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Global Tracking Controllers for Flexible-joint 
Manipulators: a Comparative Study* 
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Using some recent nonlinear controller design techniques, we derive, and 
compare, several globally stable nonlinear controllers for flexible-joint 

robots. 
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Abstrad-Several new controller design techniques for 
global stabilization of nonlinear systems have recently been 
reported. Typically, these methodologies provide the 
designer with various degrees of freedom; consequently, their 
application in specific examples leads to the definition of 
various control schemes. One question of interest is the 
relationship between these schemes, or whether one contains 
the other. Further, since these schemes will, in general, 
exhibit different transients and possess different robustness 
properties, another challenging research problem is to 
establish some common framework to compare their 
robustness and performance properties. In this paper we 
investigate these questions for three different controller 
design techniques as applied to the problem of global 
tracking of robots with flexible joints. The connection 
between the various controllers are investigated. Further, 
they are compared using the following performance 
indicators: continuity properties uis-d-uis the joint stifhess, 
availability of adaptive implementations when the robot 
parameters are unknown, and robustness to ‘energy- 
preserving’ (i.e. passive) unmodelled effects. Complete 
stability proofs of all the resulting controllers are given. 

1. INTRODUCTION 

1.1. Problem formulation 
A problem that has attracted the attention of 
researchers for some time is the motion control 
of robots with flexible joints. This problem has a 
strong practical motivation for high-performance 
robots, where elasticity is no longer negligible 
and has to be explicitly taken into account in the 
design, typically by adding a linear torsional 
spring. It is also a very challenging theoretical 
problem, since the number of degrees of 
freedom of the system is twice the number of 
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control actions, and the matching property 
between nonlinearities and inputs is lost. 

Throughout this paper, we shall consider the 
simplified model of an n-link robot proposed by 
Spong (1987), which assumes that the angular 
part of the kinetic energy of each rotor is due 
only to its own rotation (for a model that relaxes 
this assumption, see e.g. Nicosia & Tomei, 1992), 
and is given by 

D(q,)ii,+ C(q1,41)41+ g(q1) = K(q, - 41) 

Jijz + K(q, - 41) = u, 
(1) 

where q1 E R” and q2 E R” represent the link 
angles and motor angles respectively, D(qI) is 
the n x n inertia matrix for the rigid links, J is a 
diagonal matrix of actuator inertias reflected to 
the link side of the gears, C(q,, d&j1 represents 
the Coriolis and centrifugal forces, g(qI) 
represents the gravitational terms, and K > 0 is a 
diagonal matrix containing the joint stiffness 
coefficients. As suggested by Spong and Vid- 
yasagar (1989), we define C(Q,, Qr) via the 
Christoffel symbol. For ease of reference, we 
shall refer in the future to the first and second 
equations above as link dynamics and motor 
dynamics respectively. Also, to simplify the 
notation, we shall omit the arguments of D(a), 

C(*, *x g(*). 
We are interested here in the following. 

Global trucking problem. For the system (l), 
define an internally stable control law that, for 
all qld E %? II _?&‘z and arbitrary initial conditions, 
ensures 

!nn 61 = lim (qi - &d) = 0. 
*-+m 

Control laws that solve this problem will be 
referred as globally tracking controllers. To avoid 
the possible excitation of high-frequency 
modes-a critical effect in flexible systems-we 
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further restrict our attention to smooth con- 
trollers that do not inject high gain (e.g. d la 
Corless and Leitmann, 1981) into the loop, as in 
the schemes of Chen and Fu (1989), Dawson et 
al. (1991) and Stepanenko and Yuan (1992). 

1.2. Literature review 
It is now well known (Spong and Vidyasagar, 

1989) that the flexible-joint robot model (1) is 
globally feedback-linearizable (by static state 
feedback), and therefore globally stable con- 
trollers can be derived using ‘classical’ geometric 
techniques. Besides the intrinsic lack of robust- 
ness of schemes based on nonlinearity cancella- 
tion, the proposed solutions suffer from the 
additional drawback that the control implemen- 
tation relies on the availability of link accelera- 
tion and jerk. Even though these signals can be 
derived without differentiation from the systems 
model, this is not a very desirable procedure, 
since the accuracy in their calculation will be 
highly sensitive to uncertainty in the robot 
parameters. One way to overcome this difficulty 
is to use parameter adaptation techniques; 
unfortunately, it is not clear at this point how to 
make these schemes adaptive while preserving 
the global stability property. 

Lozano and Brogliato (1992) have proposed 
the first globally stable scheme that is not based 
on feedback linearization. Availability of link 
acceleration and jerk is still required, but the 
sensitivity problems mentioned above are over- 
come by the adaptive implementation, for which 
a global convergence proof is given. The 
controller is a complicated dynamic state 
feedback that requires the realization of several 
(apparently ad hoc) filtering stages. Also its 
parametrization should be modified to avoid 
possible unboundedness of regressor signals. 

In Nicosia and Tomei (1992) a Lyapunov- 
based backstepping technique* (popularized in 
Kokotovic, 1991) is applied to derive a global 
tracking controller. However, its adaptive 
implementation is presented only for a single- 
link robot. 

It should be remarked that, to the best of our 
knowledge, the global tracking problem for the 
complete model is as yet open. Some claims 
concerning dynamic feedback linearization for 
certain particular robot structures are made in 
De Luca (1988). Other efforts aimed at solving 
this problem may be found in Lanari et al. 
(1992). 

1.3. About this paper 
It is well known that systems described by 

Euler-Lagrange equations possess some nice 

* See Section 4.8 of Sontag (1990) for a brief history of this 
technique. 

passivity properties that follow directly from the 
energy balance principles (see e.g. Nijmeijer and 
van der Schaft, 1990; Ortega et al., 1994). In 
particular, robots with flexible joints define a 
passive operator from applied torques to motor 
shaft velocities, though it is not passive with 
respect to the link velocities. Furthermore, 
because of the block diagonal structure of its 
inertia matrix, the simplified model (1) can be 
decomposed into two cascaded subsystems with 
a suitable change of input coordinates, and link 
acceleration and jerk are available from the 
system model and its state without 
differentiation. 

In this paper we use these fundamental 
properties to define various globally tracking 
controllers, applying three different stabilization 
techniques as follows. 

