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On the Control of Finite-Dimensional Mechanical
Systems with Unilateral Constraints

Bernard Brogliato, Silviu-Iulian Niculescu, and Pascal Orhant

Abstract—This paper focuses on the problem of the control of
a class of mechanical systems with a finite number of degrees-of-
freedom, subject to unilateral constraints on the position. Roughly
speaking, those systems are described by a set of ordinary
differential equations that represent smooth dynamics, together
with an algebraic inequality condition F (q) � 0 (where q is the
vector of generalized coordinates) and an impact rule relating the
interaction impulse and the velocity. Nonsmooth dynamics is at
the core of the study of such systems. This implies one can suitably
define solutions and stability concepts that fit with the considered
model. Then, we discuss the closed-loop control problem, and we
analyze various switching control strategies.

Index Terms— Closed-loop stability, mechanical systems,
switching control, unilateral constraints.

I. INTRODUCTION

T HE LAST fifteen years have witnessed a considerable
interest in the problem of control of mechanical systems.

Both motion control and hybrid force/position control cases
have received much attention. In the first case, the system
is assumed to evolve in a space free of obstacles and is
described by a set of ordinary differential equations (ODE).
Feedback linearization as well as more specific controllers
(adaptive, robust control) have been proposed [29], [30].
In the second case, the system is assumed to evolve on a
constraint submanifold of the form 0. Interaction
forces between the manipulator’s tip and the obstacle have
to be taken into account in the analysis. Solutions based
on a decoupling between free tangential motion along the
surface 0 and the constraint normal direction have
been proposed [5], [7]. It is worth noting that in this latter
case, the constraint is assumed to be verified for all times
without any consideration for the possible transition between
configurations such that 0 and such that
0. This has considerable consequences, since the system’s
trajectories can still be considered as smooth time functions.
Hence all results available on existence, uniqueness, and
stability can be applied directly to such systems.

In parallel with studies devoted to systems of rigid bodies
with unilateral constraints and linear complementarity prob-
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lems [60], [61], there has recently been a growing interest in
the modeling of collisions in kinematic chains [46]–[49] and
the control ofcomplete robotic tasks, i.e., tasks involving free-
motion as well as constrained motion phases like deburring and
grinding operations. Although this is not too common yet, it
is quite possible that manipulators may carry out such tasks
as driving nails, compacting powders, breaking objects,
in which case they would be intended to be impacters [8]
(it is also worth noting that all mechanisms with clearances
involve impact dynamics). Many experimental works have
been devoted to studying thetransition phasecontrol, which
occurs when the robot’s tip strikes the environment’s surface;
see, for instance, [19]–[23], [42], [44], [55], [56], and [59].
In particular, the results in [44] (flexible environment) and
[21] (rigid environment) show that the environment’s stiffness
has a significant influence on the transition phase behavior.
In [42] it is shown that rigid body models can provide,
in certain cases, better prediction than flexible ones, using
appropriate nonsmooth mathematical tools [14]. Pioneering
fundamental work in the field of complete robotic task control
can be found in the work of Mills and Lokhorst [16], who
considered the control of -dof (degree-of-freedom) rigid
manipulators evolving either in a free-space or in contact
with a compliant environment. A simple switching controller
is considered which basically consists of a motion control
law and a force/position control law applied when contact
is established or not. Roughly speaking, the open-loop as
well as the closed-loop systems are composed of two smooth
vector-fields. The stability analysis consists of the application
of Lyapunov stability concepts for simple hybrid dynamical
systems [2], i.e., one requires the existence of a unique positive
definite function such that is negative definite along
both vector-field trajectories. This is obtainedvia suitable
feedback-gain choices. Existence of solutions at the switching
times is carefully analyzed in [16]via concepts related to
differential inclusions (since at that time the control input
is not uniquely defined). Other related works can be found
in [6], [17], [18], [24], [45], [50], [51], [57], [58], [62], and
[63]. In particular, in [63], a complementary slackness model
is formulated for systems with inequality constraints (but
simple transition phase), and the existence of solutions results
is developed. It is noteworthy, however, that the systems
considered in [16] do not belong to the class of systems subject
to unilateral constraints, due to the environment’s compliance.
Therefore, this result cannot be considered as an extension
of the work on constrained manipulators [5], i.e., control of
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systems represented by the following set of equations:

(1)

(2)

Law percussionvelocity true (3)

where (1) is the dynamical equation of rigid manipulators in
free-space, is a vector of generalized coordinates,

is the positive-definite inertia matrix,
contains Coriolis and centrifugal acceleration terms,

is the vector of generalized gravity torques, and
is the control input vector. More generally, (1) may

represent the dynamics of any Lagrangian system, provided
one knows stabilizing controllers for free-motion, constrained-
motion, and transition phases. Mechanisms with clearances do
not, in general, belong to such a class of systems. Inequality
(2) represents the set of unilateral constraints, i.e., the subspace

within which the system evolves. Equation (3) is a
physical law that relates the interaction between the robot’s
tip and the surface 0, and the generalized velocity,
when contact is made at , i.e., 0 for any
small enough 0 and 0.

In this paper, we shall consider the control of dynamical
systems as in (1)–(3) with , i.e., we model
the contact process from a rigid body point of view. We
restrict ourselves to codimension-one surfaces of constraint
( 1) or to hypersurfaces 0, , which are
mutually orthogonal with respect to the kinetic metric defined
as , . Here
represents the set of constraints which are attained at the same
time. The orthogonality condition is expressed as

(4)

, . We assume that the hypersurfaces
, are frictionless. The reasons for these

assumptions will appear clearly in the next sections and are
related to the wellposedness of the collision model in (3), the
existence of solutions, and the stabilization of the system in
(1)–(3).

In particular, the existence of solutions for such a dynamical
system is a hard problem. It has been proved in some particular
cases, limited to codimension-one frictionless constraints; see,
e.g., [9] and [26] or with friction [15]. Uniqueness also has
been proved in [25] and [26] under some restrictions on the
constraint and on the external action as well as for the lossless
case only. Other studies on existence and uniqueness from the
linear complementarity problem point of view can be found
in [60] and [61]. In this paper we shall content ourselves
with existence results, disregarding uniqueness problems. This
choice is done mainly because of the great difficulty in proving
such results for general impacting systems (and such studies
are clearly outside the scope of this work), and also since
there are no uniqueness results available in the mathematical
literature for the dissipative shocks case, which is of main
interest for practical control purposes.

