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Abstract. This paperis devoted to the feedback control of a one degree-of-freedom (dof) juggling robot, considered

as a subclass of mechanical systems subject to a unilateral constraint. The proposed approach takes into account the
whole dynamics of the system, and focuses on the design of a force input. It consists of a family of hybrid feedback
control laws, that allow to stabilize the object around some desired (periodic or not) trajectory. The closed-loop
behavior in presence of various disturbances is studied. Despite good robustness properties, the importance of
good knowledge of the system parameters, like the restitution coefficient, is highlighted. Besides its theoretical
interest concerning the control of a class of mechanical systems subject to unilateral constraints, this study has
potential applications in non-prehensile manipulation, extending pushing robotic tasks to striking-and-pushing
tasks.

Keywords: nonsmooth mechanical systems, juggling, hybrid control, robustness, viability, non-prehensile ma-
nipulation

1. Introduction

The feedback control of mechanical systems subject to unilateral constraints has received
some attention. However, it remains largely unexplored. Recent research concerning
analysis and control of such nonsmooth systems has focused on stabilization of manipulators
[4], [14], wellposedness and system theoretical issues [33], [34], bipedal locomotion [10],
[16], control of juggling and catching robots [1], [5], [6], [7], [22], [23], [24], [25], [26], [27],

[28], [29], [35], [36], [37], [38], stabilization of polyhedral objects in some manipulation
tasks [43], non-prehensile manipulation [11], [15], [19], [21]. One common feature of
these studies is that the open-loop models used are basically rigid body dynamics with a set
of unilateral constraints on the generalized position. Such systems may be represented as
follows:

M@+ C(, g+ 9(q) = Tu+ Vg f(Q, ) (1)
f(g,t)>0 2

A>0, ATf@Qt)=0 3)
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where the classical dynamics of Lagrangian systemsisin (1), the set of unilateral constraints
is in (2) with (g, t) € R’, and the so-called complementarity conditions [34] are in (3)
wherel € R’ is the Lagrange multiplier vector. We assume frictionless constraints,
although this assumption is worthless concerning the one dof juggler (impacts are always
central).q € © £ {geR": f(q,t) >0}, M(q) € R™", C(q, 9)g € R", g(q) € R" and

u € RMare the generalized coordinate vector, the inertia matrix, the Coriolis and centrifugal
terms, the gravity forces and torques, and the control input respectivelyTwathiR"=™,

In order to render the dynamical system complete, one must add to (1)—(3) a so-called
restitution law that relates post and preimpact velocities. Such physical rules are necessary
to render the domai® invariant with respect to the system'’s dynamics. The most widely
used restitution rule is known as Newton’s conjecture [2]. It is based on the knowledge of
restitution coefficients, and is represented in its generalized form as follows:

A Vg fi (@0, t) = —& at) " Vg i (At), t) — L+ e)V fi@t), t)  (4)

whereVy fi € R", 1 <i < ¢, andt, generically denotes the impact times (the superindices

+ and— stand respectively for the instants just after and just before the collisions), with
q(t )T Vg fi (a(tk), tk) < 0. In case of a codimension 1 constraift= 1), e € [0, 1]

from energetical arguments. The system in (1)—(4) is complete, in the sense that given
preimpact velocitieg|(t, ), one is able to calculate the postimpact velocities and continue
the integration after the collision has occurred. Let us notice that the system in (1)—
(4) is a complex hybrid dynamical system [3]. This class of dynamical systems can be
divided further into subclasses. In particular the case when the free-motion dynamics are
controllable has recently received attention [4], [33]. However this class does not cover
some impacting robotic systems like bipedal and juggling robots. Indeed let us write down
the dynamical equations of a one dof juggler, i.e., a system composed of an object (a ball)
subject to gravity, which rebounds on a controlled mass (a one dof robot) as shown in
figure 1:

miys = —mig (5)
My, = —Myg+u (6)
f(yny2) = yi—y2 > 0 (7)

it — ot = —e[ya(ty) — ya(t)] (8)

The dynamics in (5)—(8) may be seen as a simple convex conical system [32] in the sense
that if 1 and¢, are continuous-time trajectories of (5)—(8) thep, + (1 — B)¢o, VB €

[0, 1], is also a continuous-time trajectory of the system. Most importantly, notice that
the ball dynamics in (5) are not controlled since only gravity acts on the ball. Hence, the
only way to influence the trajectory,, y1) is through impacts, i.e., at timégsuch that

yi(t) — Yo(tx) = 0. This is a strong motivation for considering the feedback control of

a one dof juggler as in (5)—(8) since it represents a simplified model of manipulation of
objects through “controlled” collisions with a robotic device [43].



CONTROL OF A ONE DEGREE-OF-FREEDOM JUGGLING ROBOT 69

)
Yt ?
mig

'
! 1

! |
/ . |
'

! i

'

[

|

? U
Yo - —-—Jr——

mag

i
'
'
'

Figure 1. One dof juggler.

Remark 1. More generally, juggling robots may also be considered as a particular case of
a class of nonlinear systems:

7= fi(z, t, M) 9)

22 = fz(Zz, u, )\) (10)

h(th, G2, t) = 0, ATh(qy, G2, t) =0, 1 >0 (11)
wherez, 2 (a7, qiT)T e R¥M i =1, 2 (n; andn, may have the same or different values),

u e R™ A e R, and a restitution law must be added to complete the model. Our goal is to
stabilizez; (t) around a desired trajectory. The controllability and stabilizability properties

of such systems, which depend on the vector fields in (9), (10) and ion(11), have

not yet been fully understood. However, as we shall see later, some basic properties are
quite useful. Among thosei) the explicit knowledge of the trajectories of (9) between
impacts,ii) the controllability of (10), andi) the controllability of (9) through collisions.
Propertyiii ) will be made clear in remark 5. Interestingly enough, let us note that those
assumptions are quite similar to the assumptions made in [17], although the class of non-
linear systems they considered and the control objectives are quite different (they deal
with asymptotic stabilization to the origin of a class of smooth cascaded systems modeling
nonholonomic mechanisms). The interest for considering systems as in (9)—(11) is that
their study finds potential applications in all types of juggling robots, catching tasks, non-
prehensile manipulation (pushing-and-striking tasks), and stabilization of manipulators on
passive dynamical environments. It is clear that in practice, disturbances and parameter
uncertainties will be an obstacle to the use of assumptiorHence, robustness studies

will be very important for such systems. Finally, it is worth noting the similarities between
systems as in (9)—(11) and walking or hopping machines. Indeed in both cases there is a
part of the system that is not controllable during flight times (i.e., the center of mass motion
for walking robots). We therefore conjecture that the dynamics in (9)—(11) may represent
a very large class of systems subject to unilateral constraints. The role of the vector fields
f1, fo and ofh in the stabilizability properties of such systems remains however an open
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field, as well as that of the restitution rtilgecall that a restitution law must be added to
complete the model). The study of simple juggling robots is expected to be a nice manner
to investigate their basic properties.

