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Abstract-In this paper we deal with robust control of a class 
of nonlinear systems which contain uncertainties. It can be 
viewed as an extension of the work in Corless and Leitmann 
[IEEE Trans. Aurom. Conrrol, AC-Xi, 1139-1144 (1981)] for 
the cases where the vector of uncertainties is only partially 
known. To cope with the uncertainties, an adaptive 
controller using a dead-zone and a hysteresis function is 
proposed, and both the uniform boundedness of all the 
closed-loop signals and uniform ultimate boundedness of the 
system state are guaranteed. In contrast with some previous 
attempts to relax the a priori knowledge on the uncertainties 
bounds by using a discontinuous control law, we propose 
continuous control laws in this paper. Hence, chattering 
problems (which have practical importance) can be avoided. 

1. Introduction 
Control algorithms, using techniques based on Lyapunov’s 
direct method for uncertain systems, have been studied since 
the beginning of the 1960s (Johnson, 1964, Grayson, 1963; 
Monopoli, 1965, 1966). During the last fifteen years, 
numerous papers dealing with control of continuous-time 
systems containing uncertainties have been published. (We 
refer the reader to Corless (1993), Leitmann (1993) and 
Zinober (1990) for overviews, and the numerous references 
therein.) The robust controllers studied in those references 
generally hinge on three main assumptions: (i) the system 
state vector is available for measurement; (ii) the so-called 
matching conditions (which characterize the way the 
uncertainties enter into state equation) are verified; and (iii) 
the uncertain unknown elements are assumed to belong to a 
known compact set, i.e. an upper bound (possibly time 
varying and state dependent) of the uncertainties vector 
norm is supposed to be known. Given these assumptions, it is 
shown that there exists a class of continuous-time controllers 
that insure the convergence of the state in an arbitrarily small 
neighbourhood of the origin in finite time. In particular, the 
saturation nonlinearity, which consists of a sign function 
enveloped around zero by a boundary layer, is widely used. 

Recently, several authors have proposed new control laws 
which allow the relaxation of assumption (ii) without any 
restriction on the size of the uncertainties, thus improving the 
works of Barmish and Leitmann (1982) Chen and Leitmann 
(1987) and Ryan and Corless (1984). Freeman and Kokotovic 
(1992) apply the so-called backstepping idea to a particular 
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class of nonlinear systems with unmatched uncertainties. 
Marino and Tomei (1992) also employ backstepping ideas to 
study the case where the uncertainties vanish at zero. It is 
noteworthy that the backstepping method can also be used to 
relax assumption (i) for certain classes of nonlinear systems 
(Marino and Tomei, 1992). Qu et al. (1991) obtain local 
results for flexibility joint manipulators using a different 
method. 

A salient feature of those schemes is that the state 
feedback explicitly depends on the upper bound of the 
uncertainties. However, in most cases the upper bound is a 
linear function of some parameters which, therefore, have to 
be known. Some attempts to relax assumption (iii) have been 
proposed in the literature (Liao er al., 1990, Corless and 
Leitmann, 1983; Singh, 1985; Fu, 1992: Dawson ef al., 1990, 
1992; Leung ef al., 1991; Chen, 1992). 

In an interesting paper Liao et al. (1990) have used 
variable structure control to make robust uncertain state 
feedback input-output linearizable nonlinear systems. A 
continuous-time input is used, and it is proved that all the 
closed-loop signals are bounded. Corless and Leitmann 
(1983) have proposed a class of controllers which aims to 
generalize their work in Corless and Leitmann (1981). 
However, the scheme proposed in Corless and Leitmann 
(1983) is globally stable under the restrictive condition that 
the boundary layer in the saturation nonlinear input 
exponentially converges toward zero, i.e. the input will 
generally become discontinuous in practice. Hence, it may 
lead to chattering phenomena. Similar methods are proposed 
in Singh (1985), Yoo and Chung (1992) Fu (1992) and 
Dawson et al. (1990, 1992). In Fu (1992) a solution to the 
problem of chattering is proposed, based on the method in 
Corless and Leitmann (1983). A simple o-modification 
(Ioannou and Kokotovic, 1984) is applied to the 
upperbound-parameter estimates while the boundary layer in 
the saturation function is kept strictly positive. (The 
undesirable chattering problems can bc avoided by choosing 
a saturation input with a large enough boundary layer, see 
e.g. Spong and Vidyasagar (1989).) However, in this case the 
closed-loop system state converges within a set whose size 
depends on the unknown upperbound parameters. Further- 
more, it is known in parameter adaptive theory (Hsu and 
Costa, 1987) that such modifications can change the 
qualitiative stability behaviour of the closed-loop system in 
the presence of certain types of disturbances. Chen (1992) 
proposes a scheme that guarantees convergence of the state 
vector in the neighborhood (of non-arbitrary size) of the 
origin, when the uncertainties are cone bounded and the 
measured state vector contains some noise. (The nominal 
system is assumed to be linear in Chen (1992)) 