In summary, contrary to the constrained case where one can
assume that the system evolves permanently on a submanifold

0 with , 1, things are not so

simple when the transition from free to constrained motion is
taken into account. Although we do not claim that the case of
several unilateral constraints should be disregarded (it does,
on the contrary, represent a challenge in impact dynamics to
define impact rules for such cases [12], [14]), we prefer in
this paper to restrict ourselves to the above cases. The results
were outlined in [4].

The paper is organized as follows: in Section II we introduce
a possible way of modeling the system in (1)–(3) and the
corresponding definitions of solutions. In Section III, some
stability concepts related to the particular dynamics involved
are presented. We treat in detail a one-dof case, and we
analyze some stability properties for various control strategies
in Section IV. In Section V, the extension to-dof rigid
manipulators is analyzed. Conclusions are given in Section
VI. Some mathematical tools used in the paper are given in
the Appendix.

II. DYNAMIC MODEL

In this section, we provide some explanations and details
concerning the dynamic model that will be used throughout the
paper for control design purposes. We also give the definition
of the trajectories using a result given in [9].

A. Impact Dynamics

1) Codimension-One Constraint:Before writing the whole
set of equations that model the system, let us recall the
basic facts concerning impact dynamics. Further information
can be found, for instance, in [8] and [14]. As long as the
configuration is such that 0, then the
system’s trajectories , are well defined as absolutely
continuous-time functions, solutions of the ODE in (1) (where

is assumed to satisfy some classical regularity conditions).
The same conclusions hold when 0 on a nonzero
time interval. Now assume that for some ,
0 for and some 0 small enough,
and . Assume also that
0 where and is the
gradient of at (that is supposed to be different
from zero in the region of interest). This condition means
that the velocity points outwards from the domainat the
point . Then, a collision at occurs, and
the velocity possesses a discontinuity at such
that , i.e., the right-limit

of the velocity points inwards . Notice that
the jump in , denoted as , has to be specified through
a so-calledrestitution rulewhich relates post- and preimpact
velocities. We denote it for the moment as

(5)

Remark 1: The fact that a jump in the velocity is necessary
when the surface 0 is attained in a nontangential
manner and that the impact rule must be such that the
postimpact velocity points inwards, renders the domain
invariant under the dynamics. The nonsmooth impact theory
developed in [14] and [15] precisely aims at studying a general
model that makes such a domain.
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Now let us note that since (5) implies a discontinuity in the
velocity at , it follows that at there must be
a percussion acting on the system, i.e., a generalized
impulsive force of the form , where is theDirac
measureat . Also at the accelerationis given by

(6)

where1 . It follows that systems as in
(1)–(3) are represented bymeasure differential equations, i.e.,
differential equations containing singular distributions (like the
Dirac measure) in their right-hand side [34]. It is then possible
to prove (see, e.g., [64]) that at the dynamical equations
become

(7)

It is also important to note that is continuous at impact
times; see [64]. Equations (5) and (7) make the impact
problemcomplete,in the sense that given preimpact conditions

one is able to calculate both [from (5)]
and the percussion vector [from (7)].

Let us now focus on the restitution rule in (5). In the one-
dimensional case, the most widely used rule is known as
Newton’s rule, which states that if a particle strikes a rigid
obstacle; then

(8)

where is the restitution coefficient. In higher-
dimensional cases, we shall apply the rule [12], [13]

(9)

which can be seen as ageneralized normal rule(only one
coefficient is needed in (9) since is scalar). The
remaining part of the velocity can be computed from (7).
Indeed there are unknown parameters to the problem
(the -velocity components and the unique component
of which verifies for some [14]),
and (7) and (9) provide us with equations. We shall
come back later on the calculations of postimpact velocities
using some particular coordinates such as the ones proposed
in [5].

2) Constraints of Codimension : In the case
, , there may be several hypersurfaces attained at the

same time. At such singular points, is not smooth so that
it is really given by the intersection of several hypersurfaces.
The question is: can the restitution rules in (8) and (9) be
generalized to such cases? Does this generalization yield a
coherent result? The answer is yes, if the hypersurfaces that
form the singularity satisfy (4); see [12] and [13, Th. 2, pp.
26 and 27]. This fact is clearly explained as follows. Let us
endow each surface , with the kinetic metric
defined as above. Then the normal unit vector to
is given by [27]

(10)

1�f (tk) will be used generically to denote the jump in the functionf(t)
at time tk.

Define vectors such that 0
for , 0, and 1. Then the
basis is orthonormal; see (4).
Define now the generalized velocity transformation

(11)

where the matrices and are
defined from the above vectors. The coordinates and

in the frame represent the
projections of on , respectively,
in the sense of the kinetic metric. Recall that the percussion
vector verifies for some

. Then it is not difficult to show that the
dynamical equations at the impact time are given by

(12)

which is another way to write (7). (If , then there is
only one component to .) Now note that if (4) is satisfied
for 1, 2, then (12) becomes

(13)

i.e., the percussion component has no influence on the
velocity jump, and vice-versa. It is then possible and
coherent to define a restitution rule [which is a generalization
of that in (9)] as

(14)

Note that from the definition of these quantities, we have

(15)

(16)

The incoherence when (4) is not verified comes from several
facts. It is shown in [12] via a sequence of approximating
compliant problems (the surfaces of constraint are replaced
by a spring + damper model) that there is no hope of any
sort of convergence toward the rigid limit case. Continuity
of the trajectories with respect to the initial conditions is
guaranteed if orthogonality is satisfied [13, Th. 2, pp. 26 and
27]. This last fact is easily seen on a planar example of a
particle striking in an angle. Notice that we do not claim
that the restitution rule as defined in (11)–(16) is the only
possible model of collision one might choose. Moreover, it
is well known that Newton’s conjecture about the restitution
law has to be verified in experiments like any other model.
For instance, it is known that may depend on
[8]; see also [43] for experimental results on a falling rod,
which show that micro-collision effects play a crucial role in
the impact phenomenon. This is even more true in the case
of -dimensional articulated systems such as manipulators.
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In view of the studies available in the mechanical literature
[12]–[14], Newton’s conjecture in its generalized form seems
to be the most reasonable model concerning multiple rigid-
body impacts. It has also been confirmed experimentally
for colliding manipulators; see e.g., [21] and [56], although
much more experimental validations are needed. It is finally
a theoretically sound model, as we discuss in Section II-C,
which is a necessary first step in the analysis; the stability
analysis framework developed in this paper can accommodate
more elaborated impact models.

We are now able to propose a general model for the system
described in (1)–(3).

B. A General Form of the Dynamical System

From the above discussions, it is reasonable and natural to
split the dynamical equations into three parts as follows (this
is written for a codimension-one constraint and can be easily
generalized to the case 2, provided the above conditions
are satisfied).