2. Review of Previous Work

The structure of mechanical systems as in (5)—(8) naturally leads to the study of their
dynamics and the control design atimpact times only through their so-called impact Boincar”
map P;, (the Poincae’section is chosen & = {(q,q,t) € ® x R" xR, : f(q,t) =0,

4"V, f(g,t) > 0}). One way to obtain the closed-loop impact Poiecaidp is to integrate

(5) and (6) between impacts to get

g.2

Viltkt) = Vit + Vot Ak — EAK (12)
Viltc) = Ya(td) — gAk (13)
ter1 pt
Yoltit) = Yo(tk) + Vo (b)) Ak + / / u(s)dsdt (14)
tx 1%
tera
Blton) = Vo) + / u(t) dt (15)
t
tke1 = W+ Ax (16)

and then to seek a controllersuch thaty; (tx11) = Y2(tks1) = Y*, yl(t;jrl) = y; and
yg(tk*H) = ¥ (using also the restitution law). However, itis not easy in general to find such
au. This philosophy has been employed in [5], [6], [7], [35], [36] to control juggling robots.
Basically, these authors used the assumptionfggai 0, i.e., the robot's velocity is not
affected by the shocks. Then the open-loop system is reduced to a 2-dimensional system
(the ball dynamics in (5)), together with a time-varying unilateral constsgify > y»(t).

It is then possible to obtain an explicit form &. Buehler,et al.[5], [6], [7] formulate

the problem as designing a feedback controlPgr where the inputs are first considered

as being a sequence of flight-timag 2 tx+1 — t and robot velocitieg,(t, ). Then, they
propose a heuristic strategy which they call the mirror law (because it aims at making
andy, more or less symmetrical with respect to the shock positjoa y, = 0). This work

was extended in [22], [23], [24], [25], [26], [27] to more complex jugglers. Experimental
results have also been presented by these authors. The control strategies are based on
continuous feedback of the object state, measured eitharameras [26], [27] ovia a
digitizing table [6], [7]. Vincent [35], [36] directly uses the 2-dimensional nigplerived

in [13] and nicely combines results on the bouncing ball dynamics [9] to obtain a hybrid
controller. Firsty,(t) is set to create chaotic motion of the ball. Then the robot’s motion

is switched to stabilizéy,, y;) around a periodic trajectory when its basin of attraction has
been attained. The control strategy uses the measurements of flight times obtaiaed
microphone attached to the robot. However, the main drawbacks of this strategy are that the
transient period length is not guaranteed, moreover its extension to more complex systems
like two dof jugglers is not trivial. Finally, learning techniques have been applied to various
juggling systems in [1], [28], [29].
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In this work we consider the full dynamics (5)—(8). we allow for discontinuities in
¥». Indeed although the assumptlﬁh 0 may be satisfied in some practical cases (like
juggling with a ping-pong ball), this is not a universal property, and it may not be satisfied
in the general case of pushing-and-striking manipulation tasks. Moreover, its relaxation
makes it difficult to employ the above cited strategies, siBgcdas no longer dimension
2, but 4. Most importantly, let us notice that the design of the force input (6) has
never been presented in the previous works on the control of juggling robots. We are
therefore interested in designing directly théhat is to be implemented on the robot. This
note is organized as follows: In section 3 we present the controller and the closed-loop
analysis for the one dof juggler. Section 4 is devoted to examine the closed-loop behavior
when various types of disturbances (bad knowledge of the restitution coeffiibatl
velocity measurements) are present. Conclusions are given in section 5. Several numerical
simulations illustrate the theoretical investigations.

3. Main Results

Before developing the proposed controllen (6), let us define the objectives of the one dof
juggling task: given the dynamics in (5)—(8), make the ball attain a periodic motion from

any initial conditionx(0), wherex™ = (y1, y», Y1, ¥»), and for anym =L ande € [0, 1].

In other words, since the trajectofyi(t), yi(t)) can be controlled only through impacts
with the robot at timesy, the goal is to design in (6) such that the collisions occur at
Vi(tk) = Yo(tk) = VYa yl(tk*) = yq > 0, after a possible transient period. Notice that this
is equivalent to imposg; (k) = yq andtc 1 = tx + Aq, with Aq = gyd, oryi(t) = vq

and the trajectory apex(k) = s = Vg + ;/_g Nevertheless, as we shall see later, one is
also free to choose varying signals(k) and yq(k) to be tracked. Let us note that this
definition is slightly different from some other works: for instance in [35], [36], only the
apex is regulated while the impact position is not considered. In the next subsectson we
priori introduce an inputi. We shall see further (see remark 5) that it can be deduced from
a more general control design methodology.