Decoupling-based schemes. These use the 
cascade decomposition property, and are 
motivated by the result on stability of 
cascaded connections of stable systems with 
bounded orbits of Seibert and Suarez (1990). 
The name ‘decoupling-based’ stems from the 
fact that the resulting closed loop is also a 
cascade connection. Two controllers are 
explicitly derived. 
Backstepping-based schemes. These also use 
the cascade decomposition property of the 
model, but combined with the integrator 
augmentation stabilization of Kokotovic and 
Sussmann (1989). With this technique, we 
derive controllers that contain as particular 
case the one proposed by Nicosia and Tomei 
(1992). 
Passivity-based schemes. These are obtained 
from the application of the passivity-based 
technique for stabilization of underactuated 
Euler-Lagrange systems proposed by Ortega 
and Espinosa (1993); see also Ortega and 
Espinosa (1991). Using this technique, we first 
rederive the controller proposed by Lozano 
and Brogliato (1992). Further, we prove that a 
simpler control law, i.e. static state feedback, 
can be obtained choosing a different desired 
closed-loop ‘potential energy’. The new 
controller is exponentially stable, and also 
admits an adaptive implementation. It is 
interesting to note how the passivity-based 
methodology creates the possibility of obtain- 
ing different controllers proceeding from the 
fundamental physical notion of closed-loop 
total energy (Ortega et al., 1994). 

It is clear that the resulting controllers, which 
are derived from apparently unrelated tech- 
niques, will exhibit different transients and 
possess different robustness properties. The main 
objective of this paper is to establish a common 
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framework to identify the relationships (if any) 
between these designs, and compare their 
robustness and performance properties. 

The remainder of the paper is organized as 
follows. Three basic lemmas that motivate our 
design approaches are presented in Section 2. 
The various control schemes are described, and 
their stability analysed* in Section 3. We are 
interested to know if using the backstepping 
methodology, which is perhaps the most 
systematic technique available to date, we can 
obtain the controllers derived from the other 
methodologies. Our conclusion here is that there 
is no unique methodology from which all 
controllers can be derived, unless significant 
modifications to the design techniques are 
introduced. We then carry out three comparison 
studies for these algorithms, which are given in 
Section 4. First, we study the continuity 
properties of the closed loop uis-d-uis the joint 
stiffness, that is, the behaviour of the control law 
in the transition from flexible- to rigid-joint 
robot. Specifically, we are interested in known- 
ing whether the loop gain grows unbounded with 
increasing stiffness, and if the stability analysis 
still carries on in this practically important case. 
Secondly, we study the possibility of an adaptive 
implementation. In particular, we show how the 
backstepping-based controllers can be made 
adaptive for the n-dof case. Also, we discuss the 
limitations in this respect of the passivity-based 
and decoupling-based controllers. Finally, we 
provide a decomposition of the various closed 
loops into passive blocks in feedback intercon- 
nection. This analysis is motivated by the 
well-known fact that passivity is invariant under 
feedback interconnection. Thus some robustness 
properties of ‘energy-preserving’ unmodelled 
effects may be inferred from such passive 
decompositions (for further discussion of this 
point, see e.g. Ortega and Spong, 1989). 

Notation. 1.1 is the Euclidean norm, 2: and L!?& 
are the space of n-dimensional square-integrable 
functions and its extension, 11. II2 is the LZ’; norm, 
and (* 1 *) is the inner product in 2;. For further 
details and definitions see Desoer and Vid- 
yasagar (1975). 

2. DESIGN APPROACHES 

In this section we present some properties of 
the model and three technical lemmas that will 
help us to define in the forthcoming section the 

* For the sake of brevity, the stability proofs are given with 
the explicit derivations of the state and the coordinate 
transformations. They may be found in the conference paper 
by Brogliato et al. (1993a) or in its full version available from 
the authors. 

various globally stable control laws for tracking 
of flexible joint manipulators. 

2.1. Cascaded subsystems 
Before presenting the approach, we note the 

simple fact that with a suitable input change of 
coordinates, we can transform (1) into two 
cascaded subsystems with inputs u and q2 
respectively. This change of coordinates is 
non-unique; for instance, we achieve the 
objective with u = Kql + v or with u =Ju + 
K(q, - ql). This freedom will be used later to 
derive different control laws. 

Now, we present a technical result that we 
shall use in the sequel to obtain the first type of 
controllers. It pertains to the stability of 
cascaded interconnections of stable systems 
when boundedness of the orbits is insured. 

Lemma 1. (Seibert and Suarez (MO).) If the 
systems i = F(x) and 3 = G(0, y) are globally 
asymptotically stable (GAS), and if every orbit 
of the cascaded system 

1= F(x), j, = G(x, y) 

is bounded in the future, then the overall system 
is also GAS. 

The geometrical idea behind this result is that 
if the reduction 3 = G(0, y) of the system to the 
invariant manifold x = 0 is GAS then the overall 
system is also GAS, provided that the solutions 
do not grow unbounded. This is an interesting 
result, because it shows that if the peaking 
phenomenon makes two cascaded GAS systems 
not GAS then it has the disastrous effect of 
making the solutions grow unbounded. 

2.2. Integrator backstepping 
The following result, which motivates another 

set of globally tracking controllers, pertains to 
the problem of stabilizing a nonlinear system in 
cascade with an integrator chain. 

Lemma 2. (Kokotovic and Sussman (1989).) If a 
system 1 =f(x ,u) is smoothly stabilizable then 
the system 

i =f(x, 61) (1 = 52, - * * 7 B = LJ (2) 

obtained by cascading the original system with a 
chain of integrators is smoothly stabilizable as 
well. 

A stabilizing control law for (2) comes as a 
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corollary of the now well-known backstepping 
method (see e.g. Kokotovic, 1991; Kanellako- 
poulos et al., 1991) and the passive design of 
Kokotovic and Sussmann (1989). The essential 
idea of the backstepping technique is to start 
from the knowledge of a smooth feedback, say 
&&), such that R =f(x, &&)) is GAS with 
known Lyapunov function. Then generate an 
error equation consisting of the GAS system and 
an error term &(x) - &,&), and add to its input 
an integrator. For the augmented system a new 
stabilizing feedback law is explicitly designed 
and shown to be stabilizing for a new Lyapunov 
function, and so on. 

Remark 1. It is interesting to note that with this 
powerful idea one can ‘rederive’ some classical 
control schemes. For instance, a state observer 
u = KR may be derived by setting u = Kx + 
K(f -x) and then adding an integrator for 
f -xx. The same procedure works for a 
parameter adaptation scheme u = Rx, where 
now we add the integrator to R - K. Actually, as 
pointed out in Kokotovic and Sussmann (1989), 
the latter application motivated their 
developments. 