Free-Motion Phases:

(17)

(18)

Constrained-Motion Phases:

and (19)

Transition Phases:

(20)

(21)

(22)

Notice that once the transition phase is finishedi.e.,
0 , two situations can occur: either

the applied forces are such that the system remains in contact
with the boundary of , or it detaches. This depends on the
Lagrange multiplier sign: if 0, constrained motion
is insured; if 0, the system detaches from the constraint
surface. In a case as in (28), this can be written as follows [12]:

if 0, 0 since the multiplier
.2 In our case such outcomes are a consequence of the

controller . Since we do not supposea priori that a unique
controller is applied, the complete dynamical system is
given by the above three phases plus a control strategy of
the following form.

Control Strategy:

(23)

if condition is true (24)

2Such transitions may be taken care of by so-calledcomplementarity
conditions; see, e.g., [60].

is a set of controllers which stabilizes the system when it
evolves in one of the three phases mentioned above.3 Hence,

contains position as well as force/position controllers. The
condition may be seen as a high-level controller, possibly
with an associated automaton [3]. They may be event-based
or open loop. One must, however, take care of existential
problems to the overall dynamical system. As we shall see
later, it is also possible to interpret as a unique controller,
discontinuous in and/or in the system’s state (depending on
the nature of the conditions ).

Remark 2: The equation in (20) represents the smooth dy-
namics between the impact times, i.e., on intervals .
Furthermore, notice that in general the closed-loop state vari-
ables contain the position tracking error ,
where represents some desired motion.
Then the unilateral constraint 0 can be written as

0. In other words, the invariant constraint
can be written in closed-loop form as a time-varying constraint.
The restitution rule in (9) then can be rewritten as

(25)

Roughly speaking, since the constraint is time-varying, the
restitution rule must incorporate its velocity at the impact time.
This is represented in the last term of the right-hand side
of (25). From the definition of the time-varying closed-loop
unilateral constraint , it is easy to verify that

and that so (9) and (25) are equivalent.
This is simply to show that we could have formulated the
dynamical system in (17)–(22) in terms of closed-loop (or
tracking errors) variables.

Remark 3: It is clear that the aim of the robotic task is to
make the manipulator track some desired trajectories. During
free- and constrained-motion phases, one classically defines
desired position, velocity, and interaction force trajectories.
The controller has to be designed such that the tracking
errors vanish asymptotically. The system’s behavior during the
transition phase will be, in general, quite different. Indeed, in
some tasks it may be required that impact times verify

for some 0 with bounded trajectories on
(one can think of a “hammer”-like task). This also implies that

in (20) is designed such that the sequence of impact times
does exist. Note that in general the controller stabilizing

free-motion phases will not be suitable for the transition
phases’ objectives. In this paper, we will consideronly robotic
tasks which involve alternatively free- and constrained motion
phases. Although the model in (17)–(24) might represent other
classes of mechanical systems (for instance, bipedal robots
and control of such systems [41] or simple impacting systems
with chaotic dynamics like the bouncing ball or the impact
oscillator [52]–[54]), we do not consider such extensions for
the moment. Hence, the goal of the controller during the
transition phases is to guarantee that the manipulator stabilizes
on the constraint surface 0 in finite time. In other
words we shall require that the sequence has a finite
accumulation point with 0. Except in

3One of the main conclusions of the experimental work in [44] is that three
distinct controllers have to be used for the control of a complete task.
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the case 0, is an infinite sequence. implies
that 1, i.e., there is a dissipation of energy at collisions.

Remark 4: Using the generalized coordinates transforma-
tion described in [5], the unilateral constraint 0,

can be rewritten in a new set of coordinates

, where and the constraint
0 becomes simply 0. This well-known transformation
relies on a suitable partition of the coordinatesand may be
assumed for convenience to be global. The constraints
are also assumed to be independent. Therefore, the constraint

0 can be rewritten as 0 so that the Euclidean
normal vector to the constraint hypersurface 0 is simply
the th unit vector . It is noteworthy that although the
rest of the coordinates represent the motion of
the system along the tangential part of the constraint,does
not in general remain continuous at the impact times if one
adopts the generalized Newton’s restitution rule described in
(9)–(16). Indeed, one has to compute the jump infrom the
restitution rule and then compute the jump in from (7),
i.e., the algebraic dynamical equation at the shock instant. We
shall come back to these calculations in Section V-B. In fact,
the velocity transformation in (11) can be performed starting
from any set of generalized coordinates, in particular. One
concludes that for simplicity (but not without loss of generality
since the transformation is assumed to hold globally) the
unilateral constraints could be written as , .
Also the restitution rule in (21) becomes
when 1.

C. Definition of the Solutions

The classical bouncing ball example (see, e.g., [35]) sug-
gests that the solution of an impact problem possesses
derivatives which are not piecewise continuous but rather right
continuous of local bounded variation (RCLBV) in time; see,
e.g., [14]. This also allows us to define the acceleration as
a bounded positive measure since it is the derivative of an
RCLBV function [36]. Nevertheless, in the general case of a
system as in (1)–(3), such assertions are not trivial and must
be proved. Results in this direction can be found in [9]. In
particular, [9, Th. 2] requires that a) the system evolves in a
convex domain of the state space, i.e., the regiondefined by
inequalities (2) must be convex, b) with a regular (i.e., twice
differentiable) boundary , and c) the external action
on the system is continuous in time. This may not be satisfied
for systems like in (1)–(3). However, we have seen in Remark
4 that the coordinate change like the one proposed in [5] and
a suitable feedback control law allow us to put the closed-
loop system in the framework developed in [9]. In particular,
this allows us to get a convex domain. The convexity of
is not a real obstacle, however, as long as locally, existence
and uniqueness of a projection on is assured. Multiplicity
of the constraints (i.e., regularity of ) is a more serious
problem. Existence has been proved only for zero energy loss
at impacts [10]. Notice that this is not sufficient here because
we need finite time stabilization results which cannot be
obtained when 1. Continuity of the external action inmay
also be relaxed to measurability in the Lebesgue sense [11]

and with Carath´eodory-like conditions [34] since the crucial
point is to guarantee existence of solutions of a penalizing
problem (see [9, Th. 2]). Although some dynamical problems
with unilateral constraints may not possess any solution with

, we conjecture that under the restrictions
imposed on the unilateral constraints (i.e., either uniqueness
or multiplicity but for orthogonal constraints), the existence
is assured. Hence, in the following, we shall always assume
that . Furthermore, notice that this has some nice
consequences for the stability analysis purposes since RCLBV
functions possess a countable set of discontinuity points on
any compact time interval (hence are Riemann integrable). It
is, consequently, natural to associate a discrete-time system
(or impact Poincaŕe map) to such impacting systems. This is a
natural extension in the set of solutions of bounded variation of
the results in [1], where only piecewise continuous solutions
are considered.