3.1. The Force Input Controlleru

CLAaM 1 Consider the dynamical system in (5)—(8). Suppose t{@tand u are such that
it exists an impact or a contact timg tLet us define the following control input:

u = myg+ mpv ann
v = At —1tW) + By (18)
k > 0, with
6 . . 12
Ac = 7 (3(k+ 1) + ¥a(k)) — & (Yik+1 - yk) (19)

2 6
By & (Vs(k+1) + 2y2(k)) + @ (Y'(k+1 —yk) (20)
k
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Y1)+ /Y20) — 29 (y*(k + 1) — y(k))
dc = (22)
g
- 1+m
kD) = Tk D + T Bl - 2grk+ D - vk (22)

wherey; (k) £ V1 (t5), Va(k) 2 Vo (t), y(K) 2 yi(te) = ya(t), and ¥ (k+1) andy; (k+1)
are chosen such that

ykrn <ha ] YOT B 1 900 > 0 (23)
y(k) if yi(k) <0
and
Yiltk +d) —y5(k+1) < O (24)
Then, for all k> 0:
1oyit) — y2(t) > 0,V t € (t, tk + dk)
2.t =t dk
3. yk+1 =y*kk+1
4. nk+1D =yikk+1

Proof: The proof can be found in [40], [39] and is given in appendix A. ]

Remark 2. Controllers as in (52), (53) are basically open-loop. But one notices from
(17)—(24) that the controller is computed wittt,”). Consequently is a state feedback for

the system considered as a discrete-time operator at the shockirviese generally, the
presented methodology for stabilization of the system in (9)—(11) at some desired trajectory
at impact times may be based on a continuous-time feedbagk afid a discrete-time
feedback of;. This is another common point with the assumptions in [17] (see remark 1).

Remark 3. It clearly appears from (52), (53) that one can modify the mé#rito obtain
different controllers in (18) by merely modifyingin (17) (and provided that the obtained
system in (6) is controllable with as the new input). For instance let us choose m,g—

MowEY2 + Mpv With wy = @k Then, as shown in [39], [41], the equati6iys (t), ya(t)) =
y1() — y2(t) = f(A) can be written as:

A
f(A) = yK + KA — gAZ - (y(k) - 2—kA) coswyA)
Wk
<yz(k) +—+ BA) sin(wxA) (25)
wk Za)k 2
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where A 2t — t« > 0. In order to prove thaf (A) > 0, VA € (0, dk), one must

first demonstrate that (A) has no roots or0, d¢) which, from (25), is not easy. Since
point 1 in claim 1 is crucial for the overall scheme to work, we choose to disregard those
controllers for which we cannot prove that it is satisfied. Such conditions of non-existence
of “accidental” shocks are general in the analysis of vibro-impact systems. In particular for
results concerning existence of periodic trajectories see [12]. They may bedaldiy
conditions They are fundamental conditions in the study of vibro-impact systems which
have sometimes been forgotten [20], [30].

Remark 4. Let us define the vectot, (k)T = (y(K), y1(K), Y2(K), ty). Then, the dynamics
of the impact Poincarmap

P, Y > X
%00 > X (k+1D) (26)
with ¥ = {(x,t) e R* xR, : y1 — y» = 0, V1 — ¥» > 0}, are guaranteed in closed-loop
viathe chosen input forcein (17)—(24). As we pointed out in the introduction, a possible
path for the control design is to use equations (12)—(16). For instance, introducing (17),
(18) into (14), (15) one obtains:

. B A

Yok +1) = ya(k) + VoK) Ay + %AE + FkAE 27)
o . A

Vote)) = VoK) + BeAk + 7KAE (28)

Considering (12), (13), (27), (28), (16), and (59), (60), we get a 4-dimensional mapping

y() + Vi) Ak — A

2
e (9200 — 9AK) + HE (3200 + AcBr+ 5 Ax)

%o (k + 1) = (29)
2
M (10 — 9K + 5 (5200 + AcBe+ A
e + Ax

with Ay, By, andAy as control parameters, and an algebraic equation

Ax Bk + . .
Ak [F AR+ kTgAk + (Y2(k) — Y1(k))] =0 (30)
It is noteworthy that although, may be considered an input signal for the application in
(29), in reality Ay is a consequence of the dynamics and of the real iofutBy). In fact,
from (30), Ax can be expressed in terms Af and By and introduced in (29) to get an
explicit system’s Poincarmapping

X (K+ 1) = Py (x:(K), Ak, B (31)
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Notice that an expression fav, cannot always be obtained explicitly. Besides, the resultant
mapping (31) is usually non-linear in its inputs. This is what renders the design of the
control input(Ag, By) for tracking purposes directly from (31) a difficult task. One could
analyze the stabilization of (31) by linearizing it around a desired trajectory. Then, a local
linear feedback can be designed provided the linearization is controllable. Buettdér,

[5], [6], [7] did similarly for their 2-dimensional mapping, but found that such a control
strategy does not provide a satisfactory behavior in practice. We have overcome such
difficulty using the Dead-beat controllers which allow us to directly assign a valng.to

Remark 5 (3-step recursive control desigrijrom the above developments it follows that
considering the impact Poin@amapP;, in (31) for control design purposes is not a good
solution. As we announced in the introduction of section 3, we now describe a recursive
control design method, which will enable us to recover the Dead-beat strategy. Let us define
v(t) = AA + By, A =t —t, with Ax and By constants ofty, tc.1). From (12)—(16) and

(59) we get

Vil = Yat) + i) A — JAZ -
[ Vik+1) = P=tyitey) + tieValt) 2
and
{ Yalticr) = Ya(t) + Ya(td) Ak + Ak%i + Bk%ﬁ (33)
Vot = Vo) + A + Bl

Step 1. We choose\ andy-(t,, ;) as the inputs of the system in (32), such thdty 1) =
y*(k+ 1), it ) = yi(k+ 1). This gives

(32 & Fi(xa(k), x;(k+1), A, Yoty ) = O
A = dg
= (34)
Vot ) = Yo(k+1)

wherex] = (y1, Y1); dk andy;(k + 1) are given in claim 1 (egs. (21) and (22) respec-
tively), and for some functioff;.

Step 2: Introducing the valuesin (34) into (33), we d&i(x(k), dx, y3 (k+1), Ac, By) =0,
for some functionF,, from which we deduc&y and By, which are equal to those in
claim 1 (egs. (19) and (20) respectively).

Step 3: Check viability, i.e., the sign of the functioh(A) 2 yi(t) — ya2(t), on (tx, tki1).
It is noteworthy that the success of the first step relies on the “controllability” (or invert-

ibility) properties of the first subsystem withy andy-(t,,,) as inputs. The second step
mainly hinges on the satisfaction of the viability conditions. In other words one can choose
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another controller structung(t). For instance

n
vt) =) A A’ (35)
i=0
The viability conditions can be studied from the signfafA) as in (57), which is a poly-
nomial inA. Clearly forn > 2 in (35), the sign off (A) is not easy to obtain. This is why

the solutionn = 1 has been chosen. Let us finally notice that it is not proven yet that to
each (polynomial) controller as in (35) there corresponds a Dead-beat controller (possibly
designed after a dynamic pre-feedback in order to get the right miatiix (51)—(53)).
Extending the above procedure to systems as in (9)—(11) is a topic of future research.