This paper aims at extending the work in Corless and 
Leitmann (1981), when the uncertainties upper bounds are 
partially known, i.e. they are linear in some unknown 
constant parameters. It is organized as follows. In Section 2, 
we present the class of systems to be studied and the basic 
assumptions. The main result is presented in Section 3. 
Conclusions are finally given in Section 4. Stability proofs 
and definitions follow in Appendices A and B. 
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2. System and assumptions 

The following class of nonlinear systems, as used in Corless 
and Leitmann (1981), will be considered in this paper: 

i(r) =f(x(t), r) + R(x(t), t)@(r) + e(x(t), t)), (1) 

where x(to) =%,x(t) E R” is the available state vector, 
u(t) E Rm is the control input and e(x,t) is the uncertainty. 
Let us also introduce the following assumptions: 
Al. There exists a known function p(x, r):R” X R+ RP and 
an unknown constant vector (Y* E RP such that for all x E R” 
and all t > 0 we have 

le(x, t)1= pT(x, t)a*, (2) 

with pi(x, I) > 0 for all x such that lx]> 0, i = 1,2, . . . , p. 
A2. f(., .), Bf., .), e(., .) and p(., .) verify the Caratheodory 
conditions, i.e. (see e.g. Filipov (1988)) for all I and x in a 
bounded domain D = I X B of the (t, x)-space: (i) they are 
continuous in x for almost all t; (ii) they are Lebesgue 
measurable in t for each x; and (iii) there exist Lebesgue 
summable functions m:(t) 15 i s 4 such that on D 

If(x, 015 m?(t), IP(x, r)l ==-m2B(r), le(x, t)l 5 m%) 
and Ip(x, t)ls m?(t). 

Therefore, (1) can be considered as a Caratheodory equation 
provided u is defined as a Caratheodory function of x and t. 
Furthermore, we assume that each one of these functions is 
locally Lipschitz continuous in its first argument x.t Thus; 
under these basic assumptions the system in (1) is well-posed 
(Sontag, 1990) in the sense that local existence and 
uniqueness of solutions can be proved. 
A3. The equilibrium point x = 0 of the uncontrolled nominal 
system i = f(x, t) is globally uniformly asymptotically stable 
(GUAS) and there exists a locally Lipschitz Lyapunov 
functiont V.(x, t) such that: 

(i) rdlxl) 5 Vh, t) 5 YZ (1x1); (3) 

(ii) P.(x.t)=$+ 2 Tf(X,t)s -Y3(l+ 
( > 

(4) 

(iii) V, is proper, i.e. its level sets are compact 
subsets of the state space; 

where all functions denoted as y, : R’ -+ R’ are known class 
K functi0ns.P 

3. The adaptive robust controller 
In Corless and Leitmann (1983) the authors have 

presented an extension of their work in Corless and 
Leitmann (1981) to the case when a* is unknown. However, 
stability and convergence results are obtained in these 
references under the restrictive condition that the boundary 
layer size of the saturation function verifies 

B(t) = -be(t), b > 0, (9 

so that E exponentially converges to zero. We will proceed as 
in Corless and Leitmann (1983), i.e. we will replace the 
control input (Y* in (2) by a time-varying ‘estimate’ i;(t). 
Then, the problem of concern is how to choose the 
update-law for B such that all the signals in the closed-loop 
system remain bounded (in particular & itself), and x(r) is 
ultimately bounded with respect to a compact set of size E. 
Assume that u in (1) is given by 

i 

gT(x, t) - -pT(x, r)a 
lg(xx, r)l 

if Ig(x, t)l pT(x, r)h > F 

ll= 
gTh t) 