2.3. Passivity-based control 
The last design approach we shall consider in 

this section is the passivity-based technique 
proposed by Ortega and Espinosa (1991,1993) 
to control Euler-Lagrange systems with fewer 
control actions than degrees of freedom. The 
passivity-based technique is well known in 
rigid-robot control (Ortega and Spong, 1989; see 
also Kelly et aZ., 1989; Brogliato et al., 1991). It 
was introduced in the seminal paper by Takegaki 
and Arimoto (1981) to solve the rigid-robot 
regulation problem via shaping of the system 
potential energy and addition of the required 
damping. This simple physically motivated idea 
has been extended in several directions, yielding 
designs with enhanced robustness properties that 
do not need cancellation of nonlinearities (see 
e.g. Slotine and Li, 1988; Nijmeijer and van der 
Schaft, 1990; Ortega and Espinosa, 1991, 1993; 
Lanari and Wen, 1992; Berghuis and Nijmeijer, 
1993; Ailon and Ortega, 1993). 

The approach is based on the well-known 
passivity property of the robot model, which is 
demonstrated here for completeness, and the 
strict passivity of the ‘error equation’ presented 
below. To simplify the notation, we find it 
convenient to rewrite (1) in compact form as 

(3) 

where 

4== 1s: 4% 

Lemma 3. (Passivity properties.) The system (3) 
defines a passive operator Z: Z& --, py;P$ : u H tj2. 
That is, there exists /I E R such that (U 1 tj2) 2 p, 
for all u E 5?&.. Furthermore, for all ql, Q1 E 
2$, the system 

os+(C+@s+K ‘s(z)dr=+, 
I (4) 

0 

with B = BT>O, defines an output strictly 
passive operator &: 2% + 2;: : I,+ H s, i.e. there 
exist p E IR and (Y >O such that (+ 1 s)? 
a l[sllf + j3 for all v E .5?$:. Consequently, if 
+=O, wehavesEZ’p. 

Proof. The first passivity property can be easily 
established by taking the time derivative of the 
robot total energy function 

H = $4=& + $q=Eq + V g’ (5) 
where gT = aVg/aql, which (using the well- 
known skew-symmetry property b = C + CT) 
yields k = uT&. The proof is co nml+db& 
integrating the previous equation and noting 
the total energy is bounded from below. 

To prove the output strict passivity of v ws, 
we proceed as above with the ‘total energy’ 
function* 

(6) 
which yields I;rd = vTs + sT&. 0 

The interest of the above lemma for our global 
tracking problem is easier to appreciate if we 
recall the energy-shaping interpretation of the 
controller of Slotine and Li (1988) for rigid 
robots. To this end, we first define the error 
signals 

41 = 41 - qld, 

(7) 

with A1 > 0, diagonal. Now, the control law is 
defined to change the system total energy so as 
to match the desired ‘total energy’ $sTDsl; we 

*It is important to note that, rigorously speaking, (6) is 
not the total energy of the system (4). Faute de mieux, we 
keep this notation with the quotation marks. 
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call this step energy shaping. Further, to ensure 
strict passivity, we add the required damping 
Blsl, B1 > 0. The error equation corresponding 
to the desired ‘total energy’ is DSi + (C + 
B1)sl = 0, which, using Ij = C + CT as in the 
above lemma, ensures s1 E 2;. From the 
definition of sl, and invoking the arguments used 
by Ortega and Spong (1989), we conclude that 
lim,,, Q, =o. 

A similar procedure will be followed in the 
next section to define passivity-based controllers 
for the flexible-joint case. However, the exten- 
sion is not straightforward, because the flexible 
robot has fewer control actions than degrees of 
freedom, and consequently the ‘potential energy’ 
cannot be arbitrarily shaped. See Ortega et al. 
(1994). 

3. CONTROL SCHEMES 

In this section we present the globally tracking 
controllers inspired by the three previous 
lemmas. For ease of presentation, we start with 
the simplest design, namely that based on 
triangularization of the closed loop. Then we 
present the backstepping-based schemes, and 
wrap up the section with the passivity-based 
controllers. 

3.1. Decoupling-based schemes 
The decoupling-based controllers use the 

triangularization property of the model to obtain 
two GAS cascaded subsystems. The motor 
dynamics define the unforced subsystem, which 
drives the link dynamics via q2. The rationale is 
then to make q2 converge to some function (say 
q2J that, if applied as input to the link dynamics, 
will drive q1 towards qld. In particular, to be able 
to invoke Lemma 1, we need the link dynamics 
to be GAS when q2 = q2d. Several choices are 
possible for the signal q2d. To unify the 
presentation, and allow for the possibility of an 
adaptive implementation, we have adopted here 
the solution proposed by Slotine and Li (1988). 
That is, we define 

where 
9 2d = K-h + 41, (8) 

u R = Dqlr + CgIr + g - Blsl (9) 

and 4,r = qld - h14,. The signal uR is the control 
law of Slotine and Li (1988) designed for the 
rigid part of the robot model. Note that, with 
this definition, we can rewrite the first equation 
in (1) as a GAS system with an input 
perturbation term q2 = q2 - q2d as 

DS1 + Cs, + B,sI = Kq2. (10) 

The proof of GAS of the system above with 

Fhrrz may be found in Spong et al. (1990), 

V, = ;s;Dsl + q$ITb,q, 

is shown to be a strict Lyapunov function. 
To complete the design, we now propose a 

control law that decouples the motor dynamics 
and makes it GAS as 

u =K(q2-q,)-KtBz-K242+Jii2d, (11) 

with K1, K2 > 0. This control yields a decoupled 
error equation 

Jt2 + K2G2 + K1q2 = 0. (12) 

A very important remark at this point is that 
q2d is computable without differentiation. This 
fundamental property of the model (1) is lost in 
the complete model of Nicosia and Tomei 
(1992). 

We are in position to present our first main 
result. 

Proposition 1. The control law (ll), (7)-(9) 
solves the global tracking problem. 

Proof The closed-loop dynamics are described 
by (10) and (12). Now consider the Lyapunov 
function candidate V,, = V, + $zTPz, with V, as 
defined above, z = [4: $a=, and P = PT > 0 the 
unique solution of 

ATP + PA = --I, with A = 
0 L 

-K, 1 -K2 ’ 
Taking the derivative of V,, along the 
trajectories of (10) and (12), we obtain 

+ (ITATKz, - Z=Z. 