3.2. Definition of the Desired Trajectories

The next step is to define the signgifgk + 1) andy; (k + 1) which can be regarded as the
desired trajectory of the ball. We still consider the system at a generic impaditime

COROLLARY 1 Let y*(k + 1) andy; (k + 1) be given as:

Yd if hk > Vg

y'k+1) = . (36)
y(k) +r if hy <y

h ~ | 200 - yko 1) if b < v

whereyy > 0, and r is a real value chosen such that condition (23) is satisfied, i.e.,
y(k) +r1 < hy. Then(xx, Ax) converges towards its desired valog, Aqg) = (Yd, Yd, Yd»

1-e—2em,

e Vs éyd) after at most 2 impacts, i.6Xk+i, Aksi) = (Xg, Ag) Vi > j €{0,1, 2}.

Proof: From claim 1 and (29), itis easy to verify that whenever the control input (17)—(24)
is applied, the system’s impact Poineamapping (26) is given by

y*(k+1)
yik+1)
el = Ly (k+ 1) — %\/yﬁk) —2g9(y*(k+ 1) — y(k)) )
I e+ y1<k>+¢y§<k)—zg<y*<k+1)—y<k>) |
From the iterative substitution of (36) and (37) in (38), the proof follows. ]

Notice that this consitutes mainly a theoretical result, since in practice more than two
shocks will often be necessary before the convergence to the desired value, mainly due to
input saturations. In the next subsection a strategy is proposed to cope with this problem.
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Figure 2. Results of example 1: d&p > yg; b) ho < vg.

Example 1. Let us consider the application of the control strategy (17)—(22), (36) and (37)
to aone dof juggler witle = 0.7, m; = 0.3 kg,m; = 2 kg (which givesn = 0.15),y4 = 0,

Y4 = 4.43 m/s (which is equivalent tgy = 1 m), y(0) = —0.4m, ¥»(0) = —0.2m/s. In

figure 2, one can observe the trajectories followed by the ball and the surface in the upper
graphs and the control input force in the lower ones (where the dashed line indicates the
surface weightm,g = 19.62 N). Two cases are considered: yajO0) = 3.4 m/s which
giveshg = 0.2 m > 0, and b)y;(0) = 2 m/s which giveshg = —0.2 m < 0. This shows

the two possible initial case$iy > yg andhg < yq respectively.

3.3. Control Magnitude Reduction via Desired Motion Modification

The impact trajectories defined in (36) and (37) are designed in such a way that the ball

reaches the desired apgx= yq + z—g just after the first control collision. This may require
continuous-time input forces of big magnitudes during the first flight inteityaty + do)

(see figure 2b). Let us consider the realistic case where the final actuator of the juggling
robot provides forces bounded in magnitude such inat umax. From (18), this implies

v1 < v < vp. One sees from (36) and (37) that the signalé + 1) andy; (k + 1) can

be chosen time-varying in order to cope with the input magnitude. Intuitively, one easily
conceives that the desired apgxcan be attained by imparting several small strikes to the
ball rather than one big hit (this is for instance what one does with a racket to make a tennis
ball rebound higher and higher). In this subsection we present such a strategy.

COROLLARY 2 Let us consider that; < %@J’Z&mg andv, > %j@‘emg, and
assume that:

1. The impact states just after the first shoclkyatre such thaty; (0) > 0 and

—%mm < ¥2(0) < min{My, My, 1}1(0)
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1w m—e e 14m __ vy 2(m—e) 2e 14m i

where M = ( + 1te + M3 1+e> Mz = g 1+e Mz 1+e’ M3 = mln{ Mg, M5}’
_ lte v 3—e+2m-—2em 1+e v 3—2et+4m—em

Mg = 1+m2g + 2(14m) and M = T 1tmyg + 1+m '

2. The desired trajectories are designed, at each impact, &k ¥ 1) = y(k) and
N1(k) if yg < Nu(k)
Vik+D =1 Vs if N < Ya < Na(K) (39)
No(k) if yg > Na(k)

vk > 0, for any positive value ofy, where N(k) = max{ N3(K), Na(k), Miyl(k)],
N (k) = min{Ns(k), Ne(K)}, Na(k) = — (f%mg + q;—m) ya.(k)— 22295 (k), Na(k) =
(B2 — T8) 1100 — 2355 ¥a(k), Ns(k) = — (E522 + 2=8) ya(k) — 2 (),
and No(k) = (852 — 2) 110 — 535592000,

Then, the impact velocity of the ball convergesytowithout saturating the inputi.e.,
vy < v(t) < vy, VI > to.

Proof: The proof can be found in [39], [40] and is not given in this note for the sake of
briefness. ]

Let us explain the underlying philosophy of the strategy presented in corollary 2. Assume
thatv, andv, are as pointed out in the corollary, and that an impact suchytlikf > 0
takes place. Let us define the desired impact positioyi ds+ 1) = y(k). Then, in order
to havey; (k + 1) > 0 without saturating the control inputz (k) must be within

Q(k) = {YZ(k) eR: —%yl(k) =< Y2(k) = min(Mz, Mz, 1)yl(k)}

(M1 andM, are defined in point 1 of corollary 2), and the set of nonnegative values within
which y; (k + 1) must be selected is

Q) 2 {Vik+1) e R: Ny(k) < yi(k+ 1) < Na(k)}

(N1(k) and N2(k) are defined in point 2 of corollary 2). Besides, in order fni(k) to
include y;(k), so thaty; (k 4+ 1) can be chosen greater or smaller than, or even equal to,
y1(kK) (having all these possibilities in the same timg)k) must be within