- 7(pT(x, r)a)2 if Ig(x, r)l pT(x, t)b 5 E, 

(6) 

t A function is locally Lipschitz continuous if for each 
compact subset Q of its domain of definition there exists a 
constant L depending only on R, for which If(x) - f( y)I 5 
Llx-ylforalix,yinR. 

i Existence of such a V. satisfvine (i) and (ii) is euaranteed 
by.Massera’s theorem (Massera; 1%). ’ ’ - 

$ yi(.) is strictly increasing, y,(O) = 0. The inverse functions 
y;’ : R+ + R+ are, therefore, well defined. 

where & will be defined later. Let us consider the following 
positive definite function 

V(x, 5, t) = V,(x, t) + $cPd, (7) 

where d = B - ct*. Taking the derivative of V along the 
trajectories of the system (1) leads to 

P(x, d, r) = $+ 
( > 

2 ;(x, t) 

av T 
+ x 

( 1 
B(x t){u +e(x,r)}+aiT$ 

ax ’ 63) 

and with (4) we get 

V(x, 5, r) 5 - ys(lxl) + g(x, r)u + Ig(x, r)l pT(x, t)u* + a=&, 

(9) 
where 

g(x, r) = 2 
( > 

TB(x, r). 

Then, introducing (6) into (9) we obtain the following 
inequalities: 
(i) if lg(x, t)l pT(x, t)f3 > E 

P 5 -y3(lxl) - Jg(x, t)l pT(x, r)iz + ZTS; 

and 

(10) 

(ii) if lg(x, r)l pT(x, r)a 5 E 

v 2s -y3(lxl) - y (pyX, 1)&)2 

+ Ig(x, tf1 pyx. t)a* + BTB. (11) 

Assume now that & is updated as follows: 

d = o(lxl) Ig(x, t)l P(X, t), S(b) 2 0, (12) 

where u is depicted in Fig. 1, with 

R, = y;‘(2c + h); R2 = y;‘oy20y3’(2& + h); 

h > 0, arbitrary. 
(13) 

Before going on with the stability analysis, note that the 
following relationships are verified.11 Given any n E R+, 
r?r,-,,dERwehave 

v-‘is1 E K’[vl E r;‘[?l. (14) 

First, notice, that if B was constant with & Zcr*, then x 
would be GUUB (see definition in Appendix A) with respect 
to the ball RRZ. (This can be shown using the arguments in 
Corless and Leitmann (1981); see also Khalil (1992)) Let us 
denote the different situations as follows: 

s,: lg(x. r)l pT(x, r)& > E; s2: Ig(x, r)l pT(x, t)6 5 E; 

sj: a=l; sq: a=o. 

The following combinations can occur a priori: s, and s,; s, 
and s,; s2 and s3; and s2 and s4. Indeed nothing guarantees 
that s, implies that 1x1 will be smaller or greater than, say, 
y;‘(2.5 + h). Let us analyse in more detail the value taken 
by V(x, d, r) in each case: 

11 We introduce the following notations: Let y, and yt be 
class K functions. Then, given any E >O, y;‘oy,(e) is the 
value of the function y;‘oy,(.) at E, while y;‘[yZ(e)] 
defog;“” the compact set S defined as: S = {x E R”/y,(lxl) 5 

t 

‘L&, 
Fig. 1. The adaptation modulation function. 
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Cl. s,-s3. 
We get 

tii-yrs(lxl)+2&<o. (15) 

Thus Q is clearly strictly negative for all E > 0, B is strictly 
increasing. 
c2. s,-s+ 
We obtain 

v 5 -vs(lxl) - Ig(x, f)l pT(x, r)E. (16) 

B is frozen. If d >O, then VS -n(lxl) otherwise v(x, B, t) 
may take positive values. However, if x grows then we are 
back to the previous case. Also, by construction 
$x,;)!fT(x, r)E is bounded as x is bounded. 