From the fact that z is bounded, it can be 
deduced that the whole state vector is bounded, 
since uDB is strictly negative outside a compact 
set in the state space. Moreover, since z 
exponentially decays to zero, it follows that I&B 
can be written as 

where E is exponentially decaying. Following, for 
example, the stability proofs in Corless and 
Leitmann (1981), it can be deduced that the full 
state asymptotically converges towards zero. 0 

Remark 2. It is interesting to underscore the 
simplicity of this controller. However, as 
discussed in the next section, the scheme does 
not seem amenable to an adaptive 
implementation. 

AUTO 31-7-B 
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Remark 3. From the above derivations, it is 
clear that other global tracking controllers can 
easily be derived. For instance, we could have 
chosen u as 

u = K(q,, - 41) - Klg2 - K2d2 + @2d, (13) 

where now K1 and K2 are such that det [JA2 + 
K2h + (K + K,)] is Hurwitz. It is clear from 
Proposition 1 that, under this condition, the 
control (13), (7)-(g) is also GAS. Also, inverse 
dynamics could have been used instead of those 
of Slotine and Li (1988) in the definition of uR. 
To facilitate comparisons between the various 
schemes, this choice will be adopted in all cases. 
Another variation that could have been adopted 
is to use also the ideas of Slotine and Li (1988) 
to stabilize the motor dynamics, instead of the 
‘computed torque’ scheme used above. 

3.2. Backstepping-based schemes 
This subsection is devoted to showing that the 

backstepping method can be applied almost 
directly to the case of flexible-joint manipulators. 
A similar procedure has been used by Nicosia 
and Tomei (1992). 

To apply the methodology, we need to express 
the system as a cascade connection of integrators 
and the link dynamics (see Lemma 2). This is 
achieved with the inner feedback law 

U = Ju - K(q, - q2). (14) 

The flexible-joint manipulator dynamics then 
reduces to the cascaded form 

Dql+ Cd, + g + Kq1= Kq2, 

42 = v. 
(15) 

Step 1. Assume that q2 is the control input in the 
first equation of (15), and consider the feedback 
law q2 = q2d, with q2d defined in (8). Then the 
closed-loop equation is (10) with q2 = 0, which 
we know is GAS with Lyapunov function V,. 
Now, since q2 is not the input, we have an error 
q2. We now add an integrator at the input to get 

42 = -42d + 42, (16) 

where, as pointed out before, &d is computable 
from position and velbcity measurements only. 

Step 2. Assume that g2 is now the input, and 
consider V, = V, + &TQ2 as a Lyapunov function 
candidate for the system (lo), (16). We have 

v2 = -$TB,& - $A;BIAIQl 

+ s-3@2 + a%2 - 42d)* 

Setting (i2 = -Ksl - q2 + &, we could cancel 
the cross-term sTZQ2 and add a quadratic term in 

q2 to ensure GAS. Since g2 is not the input, we 
look again at the error e2 = G2 - e2d, where 

e 2d = -KS1 - q2 +&d. (17) 

(It is important to note that e2 and e2d are not 
the time derivatives of q2 and q2d respectively.) 
Adding an integrator, we obtain the overall error 
equations 

DS1 + Csl + Blsl = Kq2. 

& = e2 - KsI - g2, (18) 

‘$ = -& + ,,. 

Note again that &d is available from position and 
velocity measurements only. 

Step 3. This is the last step, since the control u 
already appears in (18). Consider now the 
following Lyapunov function candidate V,, = 
V2 + 1 le212. Setting 

u=-e2+eZd- a2 

and taking the derivative of V,, along the 
trajectories of (18), we get 

vB;IBB = -~:B,c$, - qThTBIAlql - lLj212 - le212, 

which establishes GAS of the closed loop. 

The above derivations are summarized in the 
following proposition, whose proof is established 
by direct replacement of the previous dkfinitions 
in u. 

Proposition 2. The control law 

U = K(q, - ql) + J[q2d - 2G2 - 2q2 - K(SI + sl)] 

together with (8), (9) solves the global tracking 
problem. 

Robustification. We shall show in the next 
section that a more robust design is obtained if 
in Step 2 above we use V2 = V, + 1qTKQ2 as a 
Lyapunov function candidate. Note the presence 
of K > 0 in the second right-hand term in (18). 
Following the same procedure, we arrive at the 
GAS control 

u = K(q, - 41) + J[ii2d - 242 - 372 - @l + %)I, 

where we note that the presence of K has been 
removed inside the brackets. 

Remark 4. We have adopted here the backstep- 
ping technique as a ‘step-by-step’ methodology 
precisely to stress the important fact that it is a 
systematic procedure. Several variations are 
posssible at some stages of the backstepping 
design-perhaps leading to a controller with 
better performances. Nevertheless, it does not 



Global tracking controllers for flexible-joint manipulators 947 

seem possible (without a substantial modification 

Remark 5. We have chosen here to define q2 as 

of the procedure) to obtain the other controllers. 
This stems from the fact that intrinsic to this 

the ‘hypothetical’ input to start the backstepping 

method is the introduction of terms in the 
control law to cancel the (error-induced) 

procedure. Another alternative would have been 

cross-terms in the (partial) Lyapunov function 
derivative at each integration step, namely q:Ks, 

the signal q2 - ql, which leads to the first error 

and eTK&. This procedure destroys in the closed 
loop the initial triangular structure, resulting 
instead in an ‘antisymmetric system’. 

equation 

and the Lyapunov function candidate V, = 
V, + $QT&j, and so on. This is the choice 
made by Nicosia and Tomei (1992), and gives 
another globally tracking controller. It is worth 
noting that the form of backstepping procedure 
used by Nicosia and Tomei (1992), when applied 
to the rigid-robot problem, leads to the 
well-known passivity-based controller of Slotine 
and Li (1988). Although this fact is not observed 
by the authors, it follows directly from their 
calculations. 

3.3. Passivity-based schemes 
To apply the passivity-based methodology, we 

proceed analogously to the rigid case and define 
s = 4 + &q, with A = diag (A,, A*), A,, AZ > 0 
and diagonal. 

In this procedure q2d will be defined to ensure 
energy shaping, i.e. such that the closed-loop 
‘total energy’ matches the desired function. This 
is in contrast with the definition of q2d in the two 
previous controllers, where it represents the 
‘desired input’ to the link dynamics; see (8). 
Another difference with the rigid case is that to 
define the desired ‘energy function’, we must 
take into account the presence of the potential 
energy term qTl?q, which cannot be removed. 
Similarly to the regulation problem (Ortega et 
al., 1994), we can obtain different controllers by 
different choices of the desired ‘potential energy’ 
term. Two different selections are given below. 