Qs(k) = {Y2(k) € R : max(Py, Py) yi(k) < y2(k) < min(Ps, Ps, Dy1(k)} € Q1.(k)

whereP; = 4 — 20-¢220 p, — _} (”2 +1 fjezm) Py = —3 (”1 +1 fjezm) and

P, = 22— 21-et20 Moreover, the selection §f (k+1) € 22(k) ensures thajl (k+1) will
be wnfqnn Q3(k+ 1), for anyy»(k) € 21(k). Now, notice that the conditions established in
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d1ket) [l

> 4 -5 o
t [sec] dy2(k) [m/s]
Figure 3. Bounded input force strategy.

point 1 and the design criterion proposed in point 2 of corollary 2 are suciiitate €21(0)
andy;(k + 1) € Q(k), Yk > 0. Moreover, (39) always assigns yp(k + 1) the closest
value toyy > 0 insidef2,(k). Then, the convergence gf(K) to y4 and the non-saturation

of the input are guaranteed simultaneously. This criterion is repeated at each impact until
a collision such thayy € Q.(k) takes place. From this moment, according to (39), the
desired value is selectetk. y;(k + 1) = yy. Notice that the subsef; (k), i = 1,2, 3,

need not be calculated. Just the valudNgfk) or N»(k) in (39) must be computed at each
impact.

Example 2. Let us consider the same juggler and the same desired trajectory as in the
previous example, but with initial impact conditions giveny$) = 0, y1(0) = 1 m/s,
andy,(0) = —0.2 m/s. Assume, this time, that the force is bounded suchjthat 50 N.

In the left-hand side of figure 3, one can see the result of the application of the strategy
in corollary 2 (the dashed line indicates the force limjzx = 50 N). Observe that the

ball approaches progressively the desired motion, and that the force remains always within
its limits. In the right-hand side of figure 3, one can see the evolution of the subspaces
Q1(k) 2 Q1(k) x Q22(k) (bounded by full lines) an@a(k) = Q23(k) x 22(k) (bounded

by full and dashed lines). The squares represent the valugglof- 1) chosen at every
collision (according toy,(k)). The dark dot represenyg. The digits stand for the impact
numberk. Notice thaty,(k) € Q3(k), Yk > 1.

Figure 3 shows that the application of the foregoing algorithm not only helps maintaining
the force within certain limits but also keeps the robot trajectory with small amplitudes.
A numerical study showed that, in general, increasing the number of impacts during the
transient reduces the limits within whighevolves. Infigure 4, the maximum and minimum
values ofy, at each flight time (corresponding g = 0) are plottedsersustime for the
same juggler in example 2, with initial collision velocities given yay0) = 0.5 m/s <
Yo = 4.43 my/s andy,(0) = —0.7 m/s. The bounded input algorithm was applied four
times, each time increasing the number of collisions during the transient. The different
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Figure 4. Decreasing the robot trajectory amplitudes.

cases were marked, in increasing order of transient shocks, by+, x. Notice that the
number of impacts in which the desired motion is reached is not predefined by the bounded
input control algorithm (or by the designer). However, this one ensures as least as possible
transient collisions since (39) assignsyak + 1) the closest value tgy inside 22(k) at
each impact. Hence, in order to increase the number of transient shocks, the following
criterion was established: A coefficiefit< 1 was defined (recall that (0) < yq). Then,
at each collision, iN» (k) # yq, the actual value of; (k+ 1) used by the control law was
times the value chosen by the algorithrs, y; (k + 1) = BN2(k). Since smaller values of
yi (k+1) are used, more transient shocks take place. The coefficients used to obtain figure
4 weref, = 1,8, = 0.9, 8, = 0.8, andB, = 0.7. Observe that increasing the number of
transient impacts causgs to remain within a smaller interval. This strategy can be used
to keep not only but alsoy, between two bounds.

Finally, let us notice that we could have defingd0) € ©3(0) as initial condition in
point 1 of corollary 2 (instead of.(0) € €21(0)). This would have ensured sequences of
the ball impact velocity of the form{y1(k) : 0 < y1(0) < y1(1) < 1(2) < --- < Y4}
if y1(0) < Va, {(Y2(K) @ ¥1(0) > y1(D) > Y1 (2) > --- > yg > O} if y1(0) > yq, Or
{yi(k) : yi(k) = yg > 0,Vk > 0} if y1(0) = y4. Neverthelessy»(0) € ©3(0) is a more
restrictive condition compared witf3(0) € 21(0) sinceQ23(0) C 21(0). Thatis whyy,(0)
is permitted to be withig2; (0) rather than withirf23(0). In any case, recall that the design
criterion in point 2 of corollary 2 ensurgs(k) € Q3(k) for all k > 1 and the selection of
yi(k+1) > O (always positive) for ak > 0. The difference is that if at impact 0 the shock
velocities are such that: miRs, P4}y1(0) < ¥2(0) < min{My, My, 1}y1(0) andy;(0) <
Y4, then the sequence of ball impact velocities is of the f¢¥aik) : y1(0) > yi1(1) >
0, y1() < Y1(2) < -+ < ya}; orif: —2 < y>(0) < min{P1, P,}y1(0) andy1(0) > Ya,
then{y1(k)} has the form{y;1(k) : 0 < y1(0) < y1(1) > y1(2) > --- > yg > 0}. Notice
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Figure 5. Bounded input strategy{y1 (k) : y1(0) > y1(1) > 0, y1(1) < y1(2) < --- < Yd}-

that even ify;(0) = yq4, the sequence must first go away from its goal, and come
back to it later. An illustration of this phenomenon is given in figure 5 for a juggler with
m; = 0.1 kg, my, = 1 kg (thenm = 0.1), yqg = 4.43 /s, y(0) = 0, y1(0) = 3 m/s < vy,
V2(0) = —4.5 m/s, andumax = 22 N.

3.4. Relationship with Buehler-Koditschek’s Mapping and Mirror Law

As recalled in [40], [42] the studies in [5], [6], [7] essentially focused on the derivation of a
one-dimensional non-linear mapping for the ball velocity. However, only a heuristic control
strategy (mirror law) has been proposed in [5], [6], [7]. In this section we show how their
results may be used in the framework of the hybrid strategy proposed in (17)—(22), (36) and
(37). We also emphasize the relationships between their mirror law and our algorithm.