. 2 3. 
From (11) (12) and (13) it follows that: 

Vi-~rs(]xl)+E’-&-h<o. (17) 

v is strictly negative outside the ball BR,, and ai is 
non-decreasing. 
c4. s*-sq. 
From (11) we get 

ti 5 -r3(lxl) + Ig(x, t)] pT(x, r)o*. (18) 

B is frozen. Note, that as soon as d 2 (z*, then using (11) we 
retrieve the same inequality as in (17). We now have the 
following lemma: 

Lemma. (i) Given any bounded initial condition in (1) the 
closed-loop system (I), (6), (12) has a unique solution 
xT = (XT(r), GT(r)) on [ro, +m) and this solution is 
uniformly bounded. 

(ii) The system state x(r) is GUUB in the sense that given 
any E > 0 and h > 0 in (6), the total time spent by x(r) outside 
the set -y;‘[~zo~J’(2~ + h)] is finite. Moreover, the upper 
bound estimate & converges to a constant finite value tir. 

n 

Proof. The proof of the lemma is in Appendix B. 

Remarks. (i) The adaptive robust scheme will generally 
require much less on-line calculation than the classical 
adaptive control laws. For example, in the case of adaptive 
robust control of rigid manipulators, one can choose Q* as a 
two-dimensional vector (Dawson et al., 1992; Yoo and 
Chung, 1992) independently of the number of degrees of 
freedom. Note, moreover, that one may define in equation 
(2) 

or 

pT(x, r)a* 5 Ip(x, r)l Ia*/ = pa* 

pT(x, r)cy* 5 (p, + . + pp) max (at ,...I a;) = pG*. 

Thus, only one parameter has to be adapted. It is clear that 
in practice, a trade-off between the simplicity of the 
controller and the conservatism of the upperbound (that 
influences the controller magnitude) has to be made. 

0.2 

0 

qr -0.2 

-0.6 

t (set) 

Fig. 2. Position tracking error (adaptive scheme). Fig. 4. Control input (adaptive scheme). 
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Fig. 3. Upperbounds estimates. 

(ii) To illustrate the method, we present some simulation 
results for the case of the pendulum (see also Brogliato and 
Trofino Neto (1992) for more details on the dynamic model 
and the control input design). The simulations have been 
obtained on a MatLab package. 4 is the link angle. The 
numerical values are: E = 0.1, R, = E, R, = 1.128, the torque 
input disturbance d(r) = 2 sin (Et), the mass m = 10, the 
length 1= 0.5, the inertia I = 0.2, the desired angle trajectory 
is q,_,(r) = cos (2r), d = q -qd, the control parameters are 
chosen as A = 5, k = 10, a, = 0.5, b, = 50, where the torque 
input is given by: 

T = a,(q, - Aa) + b, cos (q) - k(g’ + h4) + u. (19) 

Here we have chosen (note that this is neither the unique 
choice nor the simplest one, see the remark above): 

pT(u, r) = [([qd - A<]* + cos* (q))ln, I], Use = [cut, a$]. 

The results for 4, d and u are depicted in Figs 2-4. The 
different periods when oi is frozen clearly appear in Fig. 3. In 
Figs 5 and 6, 4 and u are depicted in the case of a fixed 
upperbound (af and a: are chosen equal to 1.5). The fixed 
parameters scheme provides a better value of the tracking 
error during the transient (the curve in Fig. 2 is smoother 
than the one in Fig. 5). We note also that the transient value 
of u in Fig. 4 is two times less than the one in Fig. 6. This can 
be explained by the fact that as the estimates are initialized 
at zero, u takes smaller values in the adaptive case until the 
estimates reach a larger value. After the transient peak, both 
control inputs u are close in magnitude, although it is 
smoother in the fixed parameter case. 

(iii) The method presented in Liao et al. (1990) relies on 
the assumption that the nominal system (nonlinear invariant) 
is hnearizable by static state feedback. In the case of rigid 
manipulators, this method will generally imply that the 
system parameters are known, except for special cases of 
manipulators (see Liao et al. (1990) for such an example). 
When the uncertainties vanish, the proposed scheme does 
not insure asymptotic stability. These, we believe, constitute 
the major differences between our scheme and the one in 
that paper. 

(iv) The backstepping method used in Freeman and 

l5 I 

t (set) 
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scheme and the adaptive scheme in Slotine and Li (1988) can 
be found in Spong (1992). 

qt -0.2 

-0.4 

-0.6 
0 5 

t (set) 

Fig. 5. Position tracking error (fixed parameters scheme). 