Another problem appears at the switching times between
the different controllers ; see (23). Two situations may be
considered: either the switching period has a strictly positive
measure, or it has a zero measure. It seems realistic to assume
a zero measure, since in practice the switching will generally
be obtainedvia software and consequently will be almost
instantaneous. Hence, what happens “during” the switch will
be disregarded in the stability analysis. Finally which sense
should we give to the control law at the switching times? The
point of view of differential inclusions is adopted in [16], i.e.,

at the switching times. Then, the overall
system solutions have to be considered asreachable sets, no
longer time functions and existence as well as uniqueness.
Stability results have to be generalized; see [34]. As noted
in [16], no general mathematical tool seems available in the
mathematical literature to study differential inclusions with
measures in the right-hand side or with state jump conditions.
It would be possible to define control strategies such that no
collision occurs at the switches. We, however, prefer to assume
in this study that at a switching time the controller takes
a value between and , which can be unknown.
Actually we formulate the problem with a time-discontinuous
controller, presumed to be right continuous. This is not so
elegant from a theoretical point of view but allows us to get rid
of a problem with few practical consequences on the stability
analysis, as long as the switching periods are supposed to be
instantaneous.

III. STABILITY ANALYSIS FRAMEWORK

The system in (17)–(24) is a complexhybrid dynamical
system[3] which involves continuous as well as discrete
time phases. Stability criteria have been proposed for simple
hybrid systems; see [2]. However, they do not apply to more
complicated systems as in (17)–(24). In this note we choose
a time-domain approachclose to Lyapunov’s second method.
The stability analysis will therefore be based on the choice
of a suitableuniqueautonomous positive definite function
of the system’s state. Although this seems the simplest and
the most natural way to proceed, it is in fact not clear which
conditions of variation of should be required. In general,
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the controllers may be dynamic output or state feedback
laws. Hence, (17)–(24) do not represent the whole closed-
loop system. Note that for the moment the representation of
the transition phase in (20)–(22) is not very tractable. Indeed,
it is amenable for stability analysis via the tools developed
in [1] which require that a positive definite function of
the state be such that 0 along the trajectories of (20)
and 0 at the impact times. The basic idea is
roughly to get simultaneously continuous and discrete stability
via the same function . However, as the simple bouncing
ball example shows, it may not be obvious to verify such
stability criterion in practical cases. Moreover, the theory
developed in [1] relies on piecewise continuous solutions, i.e.,
the impact times verify for some 0. Still,
the bouncing ball example with proves that this
is not sufficient to study impacting systems in general. More
precisely, the stability analysis framework proposed in [1] is
well-suited when one wants to stabilize the manipulatorclose
to the obstacle; see [64, ch. 7] for more details. In this case
accidental collisions may occur between the robot’s tip and
the constraint surface. Such a stability criterion guarantees
that these collisions do not destroy the Lyapunov stability of
the closed-loop system. For a system submitted to unilateral
constraints, this corresponds to Int , where

. The dynamical equations are then given
by (17) and (18). The inequality in (18) allows the collisions
to occur even during free-motion phases. Notice that due to
the form of the unilateral constraints in (2), is closed. In a
robotic task, we may be interested in having stabilization on
the constraint, i.e., . Roughly speaking, classical
stability concepts on metric spaces [33] do no carry out to
this situation, where it is not possible to define neighborhoods
(open domains) of on .4 A way to overcome this
problem for the analysis of the transition phase is to study the
impact Poincaré map5 associated with (20)–(22). In general,
such maps are difficult to obtain explicitly. However, one
may use the control input in (20) to simplify the smooth
dynamics (for instance feedback linearization) and make it
possible to get explicitly the discrete-time system associated
with (20)–(22). This path will be investigated in details in
the sequel, where indeed the goal will be to find a controller

in (20) such that (20)–(22) define a stable discrete-time
operator. Another way to avoid this problem is to define
nonsmooth changes of coordinates which transform systems
with unilateral constraints as in (1)–(3) into systems with
time-continuous trajectories [38].

To clarify the proposed stability criterion, and to overcome
those difficulties, we introduce the following definitions. Let
us split the time axis into intervals and , corresponding
to smooth phases [during which collisions may nevertheless

4The authors are in fact aware of only one reference dealing with Lyapunov
stability of such critical fixed points when the forces acting on the system are
zero (i.e.,� = 0); see [37]. This case is not very interesting, in general, since
one wants to apply a nonzero force on the environment.

5With some abuse of name since Poincaré maps are defined (strictly speak-
ing) from periodic trajectories [27], whereas here it will concern solutions
converging to zero in finite time (but with an infinity of rebounds).

occur at times 6 for motion phases in (17), but the closed-
loop equations fixed-point belongs to Int ] and transition
phases, respectively (the goal is to obtain stabilization of the
system on the surface ). From the hybrid dynamical systems
point of view, the ’s correspond to thecontinuous-time
phasesand the ’s to discrete-time phases. As we shall see,

does not necessarily correspond to the rebounds phase,
but more generally contains it. Even in the case of plastic
impact ( 0), in general 0 ( is the Lebesgue
measure). Note that . The phases and

may be finite or infinite. We denote and
. Note that corresponds to free- as well as

constrained motion phases. Hence there cannot be more than
two sequential intervals , , since the transition from
free- to constrained motion phases must be an impact phase.
Hence we have for a typical task

(26)

Let us define as the complement of so that
. We now introduce the proposed stability framework. In

the following, denotes the state of the closed-loop system
(17)–(24), with . denotes a positive def-
inite function, continuous in , satisfying

, where and are class functions.7 Also
and , are class functions. Notice that ,

may be different from , mainly because of
dynamic state feedback controllers. Let us finally define a
particular decomposition of as , ,

. Define and such that ,
, and .

Lemma 1—Weak Stability:Assume that on intervals ,
along the system’s trajectories,is uniformly

bounded on , and for all 0. Then the
following assertions hold.

1) If on , for along
system’s trajectories, and , then
as .

2) If for on ,
for on , for ,

nonincreasing on , nonincreasing on ,
then as .

3) If , , ,
is constant on , 0 for any

, and for ,
0, then 0 as .