3.3.1. The controller of Lozano and Brog~iato. 
The above discussion and Lemma 3 motivate us 
to choose the desired closed-loop ‘total energy’ 
as (6). At this point, we find it convenient to 
write (3) in terms of the error signals as 
positive-d~~nite diagonal matrices, is the ‘damp- 

iis+(C+B)s+Z? ‘s(r)dr=& 
I (19) 
0 

Here & = diag (B,, B2), where B1 and B2 are 

ing coefficient’ of the closed loop, and J, plays 
the role of a perturbation term for the desired 
error system and is defined by 

ji = u - (Q, -t- CQ, + l?qI. + g) + Bs - X@(O), 

(20) 

where ql- = qd - A[yo Q(z) dr]. Taking the time 
derivative of & along the trajectories of (19) we 

get ri, = --ST& + s=+ 
It is then clear from Lemma 3 that the next step 
of the design procedure is to calculate, using 
(20), the control signals u and the functional 

We are in position to present the following 

relations for qM, 

proposition that summarizes the previous de- 
velopments and provides a reinterpretation in 

required to match the desired 

terms of energy shaping of the controller of 
Lozano and Brogliato (1992). 

‘energy function’, that is, to ensure that $J = 0. 

Proposition 3. The solution of $I =O with + 
given by (20) defines a nonlinear dynamic state 
feedback globally tracking controller. 

Proof After some lengthy but straightfo~ard 
calculations, we can show that the solution of 
II, = 0 from (20) yields 

and the control law 

u = -%z + fii2r - We, - q2r), (22) 

where p = dldt. It is clear that replacing this 
control in (3) leads to the closed-loop equations 
(19) with $ = 0, for which Lemma 3 applies. To 
prove internal stability, we note that if q2d is 
bounded then all signals are also bounded. 
Bounde~ess Of qzd fOllOWS trhiaily on noting 
that q2d is obtained by filtering bounded signals. 

cl 

There are three drawbacks of the previous 
scheme. First, owing to the presence of 
additional states, it is not possible to establish its 
Lyapunov stability from this analysis. Note that 
the analysis of Lemma 3 only ensures global 
convergence of the error signals-a property 
weaker than asymptotic stability. Secondly, to 
yield an easier implementation and a clearer 
comparison between the various schemes, we 
should like to simplify the controller by 
removing the dynamic part. Thirdly, it is 
apparent from (21) that the initial conditions are 
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constrained. In the next section we show that examine the passivity properties of the closed- 
modifying the desired ‘total energy’ allows us to loop error systems, both in the known- 
remove both shortcomings. parameters and adaptive cases. 

3.3.2. Simplified passivity-based controller. 
Observing that the additional dynamics in 
the above controller comes from our choice 
of the desired ‘potential energy’ term 
&(s:, S= dr)K(& s dr) in (6), we propose here 
a new desired ‘total energy’ of the form 

for which we have the perturbed desired error 
dynamics 

fis+(C+E)s+Kq=@ 

with perturbation term 

4.1. ‘Almost-rigid manipulators 
We are interested here in providing answers to 

the following questions: What happens in the 
‘almost-rigid’ case, that is, when the joint 
stiffness K takes infinitely large values? Do the 
proposed schemes converge to the corresponding 
‘rigid’ ones (i.e. the ‘first-stage’ input used here 
to stabilize the rigid part of the dynamic 
eqUatiOnS uR corresponds in our case t0 the 
algorithm proposed by Slotine and Li, 1988)? Do 
they yield high-gain designs?. 

The five control laws are summarized in the 
following equations: 

Compare this with (19) and (20). This perturba- 
tion is set equal to zero, with the control law 

q2d = qld + K-lUR, 

decoupling-based control 

u = Jii2d - K1q2 - K24’2 + Mq2 - a), 

U = -K2S2 + J(ii2d - A242) - K(qld - q2d). 

(23) 

Note that this is a static state feedback. The 
proof of global convergence follows exactly the 
same lines as above, noting that if we take 
A, = A2 then the operator $ + s is output strictly 
passive. Furthermore, we can also prove 
Lyapunov stability with the Lyapunov function 
candidate 

q2d = K-‘UR + 41; 

(24) 

backstepping-based control 

u = .+!jid - 2& - 32 - K(& + S,)] 

+ wq2 - Sl)J (25) 

q2d = K-IUR + 41; 

for which it can be shown that l&n 5 -aV,, for 
some LY > 0. Hence we conclude GAS of the 
equilibrium. 

robusti’ed backstepping-based control 

u = J[&d - 242 - 2& - (9, + Sl)] 

+ WI2 - 41), (26) 

Remark 6. The derivations above show how 
different controllers can be obtained by a 
suitable selection of the desired ‘total energy’ 
function. The fact that engineering intuition can 
be extensively used in the choice of this function 
makes this a remarkable feature of passivity- 
based designs. See Ortega et al. (1994) for the 
application of this idea to the regulation 
problem. 

q2d = K-‘UR + 91; 

passivity-based control 

[t&q, - A242) dr] 

- B2~2, 

(27) 

4. COMPARISONS 

q2d = p(@ + A2)-1 K-lUR + qld 
i 

+ Qjl(O) - ij2(0)1- 6 (Al41 - A2q2) dr}; 

modified passivity-based control 

In the preceding sections we have presented 
five different global tracking controllers. This 
section is devoted to emphasizing the differences 
and similarities between them. In particular, we 
are interested in the following aspects. First we 
make a qualitative comparison of the control 
laws with particular emphasis on their continuity 
between the flexible-joint and rigid cases. Then 
we investigate the possible extensions of the four 
algorithms to the adaptive case. Finally, we 

U = Jiizr + K(q2d - qld) - B2~2, 

q2d = K-~UR + qld* 

(28) \ r 

The following remarks are in order. 

. The backstepping-based controller (25) be- 
comes a high-gain design for increasing values 
of the joint stiffness, because of the term 
K(S1 +sI). Note that this effect does not 
appear as a consequence of a term K(q, - ql) 
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because of the convergence of q2 - q1 to zero 
as K-+ m. This drawback is removed in (24) 
and (26), and is conspicuous by its absence in 
the passivity-based designs. Note in particular 
that the control signal u is independent of the 
gain K (28): the dependence on K comes only 
from K’ and K(q, - ql), which remain 
bounded as K + + m. 
As I( grows unbo~ded, the control (28) 
converges to the Slotine and Li (1988) 
controller for the completely rigid robot. On 
the other hand, in the control (13) a term Jql 
is added to un. 
For large K, all decoupling- and backstepping- 
based controllers feed directly into the loop 
the signal ii1 that is calculated using (1) 
through q2d, while (28) uses instead the 
noise-free reference qId. Therefore, it is 
reasonable to expect better noise-sensitivity 
properties for the latter. 
The controller (27) converges to (28) when the 
filter p(pZ + A2)-r is ‘arbitrarily fast’. There- 
fore all remarks above concerning (28) apply 
as well to (27), provided that the eigenvalues 
of A2 are chosen sufficiently large. 