305 

-10 1 
0 5 

t (set) 

Fig. 6. Control input (fixed parameters scheme). 

Kokotovic (1992) requires that the input be differentiable at 
each step. Thus, the algorithm presented in this paper cannot 
directly be extended to their method when more than two 
steps are needed, due to the discontinuities in the update law 
in (12). 

(v) Rz in (13) depends on y, and ~2, which in turn may 
depend on some system’s parameters (see, for example, thk 
case of rigid maniuulators in Slotine and Li (1988)). This can 
be relaxe;d by replacing R2 with some timk-vagng signal. 
(We refer the reader to Brogliato and Trofino Neto (1992) 
for a description of this modification.) 

4. Conclusions 
In this paper we have proposed a control algorithm for a 

class of systems which contain uncertainties. We have 
assumed that the so-called matching conditions are verified, 
but that the upperbound on the uncertainties is only partially 
known, i.e. it linearly depends on unknown constant 
parameters. It has been shown that the introduction of a 
dead zone with a suitable hysteresis in the update law of the 
estimates enables us to conclude the ultimate boundedness of 
the state of the system as well as boundedness of the 
estimates. 

Contrary to some other attempts in the literature to relax 
the a priori knowledge on the uncertainty upperbound, the 
control scheme in this paper uses a continuous control law 
(with arbitrary boundary layer in the saturation function) and 
guarantees the convergence of the system state in a set 
around the origin whose size does not depend on the 
unknown upperbound. From this point of view, it can be 
seen as a direct extension of the work of Corless and 
Leitmann (1981). Further work should provide comparisons 
between this approach and other control methodologies, such 
as adaptive control. This, we believe, is not an easy task and 
will mainly depend on which type of nominal system we deal 
with, and the physical constraints (actuators, bandwidth, 
noise, unmodelled dynamics.. .) associated with it. A 
tentative comparison between a fixed parameters robust 
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Appendix A 
Definirion of the ultimate boundedness (Barmish et al., 1983). 

A solution x(.) : [to. + m) + R”, x(t,,) = ~0 of (1) is said to 
be uniformly and ultimately bounded with respect to a 
compact set X in R” if there is a non-negative constant (time) 
T(%,, X) < +m, possibly dependent on x,, but not on to, such 
that x(I) E X for-all I?;, +-T(x,,, X). 

If this orooertv holds for anv initial condition. then the 
system is ‘Gldbaliy Uniformly Uhimately BoundeLi (GUUB) 
with respect to X. 

Appendix B 
Examination of the closed-loop differential equations (l), 

(6) and (12) reveals that the main source of discontinuities in 
the closeb-lbop system is u. Indeed, (+ is defined as a function 
of the state and thus renders the right-hand side of the 
overall closed-loop system discontinuous with respect to the 
system state vector, although the discontinuities do not enter 
directly in the control input (6) which is a continuous-time 
function. This is the reason why we have to take care of the 
existence of solutions. In the first part of the proof, we show 
that the discontinuities in q, if any, cannot occur infinitely 
often in a finite-time interval. Thus, a unique and uniformly 
bounded solution exists for the closed-loop system on each of 
the time intervals between two consecutive discontinuities. 
Those solutions can be concatenated to obtain a unique and 
uniformly bounded solution until a finite time T >tO is 
reached such that G(T) 2 a*.? The second part of the proof 
is devoted to showing that as soon as 2 is greater than a*, 
then there exists a finite time T’ > T, such that for all t s T’, 
x(t) cannot escape from the set V;‘[y,oy1’(2~ + h)] and 
hence from yi ‘[y20y3’(2& + h)] (see (14)), i.e. x is 
uniformly and ultimately bounded and d is frozen at a 
bounded value. This enables us to conclude that the solution 
can be extended on [to, +m). 
B. 1. Existence, uniqueness and boundedness of 
solutions. First note from (12) and Fig. 1 that & is not 
decreasing. We assume, without loss of generality, that 
Ix(t,,)l = R > R,, i.e. the system is initialized outside the ball 
B R,, and a(@ = 1. 

t For x E RP, y E RP we note x < y if x, < y, for at least one 
i t (1, p), and x 2 y if for all i E {l, p} we have xi 2 y,. 