As we previously pointed out, the signafs(k + 1) andy; (k + 1) in (19)—(24) can be
chosen differently. For instance, let us consider that (36) holds, but that we ofjgksel)
as

hy(w1(k)) if he > yq
yik+1) = _ (40)
hz o hy(wa(k)) if hg < yq

wherehy(w) = [1+y (V5 — w?)]w, ho(w) = w2+ 29(yq — y(k) — 1), wi(k) =

\/yf(k) —29(Ya — Y(K)), wa(k) = /¥?(k) —2gr, and 0 < y < y_12 Then, after at
d

most two collisions, the ball impact states will be givenyitk + 1) = y(k) = y4 and

ik + 1) =[1+y (v5 — ¥2(K)] ya(k) (41)

Buehleret al.[5], [6], [7] proposed a different way (the mirror law) to make the ball impact
velocity follow the behavior stated by mapping (41) for a specific case of the one dof juggler
(m = 0, yg = 0), and showed that (41) is asymptotically stable [5, p. 72]. Let us now
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suppose thay; (k + 1) is as in (40) and than > 0, but that the scheme is designed with
the assumptiom = 0, as done in [7], [6], [5]. Then from (22) (withh = 0) and (59), one
obtains

1-m y

. _ 22 .
yak +1) = [—1+ T (V4 yl(k))} y1(k) (42)

Vk > i € {0, 1, 2}. It follows that the fixed pointyq, Yq) is modified to the one of the

mapping in (42), i.e.(yd, /Y3 — 27’“) Although the mapping in (42) is always stable for

a choice ofy € (0, %) [5, p. 72] and for allm € [0, 1) such that the fixed point of the
d

real mapping exists (i.ey3 — 2m - 0), the assumptiom = 0 may introduce convergence
problems and significant tracﬁing errors on the desired velocity and apex if in nr@aity.

Now, as shown previously, the formulation of the robotic juggling problem is divided in
two phases: the design of the continuous-time input force and the definition of the impact
trajectories. Buehleret al. [5], [6], [7] proposed a continuous-time surface trajectory
consisting of a mirror-like “reflex” of the ball’s trajectory with a “distortion” gain that
changes every flight-time in such a way that (41) takes place, i.e.,

Yo = —a Y1 (43)

whereay = 75 + 145 [V — ¥2(k)]. The controller given by (17)—(22), (36) and (37)
follows a similar behavior, but the ball's trajectory is rather reflected by the surface velocity.
Indeed from (13), it is not difficult to realize that (18) can be writtem as —%yl(t) + Cx,

whereCy = y%k)Ak + By. After integrating the surface dynamics, one gets
. Ax
Ya(t) = _Eyl(t) + Dk + G (t —t) (44)

whereDy = y»(k) + Y& A Considering the desired trajectories (36) and (37), one realizes
that after at most two impacts, the last term in the right-hand side of (44) becomes dependent
just onm. This means that it helps the surface to recover from the perturbations due to
impacts. Ifm = 0, it disappears. The second term is an offset that helps the surface to
adjust the impact positions and velocities to the desired ones. If it did not exist and, for
example, the desired impact position were zero, the surface collision speed would also be
zero which would not make any sense for the generic eas€0, 1). Actually, choosing

(43) constrained Buehleegt al. to define the origin as the only possible desired impact
position, while (44) permits the definition of any value fgror even a sequence of values.
Finally, the first term expresses the mirror-like reflex of the ball's trajectory by the surface
velocity.

4. Robustness Analysis

The class of feedback controllers derived in the foregoing section relies on three essential
facts: First, it is supposed that the object’s postimpact velogjtiéds are exactly known.
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Second, we assume that there is no disturbance on the ball during the flight-times, so that
its motion is perfectly known. Third, the system’s parameters are well-known. In practice,

it may happen that one or several of these assumptions are not satisfied. Let us consider
the following casesi) y1(k) and the ball’s motion are well-known but the coefficieris
estimated by # e. Then the signay; (k + 1) in (22) will be different from the ideal one,

but the collisions will occur at the desired position andkat = tx + dk. ii) y1(k) or the

ball’s motion or both are not well-known. Then the collision will not in general occur at
the desired height ang, ; # tx + di. The main discrepancy between these two situations

is that in the first case, the dynamics on the impact Poesaction is known. Whereas in

the second case, we will have to derive the expression of the impact RomealP; as a

result of the closed-loop dynamics with disturbances. In other words the control law will
no longer guarantee the location of the impacts (hence of the secjion general the
impact Poincae'map will be impossible to calculate explicitly.

4.1. Unknown Restitution Coefficient

Let us suppose that we compute (17)—(22) using an estimate of the restitution coefficient
which value is different from the rea] i.e., & # e, but we still assume that the postimpact
velocities are measured correctly. Then, after integrating the dynamics (5), (6) considering
(17)—(24), itis easy to realize that the next impact position does not changg,(ket,1) =

vo(k + 1) = y*(k + 1). Moreover, the velocity of the surface just before the next impact
will be the calculated one, i.eya(t,, ;) = y5(k + 1), which we would compute as (see

(22))

1+m m—
ik + 1
]_+éyl( +1)+

CJR0 29k + D) -y (45)

ok +1) =
Yak+ D 1+8é

On the contrary, the system’s impact velocities are the states that are affected by this
discrepancyé # e). Indeed, let us analyze the behavior of the ball impact velocities. From
(59), (45), and the integrated dynamics of the ball (12), (13), one obtains

l+e ., e—¢é /5 - B
g Vilkr 4 T /900 — 200y (k+ 1) — () (46)

yik+1) =

Let us for the moment consider the case in wHigh> yy. Then, from (36), (37) in (46),
we get

l+e e

. _ . _é .2 _ _
alk+ 1) = 7o Yo+ g/ Y200 — 2900 — ¥(0) (47)

Assuming that the differenee— éis such thaty; > yq, Vj > 1, we have for allj > 2

) l1+e e—é .
v1(K = Vi + —— yi(k -1
yik+ j) 1Jréyd+1+éy1(+1 )
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Then by induction, one can verify that

_a\l _a\l
Ja(k+ ) = [1— (e e) }yﬁ (e e) S0 - 290 -y (48)