The proof is given in the Appendix. Note that since is
continuous in , then . It is thus justified to
use the jumps of at the impact times in the stability analysis.
Recall also that at such times, the time derivative of
is calculatedvia a generalized chain rule [36], i.e.,

6Throughout the paper, the impact times are generically denoted astk.
This does not mean that a timetk is related to the domain
k. The subscript
k is a dummy variable associated to the different quantities that we need to
define, i.e., the different time intervals, their upper and lower bounds, the
impact times, etc. Moreover to simplify the notations, we employtk for all
the impact phases.

7i.e.,�(0) = �(0) = 0; they are strictly increasing and radially unbounded.
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. Also, strictly speaking on , the derivative
denotes the upper right Dini derivative of along closed-

loop trajectories (see, e.g., [1, Definition 13.2]). Let us remark
that and may correspond to various decompositions
of such as the one obtained via the McClamroch–Wang’s
transformation [5] described above. This will be made clear
in the following sections.

Let us now define the transformations
. The signal

is due to a possible dynamic state feedback controller. We
assume that those mappings are global diffeomorphisms so
that the function is defined
globally.8 The closed-loop impact Poincar´e maps are defined
as9

(27)

0, where is the impact Poincaré section defined
as . Therefore
is the discrete-time operator associated with (20)–(22). In
other words, the impact Poincaré map is defined from the
mapping as

, taking the restriction to of . Finally,
the function is defined as the restriction of to

, i.e., . In the next Lemma we
introduce stronger conditions for the behavior of the system
during the transition phases .

Lemma 2—Strong Stability:Let and satisfy the
conditions in a), b), or c) in Lemma 1. Assume furthermore
that on , one has and:

i) ;
ii) ;

iii) is uniformly bounded and time continuous on
, where the sequence exists and has a finite

accumulation point.

Then the system is weakly stable, and the closed-loop im-
pact Poincaŕe map is Lyapunov stable with the Lyapunov
function .

The proof follows from Lemma 1, [39], and using the
fact that . Notice that the condition

can be assured if for instance
and condition ii) is satisfied. Although is designed as a
continuous-time function, the above conditions assure that
qualifies as a discrete-time Lyapunov function for the mapping

, after an eventual state-space transformation. The interest
for the strong stability concept is that if conditions i)–iii) are
satisfied, then the whole stability proof is led with a unique

. Also Lemma 2 conditions reinforce the behavior of the
trajectories during the impact phase.10 Note that if the ’s
are equal to the identity mapping, then , and it is
sufficient that 0 for all .

8Clearly this may imply a reordering of the coordinates before performing
the transformationGi.

9The preimpact values can be chosen as well to define this mapping.
10Notice the fact thatt1 < +1 is not a consequence of the stability of

P�; i. It has to be proved.

The various stability criteria in Lemma 1 are meant to apply
to different classes of robotic tasks. It is also possible that
other criteria can be invented to cope with other situations.
We, however, limit ourselves in this study to these three: a) is
the most direct extension of Lyapunov second method. It can
represent the case when the task is composed of free-motion
phases, separated by some impact phases; case b) relaxes the
conditions and is typical for tasks involving an infinity of
transition phases, and where the controllers are dynamic state
feedback laws; case c) may be suitable when the task ends in
a smooth phase (free or constraint motion), i.e., .

IV. A ONE-DOF EXAMPLE

In the following, we first illustrate on a one-dof example
how the control strategy (which encompasses the switching
times that define the subtasks as well as the desired trajectory
definition) can influence the type of stability of the closed-loop
scheme. We gradually introduce a weakly stable scheme and
then show how strong stability can be obtained by modifying
both the switching times and the free-motion desired trajectory.
The goal of this section is mainly to show how the control
strategy can be modified in various ways to comply with the
stability requirements of Lemmas 1 and 2.

A. Weakly Stable Task Example

Let us consider a simple one-dof example, i.e., a mass
acted upon by a control force and restricted to move
on the half-line . The dynamical equations are
given by

(28)

Let us consider the control input

(29)

where

(30)

(31)
for
for

(32)

and the system is supposed to be initialized with 0,
i.e., . Hence denotes free-motion phases and
constrained-motion phases. The free-motion desired trajectory

is defined as follows and is depicted in Fig. 1:

twice-differentiable

for

for

on

(33)

The signal is therefore defined such that when a con-
strained phase is desired, the free-motion phase ends with an
exponentially decreasing . It is assumed that the time

is such that no collision has occurred for ,
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Fig. 1. Desired trajectory and switching times (weak stability).

Fig. 2. Desired trajectory and switching times (strong stability).

. The switching time has to be chosen . The
rationale behind the form of on will appear
clearly from the calculation of [see (38)] during the
free-motion phases , which has to be negative from the
conditions in Lemma 1. Let us notice that given this choice
of the approach period in , it is necessary to apply in
(31) to obtain finite-time stabilization on 0. Furthermore,
the transition phase is chosen to end at a finite time
such that the sequence of rebounds of the mass has stopped
and 0. Notice that the value of does not
need to be known explicitly for the stability analysis. Only its
existence is needed, since both controllers onand are
the same. Finally, it is noteworthy that is not used in the
control input on and . It is therefore to be considered
as a virtual signal on these intervals, used only for stability
purposes. This means in particular that one does not need to
calculate explicitly on . Only its existence as
a twice-differentiable signal is needed. This remark is also true
for the signal and the switching times used in the next
section; see Fig. 2. Further insight on the choice of is
given in Remark 7.

We shall also consider the positive definite function

(34)

with and . Hence the closed-loop
equation on , 0 is given by

(35)

which represents a measure differential equation with fixed
point 0, and impulsive disturbances

, i.e., (35) can be rewritten as

(36)

As we discussed in Section III, if 0, then it makes no
sense to speak of Lyapunov stability for (35) or (36) because
the fixed point (if any) belongs to , i.e., here
0. When 0, this may be done following the tools
developed in [1].

Notice that due to the switching function in (32), the
transition phase dynamics are

(37)

together with the restitution rule in (8). Hence the sequence
of impact times is guaranteed to exist with a finite
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accumulation point (exactly the dynamics of the bouncing
ball; see, e.g., [35]). Let us analyze the variations ofin (34).

1) On [see (35)]: for suitable choice of
, . Moreover, on

one obtains

(38)

for all and as in (33).
2) On : , since (see Fig. 1).
3) On [see (37)]:

, and is uniformly
bounded on , .

Remark 5: The usefulness of the exponentially decaying
in (33) on the interval clearly appears in (38).

This approach phase guarantees that the MDE in (36) satisfies
the requirements of Lemma 1. This can be useful to define
grazing trajectories satisfying
0. Eventual shocks with the surface 0 do not destroy the
Lyapunov stability of the scheme for such .