Definition. Let us define D = [to, t,) X B as a bounded 
domain for {r, E} where I E [to, t,) and i E B for some closed 
connected set B c R”+P. t, is defined in such a way that no 
discontinuity has occurred in 6. 

We assume that &(t,) < a*, i.e. the estimate has not 
reached the upper bound at t,. In view of the definition of 
the bounded domain D and assumption A2, it follows that 
for any initial condition in D, a unique solution exists+ in a 
certain neighbourhood of (to, it&,)), say D1 = [to, t;) X B,, for 
some ti > to and r z R. Now, it follows from (15) and (17) 
that as long as x(t) lies outside BR, one gets 

V(x(t), G(I), t) I --E < 0, (B.1) 
so that 

05 n(ixl) 5 V(x, 5,t) < V(x(t,), a*, to) 

5 v2(lx(to)l) + a*TQ*, (B.2) 

(aT(t,)cqt,) 5 a *Ta* as L;(t0)50). 
Therefore, it follows that during this interval of time: 

IxW 5 YI’(Y2MkJI) + a*Ta*). (B.3) 

Thus, one sees that x (and consequently d) are uniformly 
bounded on D,, i.e. the right-hand side of (B.3) does not 
depend either on to nor on t,. Moreover, the bound is 
independent of the size of B,, i.e. B, can be made arbitrarily 
large while (B.3) still holds. This enables us to extend the 
solution up to the boundary of D, i.e. until the first 
discontinuity in C? occurs. (Note, from (7) and (B.1) that 
there exists a finite time t, such that Ix(t,)I = R,.) This 
solution, which is uniformly bounded on D, is unique (see 
Filipov (1988)). Now, there exists a time t2 such that for all 
r E [to, t2):lx(t)l 5 R2. On [to, t2), d is frozen and we have 
h(t) = &(r,). Since G(t,)< a*, it may happen that x(t) 
escapes from the set Y;‘[Y~oYJ’(~E + h)] at the time t2. 
Indeed, the classical reasoning employed in Corless and 
Leitmann (1981) cannot be repeated here. From (14), we 
conclude that one cannot insure that x(t) will remain inside 
Y;‘[Yz~Y;‘(~E + h)l. 

B.l.1. Extension of the solution. Note, that the above 
reasoning can be repeated to show the existence and 
uniqueness of a solution of the closed-loop system in the 
interval (t,, tz). Then, we can define a solution on [to, t2) by 
concatenation of the solutions on [lo, t,) and (t,, t2). The first 
solution starts at the initial condition and ends when the first 
discontinuity in B occurs. The second solution starts at the 
final value of the first solution and ends when the second 
discontinuity at t2 occurs. It has also to be emphasized that 
the discontinuities cannot occur infinitely often in a finite- 
time interval (i.e. the measure of the interval [t,, t2] is strictly 
positive). Indeed, with x(t) being uniformly bounded on this 
interval, it follows from assumption A2 that i is bounded 
also, so that infinitely fast dynamics are avoided. (Note that 
y, and y2 in (3) can always be chosen in a way such that 
R,-R,>O.) 

Now for some t > t2, x(t) lies outside the set 
y;‘[y20y<‘(2e + h)]. During this period we have 

V(x, E,t) < V(x(r,), (i;(t*), 12) 
5 y2(y:‘oy20y;‘(2~ + h)) + & ‘(t,)&(t,), (B.4) 

because (Bl) holds while d increases. Therefore we get 

Ix(t)1 5 Y;‘(Y~oY~‘oY~~Y;‘(~~ + h)) + aT(+(t,), (B.5) 

for all t E (t2, t-,), where t3 is defined as the finite time such 
that x(t3) = RI, i.e. x(t) re-enters the ball Bx,. The reasoning, 
above, applies as long as d remains smaller than a*. 
Repeating the arguments in (B.3) and (B.5), one sees that on 
each time interval (ti, t,+,) between two consecutive 
discontinuities (where ti and t,+, are such that (T switches 
fromOtolattiandfromltoOatr,+,)weget 

Ix(t)1 5 Yl“(max [Y~oY;‘~Y~~YT’(~E + h), y2(lx(~dl 

+ dT(t,)l?(t,)). (B.6) 