It is very d~~ult to draw a definite conclusion 
about the performance of the different con- 
trollers from the observations made above. This 
is particularly true since, as we have shown, 
modifications introduced at various stages of the 
backstepp~g and decoupling designs yield 
significant improvements. In this respect, the 
passivity-based technique yields robust ‘tuning 
knob free’ designs in ‘one-shot’, provided of 
course we can come out with the right desired 
‘total energy’. ‘On final remark is that it is not 
clear to us how to remove the noise-sensitivity 
problem of backstepping and decoupling 
controllers. 

4.2. The adaptive case 
This section is devoted to studying the possible 

extension of the previously presented algo~thms 
to adaptive schemes, when the dynamic para- 
meters of the manipulator are unknown. For 
reasons that will appear clear later, we first study 
the extension of backstepping-based schemes. In 
the whole section we shall assume that K is a 
known matrix (we refer the reader to a remark 
below for more precision about this). 

4.2.1. Backstepping-based algorithms. We 
have to solve two main problems: 

(9 

(ii) 

the input v in (15) must be LP (linear in 
some set of parameters), so that u is; 
the signals q2 and e2 have to be available on 
line, because they will be used in the update 
laws. 

To solve (i), we can use the idea of Lozano 
and Brogliato (1992), which consists in adding 
the dete~nant of the inertia matrix det D(q,) 
to the Lyapunov function V,,. The trick is that 
the nonlinearity in the unknown parameters 
comes from the terms containing the inverse of 
the inertia matrix, II-‘( Premultiplying by 
det (D) allows us to retrieve LF terms, since 
(det D)D-’ is indeed LP (the price to pay is an 
overparametrization of the controller). More- 
over, (ii) implies that q2d and e2d are available on 
line, and thus do not depend on unknown 
parameters. 

In the following 0,* will generically denote a 
vector of unknown constant parameters, whereas 
Y(q) is a known and computable matrix, both of 
appropriate dimensions. The analysis is divided 
into three steps, as in the known-parameters 
case. 

Step 1. The right-hand-side of (8) can be written 
as K-‘Y,(q,, dt, t)@;E. Therefore we choose &d 
in (8) as 

&Zd = Y,kh 41, t)&, (29) 

where 0, stands for an estimate of @T. Thus 

42 = q2 - K-‘Yl(q,, 41, t>&. (30) 

Adding *Y,(*)@;l; to the right-hand side of the 
first equation in (1) and differentiating (30), we 
obtain 

(compare with (10)). 

Step 2. Now consider e2d in (17). The first tW0 
terms are available, but the third term is a 
function of unknown parameters and it is not LP 
(it contains D-l). Assume now that V, is 
replaced by 

Vz, = VR + fGT6, + $(det D)QTg2, (32) 

where (:) 4 (‘) - (s). Setting &, = ezd + e2, i.e. 
(t72 = e2d + e2 - K”(d/dt)( Y1 B1), we get, along 
trajectories of (3l), 

=$($detD)q2-(detD)g,,+Ks,. (34) 
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Thus (33) can be rewritten as 

ri,, 5 -bTB& - q;r:BJ& 

+ @T(det D)e, + QT(Y,@e,, + Y,@) 

+s;y,& + P,e, (35) 

(We drop the arguments for convenience). Now 
choose 

Q&d = -Y&l, 41, q2, t)& - q”2, (36) 

81 = -YT(%, 41, r)s,. (37) 

Introducing *azY2&e2,, on the right-hand side 
of (35), we obtain 

lj2= 5 GTB,& - 4”Tl-‘;BJ& 

+ Qz(det o)e2 - @ze2,Y2fi2 

- BTY,i& - q:q2. (38) 

Defining V,, = V2a + f@fi, + $@& and setting 

i!?, = Y;q2, (39) 

P2 = YzeQ2, (40) 

we therefore obtain 

ri,, I +:B~<~ - q:r:Blrlql 
+ qT(det D)e2 - 4Ta2. (41) 

Remark 7. In order to avoid any singularity in 
the control input, the update law in (40) has to 
be modified using a projection algorithm, 
assuming that 0,* belongs to a known convex 
domain. We refer the reader to Lozano and 
Brogliato (1992) and Bridges et al. (1995) for 
details of how this domain may be calculated, 
and the stability analysis related to the 
projection. For the sake of clarity of this 
presentation, we do not introduce this modifica- 
tion here, although we know it is necessary. 

At this stage, our goal is partially reached, 
since we have defined signals a2 and e2 available 
on line. 

Step 3. Now consider the function 

V,, = V,, + $(det D)ezeZ. (42) 

Noting that ti2 = u - P2d, we obtain 

ri,, 5q’;~,G, - qTr~Blrlgl 

+ Q$(det D)es - qzq2 

+ ez(det D)(u - i2J + e: i (4 det o)e;, (43) 

Note that 

-(det D)i2d + $(i det D)e2 

= Y&J,, 41, 42, 92, tPf (44) 

for some Y4(*) and 138 matrices of suitable 
dimensions. 

Let us now denote det D = Y2(qI)f@ (this is 
strictly equal to Y2(ql)@ defined above, but we 
choose a different notation because the estimate 
of 0$ is going to be chosen differently). Choose 
u = -q2 + w and 

Y2b5w = -Y48 - e2. (45) 

Introducing *ezY28,w into (43) and from (44) 
and (45), we obtain 

- erwY2iJ5 - eFY,iCj4 - eze2. (46) 

Finally we choose as a Lyapunov function for 
the whole closed-loop system 

V BBa = v,, + @TB, + ;fig5, 

and set the update laws 

(47) 

&, = YTe2, (48) 

6, = YzwTe2 (49) 

(a projection algorithm has to be applied to 8, as 
well; see the remark above). We obtain 

- ijTa2 - eFe2. (50) 

We therefore conclude that 8 E Z.,, q2, e2, Q1 
and s1 E $ r~ .Z!& q2 E 22 (see (30)), (i2 E Z. 
Finally, from the definition of s1 and a lemma in 
Desoer and Vidyasagar (1975), we conclude that 
q1EJZ2n.E, 41~Z’2nZ_ and ql+O as 
t -+ + ~0. From the dynamic equations in (l), it 
follows that ii1 E Z. Hence G1 is uniformly 
continuous, and since 4, converges towards a 
constant value, it follows from Barbalat’s lemma 
that g1 --+ 0 asymptotically. 