Thus the following is true.
Claim 1: The system in (28) in closed loop with the con-

troller in (29)–(32) and the switching times and as in
Fig. 1, is weakly stable.

Notice that a stronger result is obtained, i.e.: 0
for , 1. This is due to the fact that we assume that
the constraint position is known ( ) 0. When the second
free-motion phase starts, the initial conditions satisfy

0. Hence, there is a perfect subsequent
tracking. This is obviously an ideal situation which will not
occur in practice. The assumption that the constraints
0 are known is nevertheless a current assumption in basic
theoretical studies [5], [7] of force/position control. As noted
in Remark 3, the input could be defined such that on,

, , before an eventual stabilization
on the constraint or before another free-motion phase. In the
latter case one has to define such that , but

may be strictly positive since the system keeps bouncing
on the surface during .

Remark 6: Assume that for all 0, with
0 a constant signal. Strictly speaking, there is no free-motion
phase since the fixed point of the free-motion closed-loop
equation does not belong to Int . Hence
this task (PD control and a constraint) reduces to

, where and if the transition
phase is stable. is the constrained phase. First note that
since the unconstrained system is globally asymptotically
stable with the Lyapunov function in (34), the sequence
exists, because each time the system verifies 0 it tends
to reach the constraint. After each rebound this is true. From
the fact that the dynamics are similar to those of a bouncing
ball with dissipation during the flight times, one supposes that

so that one can choose with . Then
the positive definite function obtained by taking 0

in (34) satisfies the requirements of Lemma 1. One therefore
sees that the conditions of Lemma 1 do not necessarily require
that a switching (or discontinuous) controller be applied. This
depends on the task.

B. Strongly Stable Task

In this section, we examine how the transition phase con-
troller and the desired trajectory influence the stability of
the discrete mapping during the transition phase. From
(38) it follows that if 0 then condition i) of Lemma 2
is satisfied. Condition ii) can be calculated as follows:

(39)

If 0 on , then we get

(40)

One has to find out such that the sequence exists
with finite accumulation point and such that the right-hand
side in (40) is negative. Let us consider11

(41)

Notice first that introducing (41) into (28), we obtain the
transition phase closed-loop equation in (20)

(42)

Similarly, as in (37) one sees from (42) that the fixed point of
the closed-loop equation on belongs to .
Hence

(43)

It follows that as , hence there exists
a shock instant such that is discontinuous at . Then
after ,

so that another
shock must occur at . We deduce that in (41)

11It has been experimentally shown in [20] that velocity feedback improves
the system’s behavior during the transition phase. Hence the interest of
consideringUt in (41) instead ofUt in (31).
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guarantees that the system collides the constraint after any
rebound. Following the terminology in [28], the closed-loop
system is a (nonautonomous)flow with collisions, i.e., the
concatenation of a flow (dynamics during flight-times) and a
diffeomorphism [restitution law at collisions; see (4)], which
are both dissipative. The dissipativity of the diffeomorphism
can guarantee some finite-time convergence properties due to
the impulsive behavior at collisions. It is noteworthy that the
Poincaré map associated with (42) and the section 0
cannot be calculated explicitly. Indeed, this would require the
calculation of the impact times , which are given by
0, i.e.,

(44)

Equation (44) is an implicit equation for the flight-time

. In the case of a bouncing ball, the
dissipation is generally assumed to be zero ( 0), and the
flight-times are easily calculable as
(that can be obtained from (44) by taking the limit as
and eliminating the solution 0), which allows us to
obtain the sequences and explicitly. Now let
us conjecture the continuity of the solutions of (8) and (42)
with respect to the parameters, in particular . Then
the sequence must have a finite accumulation point for
all .12 Moreover, the impact of the Poincaré map

fixed point stability is provable as
shown next, although is not calculable explicitly.

Indeed, one gets from (40) and (41)

(45)

since 0 on and 0, 0, 0.
Hence condition ii) in Lemma 2 is verified if as in
(41). Now since 0, it follows from (38) that i) in Lemma
2 is verified also. Moreover, notice that so
that 0. We conclude that the Poincaré map
associated with the system in (28) in closed-loop form with
(41) has a Lyapunov stable fixed point 0 with Lyapunov

12This is the classical bouncing ball case with dissipation during flight-
times. We conjecture in fact thatt1 is a continuous function of�+ c. Since
t1(0) < +1, thent1(�+c) must be bounded for�+c > 0 also. Although
there is no rigorous proof of this to date, it would be quite surprising that the
addition of any small amount of dissipativity during flight times destroys the
finite time convergence property. Anyway, we can always guarantee the finite
time stabilization by switching toUt in (31) after a timetk

0
+ �. But then

strong stability is lost.

function . We have thus transformed the continuous-time
Lyapunov function (for free-motion phases) in (34) into a
reduced-order discrete-time Lyapunov function (for impact or
transition phases) . However, it remains to determine how
to choose to get 0 on . A suitable signal and
switching times are depicted in Fig. 2. Let us recall that on
and , only the existence of as a twice differentiable
signal is needed.

The main discrepancy between and the switching
times in Figs. 1 and 2 is that in the second case, the approach
phase is entirely included into . The controller is therefore
switched on earlier. In the first case, the approach phase was
partially included in , which implies a particular form of

to comply with Lemma 1 requirements.
We thus have proved the following.
Claim 2: The system in (28) in closed-loop form with the

controller in (29), (30), (32), (41), the switching times, and
as in Fig. 2, is strongly stable.

Remark 7—About the Choice of the Desired Trajectory :
It follows from the conditions of Lemma 1 that one must
have 0 on (constrained phases), and from
Lemma 2 this must hold also on .13 On one hand, it
is needed to satisfy . If 0, then

0.
Now for all 0, for all 0, there exists
such that for all , , and for all ,
one has . In other words the system may remain
long enough in the free-motion phase so that the required
inequality in Lemma 1 may never be satisfied. On the other
hand, application of Lyapunov techniques to study the stability
of the Poincar´e map fixed point requires 0 [39].
This result may appear as a consequence of the choice of
the positive definite function in (34). Notice, nevertheless,
that to guarantee negative definiteness ofon , this
choice is the only possible one. Moreover, the fact that the
desired trajectory is consistent with the constraints is a logical
feature.

