80) and (82), we get7


2t − Ct3/2 � − 
2 t

�
+ C

�
t3/2

and thus t �
4/C2 which is a contradiction since t �T � 1
2
4/C2.9

If ‖u(t)‖ < r/4 and ‖v(t)‖�r/8 then from (81) and (82), we get

−Ct3/2 � − 
2 t

�
+ C

�
t3/2. (84)11

Using Claim 4(i), we see that

� = ‖v(t) − x‖
‖x − u(t)‖ � ‖v(t)‖ + ‖x‖

‖x‖ − ‖u(t)‖ ��∗,13

where �∗ = 4
3 (�0 + r)/r . Here (84) yields t �
4/C2(�∗ + 1)2 which contradicts t � T̄ .

If ‖u(t)‖�r/4 and ‖v(t)‖ < r/8 then from (80) and (83), we get15


2t − Ct3/2 � C

�
t3/2. (85)

Using Claim 4(c), we see that17

� = ‖v(t) − x‖
‖x − u(t)‖ � ‖x‖ − ‖v(t)‖

‖x‖ + ‖u(t)‖ ��∗,

where �∗ =7r/8(1+ r). Then (85) gives t �
4/C2(1/�∗ +1)2 and a contradiction to t � T̄ .19
If ‖u(t)‖ < r/4 and ‖v(t)‖ < r/8 then

‖x‖��‖v(t)‖ + (1 − �)‖u(t)‖��
r

8
+ (1 − �)

r

4
< r21

which is a contradiction since x ∈ �Br .
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Consequently one has x �= �v(t) + (1 − �)u(t), ∀x ∈ �Br, � ∈ [0, 1] so that we have1
proved W(�, x) �= 0, ∀x ∈ �Br, � ∈ [0, 1]. Thus

deg(idRn − (idRn + tA�)−1(idRn + tG)PD(��)., Br , 0) = deg(W(1, .), Br , 0)

= deg(W(0, .), Br , 0) = deg(idRn − S(t)PD(��)., Br , 0).3
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