The following remarks are in order. 

l It is noteworthy that the above procedure can 
be seen as a modified (because of the linearity 
in the parameter problem, plus the a priori 
knowledge of K) version of the work of 
Kanellakopoulos et al. (1991). We retrieve the 
fact that the estimates are functions of the 
‘previous’ estimates (see (36) (48), (49), (39), 
(40) and (30)) because of the backstepping 
procedure. It would also be interesting to 
investigate the possible extension of the work 
of Seto et al. (1994) to flexible-joint 
maniupulators. 

l We have considered for simplicity K as a 
known matrix. However, in practice it may be 
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interesting to relax this assumption. The 
difficulty arises from the fact that the 
‘intermediate’ input q2d in (8) feeds the rigid 
dynamics through K; i.e. if K is unknown then 
the interconnection term between the two 
subsystems in (1) is unknown. This problem 
has been given a solution in Lozano and 
Brogliato (1992) by replacing K by an estimate 
R such that j? remains full-rank and is 
twice-differentiable. Recently Bridges et al. 
(1995) presented a backstepping adaptive 
scheme based on ideas in Lozano and 
Brogliato (1992) without knowledge of K. 

l If J is unknown, one can slightly modify 
$(det D)eTe2 to i(det D)eTJe2 in VBBA, so 
that it can be incorporated into 03 (see (44) 
and (43)). 

l The adaptive case was considered by Nicosia 
and Tomei (1992) for the single-arm robot 
case. Obviously, in this simple case the LP 
property problem encountered for general 
manipulators disappears. 

4.2.2. Decoupling-based scheme. The closed- 
loop error equation associated with the control 
law (8), (9) can be seen as a linear autonomous 
exponentially stable system that feed a nonlinear 
system; see (10) and (12). The stability of the 
composite cascaded system can be studied using 
a two-term positive-definite function V,, = V, + 
$zTPz, where ATP + PA = -Q for a given 
Q = Q’> 0. Consider now the input u in (11). 
Obviously u in (11) is not LP, because q2d 
contains D-‘. Still following the ideas in Lozano 
and Brogliato (1992), we could consider here 
multiplying the second term of V,, above by 
det D, so that some LP properties are recovered 
in the terms to be compensated by the input. 
However, it is not clear then how we can retrieve 
a closed-loop error equation that fits with the 
theorem in Seibert and Suarez (1990). Indeed, 
not only shall we have to deal with parameter 
errors (which we cannot expect to converge 
towards zero), but it is also not clear how we 
could choose the input so that the derivative of 
$z*P(det D)z results in a negative-definite 
term. In conclusion, although we do not claim 
that an adaptive extension of the decoupling- 
based scheme is impossible, we believe that the 
required modification will significantly depart 
from the conceptual simplicity of the known- 
parameters case. 

4.2.3. Passivity-based schemes. Both algo- 
rithms derived from the energy-shaping method 
belong to the same family of schemes. We shall 
not give in this paper a detailed analysis of the 
adaptive version of the energy-shaping schemes, 
but rather we focus on a particular problem, 

namely the choice of the ‘first-stage’ input q2d in 
(21) or (23). It is worth noting that q2d in (29) 
(adaptive backstepping scheme) could have been 
chosen differently, just as it can be done in the 
known-parameters case. In particular, the ideas 
of Berghuis et al. (1992) can be used to enhance 
the robustness of the scheme with respect to 
velocity measurement noise. In contrast, the 
design of q2d is much less obvious for the 
adaptive energy-shaping schemes. Roughly 
speaking, this is due to the fact that both (T2 and 
G2 have to be available on line to update some 
estimated parameters. This significantly reduces 
the possible choices for q2& which has to be 
chosen such that &d is computable on line; in 
particular, &d must be a function of positions 
and velocities only, and must be independent of 
unknown parameters. It has been shown by 
Lozano and Brogliato (1992) (and later used in 
Bridges et al., 1995) that the algorithm presented 
by Sadegh and Horowitz (1990) can be used 
successfully to design q2d so that &d can be 
calculated without acceleration measurements. 
We refer the reader to Lozano and Brogliato 
(1992) for details concerning this adaptive 
algorithm. 

4.3. Closed-loop passivity 
During the last few years, the passivity 

approach has witnessed a renewed attention. It 
has proved useful in the study of rigid- 
manipulator control (Ortega and Spong, 1989; 
Kelly et al., 1989; Landau and Horowitz, 1989; 
Brogliato et al., 1991; Berghius and Nijmeijer, 
1993) and the global stabilization of nonlinear 
systems (Kokotovic and Sussman, 1989; Bymes 
et al., 1991; Ortega, 1991; Lozano et al., 1992; 
Brogliato et al. 1993b). An underlying motiva- 
tion for some of these studies is the inherent 
robustness properties of passive systems. Within 
our framework, an interesting question is the 
possibility of representing the closed-loop system 
equations as two passive operators connected in 
negative feedback. Such an analysis is carried 
out in this subsection. For the sake of brevity, 
we only present the block diagrams associated 
with the fixed-parameters versions of the back- 
stepping-based, passivity-based and decoupling- 
based schemes; the passivity proofs are standard, 
and are therefore omitted. 

4.3.1. Backstepping-based schemes (known- 
parameters case). The closed-loop system error 
equation can be split into two parts 
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(HI3 - 

-K -K 

I J 

Fig. 1. Block diagram for (51) and (52). 

and 

We therefore consider the following four 
subsystems depicted in Fig. 1: 

(Hll) state vector sl, input ull =Kq2 - K1sl, 
output y,, = s1; 

(H12) state vector ql, input u12 =sl, output 

Yl2 = KlF 

(H21) state vector q2, input u2* = e2 - KIsl, 
output y21 = 42; 

(H22) state vector e2, input u22 = q2, output 

y22 = -e2. 

4.3.2. Decoupling-based scheme (known para- 
meters). From the error equation in (10) and 
(12) and from (8), we know that Kq2 E Z1 rl X. 
We can therefore treat Kq2 as a 6P,-bounded 
disturbance, denoted by E. The closed-loop block 
diagram is depicted in Fig. 2. 