$ Indeed the closed-loop system appears as a Caratheodory 
equation on D; see also Filipov (1988). 
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Note from (12), that the successive values S(r,) are bounded, 
because d is increased by a finite amount on (t,, r,+,). 
8.2. Global uniform boundedness of Ultimate 
boundedness x hinges on the that the 
time during & is (i.e. the time during 

the system in cases or C3) finite. First 
from (15) (17) that Cl and are ‘unstable’ the \ , 
sense that each‘ time the system is in one of these cases, then 
V strictly decreases and x reaches the ball BR, in finite time, 
so that the system is in case C2 or C4. Now from (16) and 
(18), we see that nothing guarantees that the system will 
remain in C2 or C4 unless & sz (I*. Let us first analyse what 
happens when the system is in Cl: then d is strictly 
increasing, and during this time we have (see assumption Al) 

&?/3>0 forsomepandiE{l,p}. (B.7) 

Let Q be defined as R = {t 2 r,/&(t) > 0}, i.e. R is the total 
time during which & increases (i.e. at least one component of 
B increases). Assume that a has a large enough measure so 
that for some T >r,:&(T) S a*. Let us denote Qr the 
truncation of R up to time 7. Note from (B.7) that f& has a 
finite measure? 

(We recall that b(r,) 2 0.) We shall see that this implies that 
Q has also a finite measure, i.e. the total time during which 
the trajectory of the closed-loop system lies outside the set 
-y;‘[yzoy~‘(2c +h)] is finite. Indeed, assume that T has 
been reached. Then for all r 2 T, a(r) 2 a*. Moreover & 
increases until the ball B,, is reached at some time T’. Then, 
& is frozen. Assume that x(r) escapes from BR,, then as d > 0 

t This type of result seems to be generic when dead zones 
are used in parameter adaptive control (see e.g. Peterson and 
Narendra (1982), Brogliato et al. (1992), although the context 
and the arguments used in these references to prove finite 
measure of the total adaptation time are different from here). 

we get 

V(x, gi, r) = VJx, r) 5 -r&4) - lg@, 01 pT(x, r)c 

= -r300 (B.9) 

This means that we can repeat the classical reasoning when 
the upperbound is fixed (see, e.g. Corless and Leitmann 
(1981)), choosing for example r = T’ as an initial time (i.e. 
we consider the convergence analysis with known and fixed 
upperbound d 2 a*, x being initialized in the ball BR,). It 
follows that x(r) can no longer escape from the set 
V;‘[yzoy;‘(2e + h)] and hence from y;‘[yzoy;‘(2~ + h)] 
(see (14)). Therefore, & is frozen and we have G(r) = 8, for 
all r 2 T’, and R has a finite measure. 

The case when the system is in C3 is slightly different as it 
is not guaranteed then that B strictly increases. Indeed g(x, 1) 
can be zero, and 6 may be stuck at a value smaller than a*. 
Let us examine this case in more detail. Two situations can 
happen: either there exists a finite time T such that for all 
r 2 T, g(x, r) is zero almost everywhere, in which case ai is 
frozen for r 2 T and from (9) we conclude that x 
asymptotically converges towards zero. (In this situation, the 
perturbation enters in the system tangentially to the level sets 
of V, almost everywhere and thus does not influence the 
variation of V,.); or there exist sequences pi, ri+,], i E N, 
ri-+ +m as i+ +m, of strictly positive measure such that 
g(x, r) # 0 on [ri, r,+ ,I. Then, we see that the total time spent 
by the system in C3 is finite using the same arguments as 
above. 

Finally, we can state that R = {r 2 &,/b(r) > 0) has a finite 
measure, i.e. the total time during which x lies outside the 
ball BR is finite. Then, using the same argument as above we 
conclude the proof. Moreover we have for all r 2 r,, 

Ix(r)/ 5 Y;~( max IY~oY;‘oY~oY~‘(~), r2WoM 

+ fy~ a’(r,)fi(r,) 
1 
. 

Now consider the domain D2 = [to, T’] X B and let the ball B 
become arbitrarily large; since we have shown that f is 
uniformly bounded on r,,, T’ and cannot escape from a 
compact subset of R” X RJ’ for all r 2 T’, we finally conclude 
that the solutions can be extended on D = [to, +m) X B and 
are uniformly bounded on D (see, e.g. Khalil (1992). 