1+¢€ 1+¢6

forall j > 1, whereys = 5= Va. In the same way, for the case in whish < yq, we
getforallj > 2

e —

_al-1 _a\i-1t
y1<k+j>=[1—<e ) }y+(i+2) YR+ 1) —20(y5 — y(0 — 1) (49)

It is easy to verify thaﬁ;ﬂil <1,V¥(e 8 €[0,1] x [0,1] : (e, &) # (1,0) (3. From
(48) and (49), one realizes that whatever the relationship bethjeandyj is, the impact
velocity of the ball converges tg, i.e., limj_ . yi(k + j) = ¥s. Following the same
analysis for the impact velocity of the surface, we find that the system’s collision states
converge toks = (Yg, Yd» Vs 11* f;éz_eg‘yd). It is noteworthy that the convergence is ensured
assuming thatyj > yg,Vj > 1. From a detailed analysis, one can realize that a sufficient
condition for this to be true is the subestimation of the restitution coefficientgi.e.g.
Indeed, let us again consider the case in wiich- y4. Sincey(k + 1) = y*(k + 1), from

(36) y(k+ 1) = y4. Hencey;1(k + 1) must be positive fohx,1 > yq4 to be satisfied. From
(47), itis easy to see that&— & > 0 theny,(k + 1) > 0. Continuing this analysis for

j > 2, one realizes from (48) that&— & > 0 thenyy;(k+ j) > 0,Vj > 2, and hence

hetj > Ya, Vj > 1. For the case in whichy < yq, if hiyr > yg then it is easy to verify

that the same analysis can be madejfor 2 (see (49)) and that it leads to the same result.

It can also be proved that fdw., 1 > yg to be true,e > éis also a sufficient condition.

Finally, for the case in whick > e, a small enough differende— e is desirable.

4.2. Errors in the Ball's Velocity Measurements

In order to show what happens when the impact velocities of the ball are not well measured,
let us consider the same one dof juggler of Example 1, with the same desired trajectory
(Y¢» Yg) (and initial conditions of case a). Several simulations were executed introducing a
noise signal to the measured impact speed according to the following expreggion:=
(1—a+2ap)y1(k), whereb, (k) is the measured collision velocity,is a random signal with
values in [Q 1], andx € [0, 1) is an indicator of the noise level, such tiiatk) is randomly

within [(1 — a) Va1 (K), (1 + o)1 (K)], for all k > 0. « was varied from 0 to 0.2 every 0.01
units. Each simulation includes around 30 impacts and they were repeated 10 times for
each noise level. An average radiugk) — Xq||2 was obtained for each simulation. The
result is shown in figure 6. We conclude that the error distance is in general bounded and
proportional to the noise level (despite the existent dispersion). The impact states remain
in a neighborhood around the desired fixed point and a destabilisation of the closed-loop
system does not in general occur.
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Figure 6. Average off|x(k) — xq||2 for different noise levels.

4.3. Computed Impact Velocities and Restitution Coefficient Estimation

In practice, it is difficult to have exact impact velocity measurements and they are usually
noisy [5], [7]. On the contrary, detecting the positions where the ball’s velocity is zero
(apex)s(k) is in general much easier. From this and the fact that the free-motion and
impact dynamics are well-known, we propose a noiseless method for the knowledge of the
ball's velocities (we suppose that the rest of the impact states are exactly measurable). It
consists of the computation of this impact state using apex measurements. Indeed, from
(59) we get an expression for the calculatiorypfk + 1) given by

A

) m—é& . 1+é .
yik+1) = T m ) + 3 Yot

where we have replaced the real Newton restitution coeffigdaytan estimatior®. The
termy; (t,, ,) can be calculated from the free-motion dynamics of the ball, the desired impact
trajectories and the knowledge s1k). A disadvantage of this method is the possibility of
havingé # e. This case is analyzeda simulation for the juggler previously described

in Example 1, with the same desired trajectoyy, Vq) (and initial conditions of case a).
Figure 7 shows the results obtained for:(e)é) = (0.7, 0.5), and b)(e, & = (0.7, 0.9).

We can observe that a periodic motion is always attained, i.q..ligx (k) = xs. For the
caset > e, the ballimpact states are characterizegby: yy andys < yq. Onthe contrary,
whené < g, it can be seen thaty > yg andys > yy. As expected, an underestimation

of e makes the robot hit the ball with a too large velocity. An overestimation implies the
opposite effect. Notice (compare figures 7 and 2) that an error of 30&aresults in an
error of 500% of the apex for the underestimation (remember that the desired apex was
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a) &=0.5 = e=0.7 b) 6=0.9 = e=0.7
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Figure 7. Computed impact velocities: &)< €; b) é > e.

defined above as = 1 m) and 70% for the overestimation. One therefore concludes that
the accurate knowledge efis very important.

In order for the impact states to attain asymptotically the desired fixed pqint\q),
a heuristic adaptive law was implemented éoin terms of the apex errorék + 1) =

ék) + a (S(“T*S’) wherea € R is the adaption gain. Figure 8 shows (considering the

same juggler as above) the evolution of the ersdks — yq, S(k) — s¢, andé(k) — e, for

a = 0.025,e = 0.7 and: a)é(0) = 0.5, and b)é(0) = 0.9. These and several other
numerical results have shown that f6¢0) — €| and an adaption gaeboth small enough,
convergence ofx(k), é(k)) — (x4, €) occurs.

Object dynamics with damping. Finally, the robustness of the control scheme with
respect to unknown damping acting on the object during the flight times has been studied
in [39], [40]. Since the impact Poinaamhap is impossible to obtain explicitely in that
case, numerical simulations have been presented. They show that for small enough (but
strictly larger than zero) damping and the same desired trajectories as in example 1, the
ball closed-loop trajectories still converge towards a periodic motion with one inppact
period.

5. Conclusions

A family of feedback controllers is presented for one degree-of-freedom juggling robots.
Due to the potential applications of such study in non-prehensile manipulation, in which
the mass of the object is not necessarily negligible with respect to that of the robot, a
4-dimensional model of the system has been considered. The hybrid control strategy
mainly consists of a discrete-time state feedback. It is flexible enough to cope with various
juggling tasks and can be designed so that the impact position and velocity are free (and is
not restricted to periodic trajectories). A strategy is presented for the case when the inputis
bounded. Robustness for this class of hybrid strategies is also investigated both numerically
and analytically for different types of disturbances and uncertainties (measurement noise,
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Figure 8. Adaption errors: ag(0) < €; b) é0) > e.

bad knowledge of the restitution coefficient, unknown damping on the object during the
flight-times). The possible extension of the presented method to a larger class of mechanical
systems with unilateral constraints is also outlined.