Finally, we could have defined that smoothly con-
verges to zero in finite time, with 0 for all 0,
applying as long as 0 (for instance as in Fig. 2,
but choosing such that 0). From a practical point
of view, this may not be a good choice since it means that
the robot has to slow down and attain the constraint with a
zero velocity on 1. Such a strategy is quite time-
consuming. For the sake of the generality of the analysis, we
consider in this paper less smooth strategies which involve
shocks between the robot’s tip (a simple mass for the moment)
and the obstacle. Note that if the constraint position is not well
known, then impacts are likely to occur. It is therefore much
more interesting to consider collisions in a first theoretical
framework. Moreover, impacts may be desired in certain
robotic tasks. Our goal in this study is therefore not to design
a controller such that no collisions occur in the system. If this
can be done, the stability framework can still be used. It is

13But notice that the conditions of Lemma 1 do not imply thatqd(t) = 0

on Ik.
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clear that a necessary and sufficient condition for no impact
to occur is that 0 [see (11)].

C. Dynamic State Feedback

It is interesting to notice that the proposed stability concept
allows for dynamic state feedback controllers to be considered.
Let us consider the control input

(46)

where is depicted in Figs. 1 or 2, and

(47)

on
on
on

(48)

with such that for some 0, ,
and such that is smooth enough

(49)

(50)
on
on
on

(51)

is the force exerted by the constraint on the mass, and

if
otherwise
if
otherwise
if
otherwise.

(52)

Let us consider the positive-definite function

(53)

with , , , 0 is the solution
of , 0, where is the state-
space representation of , is a Hurwitz
matrix for a suitable choice of , , 0. It can be shown
that the conditions of Lemma 1b) are satisfied with and

, , and . Depending on the
chosen and switching times as depicted in Figs. 1 and 2,
and a suitable , the closed-loop scheme may be weakly
or strongly stable; see [64].

Remark 8: The controllers in (29)–(32), Fig. 1, and (29),
(30), (32), (41), and Fig. 2 are discontinuous (measurable)
in and Lipschitz continuous in the state variables. They
verify Carath́eodory-like conditions. Hence the existence of
the closed-loop solution is guaranteed for all 0 from [9,
Th. 2] with the modifications we discussed in Section II.14 The
dynamic feedback in (46) yields a closed loop that does not
exactly fit within that framework. However, since it involves
only integrators, and thus additional continuous signals, the
extension should be possible.

V. -DOF RIGID MANIPULATORS

In this section, we discuss the extension of the one-dof
case to -dof manipulators. In particular we highlight the
consequences of the generalized restitution rule defined in
Section II-A-2, through the generalized velocity transformation
in (11). It is shown that although weak stability can in general
be obtained, strong stability is more difficult to achieve when
the controller is designed from generalized coordinates whose
derivative does not correspond to the transformed velocity in
(11).

A. Integrable Transformed Velocities

Consider the rigid -dof manipulator dynamics in (1),
the generalized velocities transformation in (11), and in (2)
orthogonal constraints 0, 0. Then one can
write the dynamical equation as

(54)

Equation (13) is true for , and

The restitution rules are defined in (14),

...
...

It clearly appears from (54) and (13) why the orthogonality
of the constraints allows us to treat the-dof case as one-
dof cases. Between shocks there is a coupling between the
equations in (54) through the Coriolis and gravity terms, but
it can be compensated forvia suitable feedback.

Let us apply a linearizing and decoupling control input
such that

(55)

14Notice, nevertheless, thate 2 (0; 1] in [9, Th. 2], i.e., plastic shocks are
not treated.
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Hence we obtain

...

(56)

Let us assume that the system under consideration is written
in generalized coordinates as in Remark 4, i.e., the unilateral
constraints are simply 0, 0, and the generalized
velocity transformation in (11) is defined using a basis
without normalization of in (10). Indeed the definition
of normalized vectors in (10) is convenient for instance
to write down the kinetic energy loss at impacts in a quite
simple form; see Section II. But it is not necessarily suitable
for control purposes, i.e., for to be a Jacobian. Most
importantly, let us do the assumption that there exist functions

such that . Notice that
so that , , 1, 2.
More generally, one would obtain . Now let
us define

(57)

for 1, 2, where all the terms are defined similarly as in
(47) through (52), and

(58)

for , where , are suitably chosen such that
the polynomial is Hurwitz. Let us choose

(59)

where . The function
in (59) can be written as

, where , ,
. The ’s are naturally defined from the Lyapunov

equations associated to each sub-closed-loop equation obtained
by introducing (57) and (58) into (56). Suppose that the
gains and in (58) are suitably chosen so that
is always decreasing, . It is then not difficult
to show that the result of Lemma 1b) applies, with

, , and ,
and . Indeed the last term in
(59) evolves independently of the rest of, and its derivative
is given by , 0, for all 0. Also the terms

and evolve independently, one from
each other. The controller guarantees that the system stabilizes
in finite time on each surface , .

Strong stability is assured if the constraint is of codimension
one. For the codimension-two case, let us note that (56)
in closed-loop with (57), (58) satisfies the requirements of
Lemma 2, provided both surfaces and are attained
simultaneously during . In other words, the system strikes

the domain exactly at the singularity of . This may be
guaranteed by taking the same initial conditions and switching
times in both equations governing and evolution,
and with restitution coefficients . However, the
surfaces and may in general be attained at different
times, and in any order. If one guarantees thatand
decrease between any impacts, or if both functions satisfy

, then the system is strongly stable. This is
difficult to obtain, however, because when the surface
is attained, 0 and vice-versa, which hampers to get
an inequality like in (45). A simpler solution is to impose
via a suitable choice of the desired trajectory that which
the system first stabilizes on , and then on , which
corresponds to two simple impacts. Since the dynamics are
perfectly decoupled, such a choice is possible. However, the
general problem of assuring strong stability with possible
multiple impacts remains open, even in the case of integrable
transformed velocities and orthogonal constraints.

B. Nonintegrable Transformed Velocities

What if is not a Jacobian, which might be indeed
the case in general? Then there exists no such that

in (11). It is still possible to have
track some desired signal , which means that the
components of along , (or in
other words the components of along and calculated
with the kinetic metric) track . But the rest of the state
vector (position) evolution is not clearly related to

since . On the other
hand it is difficult to design the overall scheme following the
mixed discrete continuous-time stability analysis of Lemma
2, using for instance the coordinates introduced in [5] (see
Remark 4). Indeed, during the rebounds phase, the velocity
components will in general possess jumps at. Suppose
that . Following [5] we get in the -coordinates the
dynamical equations15

(60)

where the various terms come from the nonsingular transfor-
mation between and and are defined in [5]. In particular,

, for , , is the inertia
matrix in -coordinates, and

...
...