4.3.3. Passivity-based schemes (known para- 
meters). Let us now consider the scheme 
proposed by Lozano and Brogliato (1992). It can 
be shown that the complete error equation is 
given by 

& = -h*Cj, + s1, 

D(qdh + C(QI, 4ds1 

= -K,sI +J 
I 

‘(s2-sl)dt, 
0 

G2= -n2q2+s2, 

A2 = - K2s2 - K 

This error system can be represented as the 

yE-j?J 
Fig. 2. Block diagram for (10) and (12). 

(53) 

interconnection of two blocks, (Hl) and (H2), 
where (Hl) has 

state vector [ql s1 q2 s2], 

input 

Sl 
output ) 

[ 1 s2 

and (H2) has 

input 
Sl 

[ 1 s2 

, output 

state vector 
I 
of (sl - s2) dt. 

The superscripts (1) and (2) used below refer to 
the two subsystems (Hl)“’ with state (ql, sr) and 
(H1)‘2’ with state (q2, s2) in (53). The block 
diagram is depicted in Fig. 3. 

As can be expected, the only difference 
between the passivity interpretation of the 
passivity-based scheme in Lozano and Brogliato 
(1992) and the modified one lies in the 
subsystem (H2), which this time has 

input 
Sl 

[ 1 s2 

, output [ WI -@2) 1 -Wl-q'2) ' 

state vector K(q2 - SJ. 

Remark 8. From Figs 1 and 2, it is clear that the 
backstepping-based and decoupling-based sch- 
emes can be given very different interpretations 
from their closed-loop equations: while the first 
can be interpreted as the interconnection of two 
passive cascaded systems in closed loop where 
the ‘flexible’ error dynamics in (H21) and (H22) 
feeds back the ‘rigid’ error dynamics in (Hll) 
and (H12), the second is composed of an 
autonomous subsystem with output E that feeds a 

(HI)’ YI 
c 

W)* 

y2 
VW 

u2 
* 

Fig. 3. Block diagram for (53). 

J 
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passive subsystem. It is also interesting to note 
that the closed-loop equations for the scheme in 
Slotine and Li (1988) and for the passivity-based 
schemes presented in this paper differ only by a 
‘potential energy’-like term in the (H2) block in 
Fig. 3. 

5. SIMULATION RESULTS 

To illustrate some of the conclusions of this 

paper, we have simulated four algorithms 
(backstepping-based, robustified backstepping- 
based, decoupling-based and modified passivity- 
based) on a two-degree-of-freedom robot. The 
dynamic characteristics of the manipulator, 
which is an existing device in the Laboratoire 
d’Automatique de Grenoble, are described in 
Pastore (1992). We have considered the 
known-parameters case for two different sets of 
stiffness coefficients (K = diag (1,4) and K = 
diag (400,450)). The control signals, desired 
trajectories, actual trajectories and tracking 
errors for the first joint are depicted in Figs 4 
and 5. As can be seen from Figs 4(a-d), the 
behaviours of both control energy and tracking 
performance for the small stiffness case are very 
similar. However, as predicted by our analysis, 
as the stiffness coefficient increases, the control 
law of the backstepping-based scheme sig- 
nificantly degrades, behaving almost like a relay 
controller (see Fig. 5a). Note the smoothness of 
the passivity-based controller in Fig. 5(d), in 
accordance with the fact that this is the only 
controller that actually converges to the rigid 
controller as the stiffness goes to infinity. 

6. CONCLUSIONS 

In this paper we have studied different 
feedback control algorithms for flexible-joint 
manipulators. In each case we have started from 
a general stability result available in the 
literature; then we have shown that flexible-joint 
robots with dynamic model (1) and known 
parameters fit within the proposed frameworks. 
At this stage, we have a variety of controllers 
guaranteeing global tracking (although the 
results are not the same from one design 
philosophy to another) at our disposal. An 
interesting point is obviously to start a 
comparison work between those conceptually 
different fixed-parameters controllers. To this 
end, we have first examined whether these 
schemes share common features-that is, 
whether we can obtain one controller via the 
application of a different methodology. We have 
studied what happens when the joint stiffness 
becomes infinitely large-that is, do the prop- 
osed schemes enjoy a ‘continuity’ property 

between the rigid and the flexible cases? How 
does the loop gain behave in the ‘almost-rigid’ 
robot case?. We have presented the extension of 
the fixed-parameters case to the adaptive case. 
Finally, we have proved that these schemes can 
be interpreted in closed loop as the interconnec- 
tion of passive subsystems, thus extending the 
now well-known results on the passivity of rigid 
robots. 

The Lyapunov and passivity analyses provide 
us with some measure of the transient 
performances and robustness with respect to 
(benign) unmodelled dynamics. The study of the 
limiting case of ‘almost-rigid’ robots gives us 
some insight into the expected behaviour 
uis-d-vis noise rejection or poor knowledge of 
the stiffness matrix K, although this latter 
problem deserves further consideration. 
Complexity of the algorithms (especially in the 
adaptive case, where an overparametrization is 
inherent to the employed method) also deserves 
further work. We believe that this work has to 
be considered as a first tentative (theoretical) 
comparison between several control laws, de- 
rived from basic tools recently presented in the 
literature by several authors. 

A particularly interesting open problem is the 
derivation of globally stable schemes for more 
complete robot models that incorporate cross- 
terms in the inertia and Coriolis matrices. 
Although it has been claimed in the literature 
that these models are feedback-linearizable by 
dynamic state feedback, and several authors 
have reported the solution for particular cases, 
the problem remains open. The main stumbling 
block to solving it with the techniques presented 
here is the unavailability (without differentia- 
tion) of higher-order derivatives of the joint 
angles, which is related to the inability to render 
the system triangular and decompose it into the 
feedback interconnection of passive subsystems 
(Ortega et al., 1994). 

In closing these conclusions, we should like to 
remark that we believe that a more practical 
approach to handling the elasticity problem is to 
view the flexible robot as a perturbation of the 
rigid one. This was done for instance by Ghorbel 
and Spong (1992) who used composite controls 
based on integral manifold ideas. Even though 
some very interesting local stability results have 
been established for these schemes, we restrict 
ourselves in our comparison to controllers for 
which global stability is ensured. We also feel 
that control strategies that rely on high-gain loop 
properties, like sliding-mode techniques, will 
tend to behave poorly for this particular problem 
of elastic mechanical structures (in spite of their 
somewhat attractive theoretical features). 
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