A. Proof of Claim 1

The proofis divided in two parts: IRart 1we treat the generic case in whiele (0, 1] and

an initial impact takes place & > 0, i.e.,y1(to) — Ya(to) = 0 andyi(ty) — Ya(ty) > 0.

In Part 2we suppose that the two bodies are in contact at a generic inst@mtvhich the
control input (17)—(24) is applied), i.e4 (t) — Y2(tk) = Ya(tk) — Y2(tk) = 0. The objective

of Part 2is to prove that points 1-4 of claim 1 are true also for the perfectly plastic case, i.e.,
e = 0, and for the case in which the bodies are in contatt@r any value of < [0, 1]).

Part 1. Let us for the moment consider the isolated dynamics of the ball (5) assuming
initial conditions(yy(tk), Y1(tk)) = (y(K), y1(K)). Then, itis easy to verify that the position
and velocity after a time intervak as defined in (21) are

(Ya(t + d), Vit + di)) = <y*(k +1), —\/ i (k) —2g9(y*(k+1) - y(k))> (50)

for anyy*(k + 1) satisfying (23). Notice that (23) determines the set of reachable positions

of the ball given specific initial states. This condition not only ensures that the term in the
square roots of (21) and (50) (see also (22)) is non-negative but also ensures positive values
of d. Complex or negative time intervals would not make any sense.
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Now, let us consider the isolated dynamics of the surface. From (6) and (17), one obtains
Vo = v. This system is easily written as
z=Fz+ Gv (51)

for suitable(F, G) andz. Then, the control input

v(®) = GT TT(—t) W I'(—tc — dh) [Zcrs — T(d) z] (52)
where
t+dk
W = '(-t) GG ' I''(—7)dr (53)

t

andI'(t) = exp(Ft) are respectively the Grammian and the state-transition matrix of (51),
drives the state from z to z,1 in the time intervalds (see [31]). Such controllers are
sometimes calle@®ead-beatalgorithms [18]. Choosing[ = (y(k), y2(k)) andzLrl =
(y*(k+ 1), y5(k+ 1)) in (52), we get (18)—(20) as the input that leads the surface states
from (y2 (t) , Y2 (k) = (y(K), y2(k)) to

(Y2t + o), Yot + di)) = (Y (k+ 1), 3 (k + 1)) (54)

Notice that thal, used in (19) and (20) is designed using (21) which makes the final position
of the isolated trajectory of the surface coincide with the one of the ball. In other words,
yi(tk + dy) andys(tx + dy) in (50) and (54) satisfy

yi(te + d) = Yotk + d) = y*(k+ 1) (55)

Let us now consider the whole dynamics (5)—(8) assuming initial conditions such that
y1(K) = y2(k) = y(k) and

yi(k) — y2(k) > 0 (56)

Notice that these are in general the conditions that result of an impact evke(D, 1].
Introducing (17), (18) in (6) and integrating two times (5) and (6)tfer (tx, tx + d), we
get

A Bk + . .
F(ya(D). y2(0) 2 ya(t) — yo(t) = —A [KKAZ +=3 IA+ (o) — yl(k))} 2 f(a)
(57)
whereA 2t — tk. Itis not difficult to verify that (57) can be rewritten as
f(A)=—A(A—d)Y(A) (58)

whereY (A) = %A + %dk + @. From (19) and (20), and considering conditions (56)
and (24), one can verify thdt(A) > 0,VA € (0, dk). From this fact, one easily sees that
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f(A) > 0,VA € (0, dk), which demonstrates point 1 of the claim. This and (55) prove
points 2 and 3.
Finally, from (5)—(8) it follows that at a generic impdct- 1

1
ik +1) = T+mmuﬂy+ re wmﬂ> (59)
1 1
ww+1)=f%¢i91m&p+ TN (60)

Considering (50) and (54) in (59), one gets

. __m——e D) _ N _ l+e .,
k+ D) = —F— 50 = 29 "k + 1)~ y00) + Y5k + D) (61)

Introducing (22) into (61), point 4 follows.

Part 2. Let us now suppose that at a generic instgrboth bodies are in contact and tend
to move together, i.e.,

yi(t) — Yo(t) = Ya(te) — Yo(t) =0 (62)

Notice that this may be the result of two possible situations: On the one hand, when the
restitution coefficient is zero, i.ee,= 0, (62) takes place at impact instafigsee (8)). In
the other hand, when the two bodies are in contact at the initial infgta(®) is verified
with k = 0. Notice that this last situation does not depend on the valee of
Considering this assumption, and from (1)—(3), the system dynamics becomes

miys +mg = A (63)
May> +M2g = U— A (64)
f(y,y2)=y1—y2 = 0 (65)

wherei > 0 is the interaction force between the bodies. This dynamics holds until the
momentt’ in which the interaction force vanishes and the relative acceleration becomes
positive, i.e.A(t") = 0 andy, (t') — ¥»(t") > 0. From (63) and (64), it is easy to verify that
this condition is translated tgj (t') — yo(t') = (— + —) At) — “(t) %) >0,i.e.,

u(t’) < 0. Considering the input force (17)—(24) taking into account (62), we can prove that
ut’) = ma(g+ By) < O (see[39], app. B, sect. B.2). We conclude tHat t", that

is, the bodies loose contact at the immediate instant in which the control input (17)—(24)
is applied (just after the shocks for the perfectly plastic case). The dynamics in (5)—(8) is
recovered at = t’' = t,”. ConsequentlyPart 1 of the proof holds for this case too.
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Notes

1.

For instance the work in [8] for stabilization of hopping robots strongly relies on the oleid@which allows

them to apply a control during the constrained motion phase. It is not clear how the results can be extended to
the casee > 0.

It would be indeed difficult to think of the case in which the collisions are perfectly elastic while one tries to

model them as perfectly plastic.
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