Thus one has , , and
. The terms and

contain the centrifugal and centripetal terms, and
are such that

is full rank. The vector in (60) generically represents the
interaction force, i.e., , and

15For the sake of briefness of the paper and since the McClamroch–Wang
transformation is now very well known, we do not provide details on it.
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is the Lagrange multiplier associated with 0. In a
permanently constrained case 0 and the second equation
in (60) represents the motion along the constraint, see [5].
During a collision with the constraint, application of Newton’s
generalized restitution rule yields since

(in the case of a codimension-one
constraint). From (60) it therefore follows that

(61)

whereas

(62)

Thus the jumps in can be calculated from the jumps of
using the algebraic dynamics at impacts, as

(63)

The percussion is then obtained from (62). The only case when
0 is when the inertia matrix in -coordinates is

block diagonal, i.e., 0. If such is the case, then the al-
gebraic impact equation in (62) yields
and 0. Notice that the decoupling between

and is independent of the orthogonality condition (4)
between the constraints, which concerns here when

. Indeed with 0, the orthogonality
condition implies 0, , , i.e.,
is diagonal.

We now illustrate the difficulty related to stabilization (in
the sense of Lemmas 1 and 2) of a complete task for the
system in (60). In what follows . The
desired trajectories are and can be chosen
for instance as in Figs. 1 or 2. Let us choose the controllers
as follows.

• On : The control law is chosen as

(64)

with and . The first closed-loop
equation is simply and

(65)

Hence the closed-loop equation is .
• On : The open-loop system is obtained from (60)

by taking 0. The controller is chosen as

(66)

(67)

where . Hence the closed-loop is
given by 0, 0 and .

The stability on and can be shown with the
Lyapunov function . and

are chosen similarly as in (34). Clearly on and for a

suitable choice of the gains , , . On
, if 0, then 0 and .

Taking , , , ,
and choosing feedback gains , such that
always decreases, the conditions required in b) of Lemma 1
are fulfilled.

• On : It remains now to design the controller on
such that the condition is satisfied. Let
us choose as in (64), but with ,
0, and . The -dynamics
are therefore those of the vertical bouncing ball which
guarantees that tends to zero in a finite time .
Indeed it can be calculated that the first shock occurs at

.
Then one obtains and

. From (63) one sees that the
jumps in also converge exponentially toward zero in
finite time (provided of course 1). They are given by

.

The function can be analyzed exactly as we did for
in (34). But contrarily to the integrable velocity case,

is discontinuous at , although on
for all 0. Indeed one obtains

(68)

which has no reason to be negative [see (63)]. Note that

. Recall that from
weak stability conditions, one must guarantee that

. Due to the jumps in during the rebounds phase,
it is not obvious whether there exists a time such
that this condition is satisfied. Indeed as we noted in Remark
7, if the system remains long enough in , then
may be arbitrarily small. But can be strictly positive
because of some positive jumps. Notice that

for
some function 0. We therefore have at our disposal three
parameters: . The first one can be used to decrease
the flight-times , whereas the other two control the variation
of during flight-times. Assume that there exists

and such that , , and
implies for all 0. This

insures that despite of possible positive jumps,decreases
enough between the collisions so that .
Then existence of such that is guaranteed,
and its value does not depend on the value of . This
has important practical consequences since it means that the
length of the different phases can be chosen independently,
one from each other. Such conditions are evidently sufficient
only to prove stability of the task. For the sake of briefness of
the paper and since our goal is mainly to show which problems
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are posed by the stabilization of a complete task, we do not
investigate the calculations more deeply.

In conclusion, unless is a Jacobian and the closed-loop
decoupled system (56) is used, there is no proper decoupling
at the collision instants between “normal” and “tangential”
components. Then the stability of a complete task is more
difficult to obtain. But the conditions for weak stability in
Lemma 1 are flexible enough to cope with such nondecoupled
cases. This constitutes the main discrepancy between robotic
tasks involving several regimes of motion and simple tasks
and is a consequence of rigid body generalized impacts.

VI. CONCLUSIONS

In this paper, we have studied the control of a class of
mechanical systems subject to unilateral constraints on the
position. We have reviewed the basic facts on the dynamics
of such systems which are complexhybrid dynamical systems
merging ordinary and measure differential equations, algebraic
constraints, and possibly some high-level control strategy.
In particular, attention has been focused on the definition
and existence of the solutions of the closed-loop system
as functions of local bounded variation in time and on the
definition of the restitution rules. We have proposed a stability
analysis framework that mixes and adapts some basic stability
analysis for measure differential equations, hybrid dynamical
systems and discrete-time Poincaré impact maps. This allowed
us to analyze various discontinuous control strategies and is
expected to provide a convenient stability analysis framework
for subsequent extension of the results toward other controllers
(such as adaptive controllers) and for robustness analysis (such
as bad-timing effects for the switching times between different
controllers, or bad knowledge of the constraint position).
First we have focused on a one-dof example, and we have
introduced various controllers to illustrate the different types
of stability criteria we have proposed. Then we have discussed
the -dof case, and we have highlighted some difficulties
related to the possible nondecoupling between the “normal”
and the “tangential” parts of the velocities during the rebounds.
We hope that the developed tools provide a first satisfactory
theoretical answer to Professor Paul’s statement [40] that “the
contact problem is unsolved for rigid manipulator, rigid sensor,
rigid environment problems,” that is naturally embedded into
the class of systems with unilateral constraints. Finally, this
work is to the authors’ knowledge the first extension of
force/position control of rigid manipulators subject to holo-
nomic constraints 0 (McClamroch–Wang [5] and
Yoshikawa [7]) to the case of unilateral constraints 0
that takes into account all the problems related to mechanics,
mathematics, and closed-loop stability.

APPENDIX

PROOF OF LEMMA 1

Case a: Assume that 0. Since
for all 0, and V is nonincreasing on

, then , and 0 for
all . Since , we can write for a certain IN

(assuming the initial time is in ):

(69)

Consequently, since we obtain

(70)

Now we can always find(or ) such that for any
and for any 0 the inequality

is not satisfied. Hence by contradiction we deduce that
0, and since it follows that

0. Note that if , the reasoning fails
because for the terms may be positive.

Case b: The case b) can be similarly proved by noting that
0 for all implies that necessarily

0 and/or 0 for some and .
Then, using that and do not increase on and

, respectively, and that these time intervals have infinite
Lebesgue measure, one deduces that if eitheror is
strictly positive (i.e., 0), then a contradiction appears and
necessarily 0.

Case c: From the assumptions there exists a time
such that for all , is a constant vector . Let us

define the function . Then
for any 0 the sets are
equal to the sets .
Hence they are bounded and closed, thus compact. Now

, 0,
for , and . The conclusion follows
similarly as in a). The conditions apply when for instance

, 0, 0.
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