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On the Control of Complementary-Slackness
Juggling Mechanical Systems

Bernard Brogliato and Arturo Zavala Río

Abstract—This paper studies the feedback control of a class
of complementary-slackness hybrid mechanical systems. Roughly,
the systems we study are composed of an uncontrollable part (the
“object”) and a controlled one (the “robot”), linked by a unilateral
constraint and an impact rule. A systematic and general control de-
sign method for this class of systems is proposed. The approach is
a nontrivial extension of the one degree-of-freedom (DOF) juggler
control design. In addition to the robot control, it is also useful to
study some intermediate controllability properties of the object’s
impact Poincaré mapping, which generally takes the form of a non-
linear discrete-time system. The force input mainly consists of a
family of dead-beat feedback control laws, introduced via a recur-
sive procedure, and exploiting the underlying discrete-time struc-
ture of the system. The main goal of this paper is to highlight the
role of various physical and control properties characteristic of the
system on its stabilizability properties and to propose solutions in
certain cases.

Index Terms—Complementary slackness, feedback, hybrid, im-
pact Poincaré mappings, nonsmooth, underactuated, viabililty.

I. INTRODUCTION

A. General Introduction

RECENT researches in the robotics and the systems and
control communities on mechanical systems subject to

unilateral constraints have focused on stabilization of manipu-
lators during complete robotic tasks [10], [39], well-posedness
and system theoretic issues [9], [30]–[32], walking and hopping
machines [1], [5], [7], [8], [12], control of juggling and catching
robots [6], [26], [27], [33], [37], systems with dynamic backlash
[2], [16], stabilization of polyhedral objects in some manipula-
tion tasks [35], and nonprehensile manipulation [11], [19], [24];
see [19] for a more complete bibliography on this last topic.
The work presented in this paper focuses essentially on the last
five listed topics. The open-loop models used are basically rigid
body dynamics with a set of unilateral constraints on the gener-
alized position. Such hybrid dynamical systems may be repre-
sented as follows:
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(3)

where the classical dynamics of Lagrangian systems is in (1),
the set of unilateral constraints is in (2) with ,
and the so-called complementarity conditions [14] are in (3),
where is the Lagrange multiplier vector. We assume
frictionless constraints. , ,

, , and are the generalized coordinate
vector, the inertia matrix, the Coriolis and centrifugal terms, the
gravity forces and torques, and the control input, respectively,
and . In order to render the dynamical system com-
plete, we must add to (1)–(3) a so-called restitution law that re-
lates postimpact and preimpact velocities. Such physical rules
are necessary [30], [40]. The most widely used restitution rule
is known as Newton’s conjecture [4]. It is based on the knowl-
edge of restitution coefficients . When , it is
represented in its generalized form as follows:

(4)

where , , and generically denote
the impact times (the superindicesand stand, respectively,
for the instants just after and just before the collisions), with

. In case of a codimension 1 con-
straint ( ), from energetical arguments. The
system in (1)–(4) is complete, in the sense that, given preimpact
velocities , we are able to calculate the postimpact veloci-
ties and continue the integration after the collision has occurred.
Notice that the system in (1)–(4) is a complex hybrid dynamical
system [32]. This class of dynamical systems can be divided fur-
ther into subclasses. In particular, the case in which the free-mo-
tion dynamics are controllable has recently received attention
[31], [39]. This class does not, however, cover some impacting
robotic systems. Indeed, write the dynamical equations of a two
degree-of-freedom (DOF) juggler; i.e., a system composed of
an object (a point mass) subject to gravity, which rebounds on a
controlled table, as shown in Fig. 1:

(5)

(6)

(7)

(8)

(9)

Restitution rule in (4) (10)
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Fig. 1. One and two DOF jugglers.

Notice that the ball dynamics in (5) and (6) are not controlled
because only gravity acts on the ball. Hence, the only way to
influence the trajectory of the ball is through impacts. This is
a strong motivation for considering the feedback control of a
two DOF juggler, as in (5)–(10), because it represents a sim-
plified model of manipulation of objects through “controlled”
collisions with a robotic device [35]. We may suppose that the
length of the surface is infinite. Hence, the impacts always occur
with the same side of the table. In this paper, we shall use this
example as an illustration of the influence of the physical and
control parameters on the control design.

B. A Class of Complementary-Slackness Hybrid Systems

Juggling robots may also be considered as a particular case
of a class of complementary-slackness systems

(11)

(12)

(13)

where , , ( and
may have the same or different values), and a restitution rule
has to be added to complete the model. Notice that if ,
such a system maya priori evolve in different modes [32]:
its hybridness is therefore intrinsic. As indicated in the title and
the abstract, we choose to generically name such systemsjug-
glers, even though, as we shall see later, other types of sys-
tems may fall into this class. In this setting, (11) plays the role
of the “object,” and (12) is the “robot.” may repre-
sent the “distance” between the object and the robot, but this is
not always the case, as some examples will prove. A necessary
condition to transform (1) into (11) and (12) is that a general-
ized coordinate transformation exists and ful-
fills for all ,

. Also consider , and notice that the
system in (11) and (12) corresponds to (1) written in a non-
controllable canonical form. Such systems are therefore quite
different from so-called triangular systems [15]. In particular,
setting , (11) and (12) are not in general locally feedback
stabilizable because the uncontrollable modesare not nec-
essarily stable. The control problem for (11)–(13) may change
depending on our goal: for instance, in a system with clearance,

like the impact damper [2], [16], we may consider that (11) cre-
ates disturbances in the dynamics of (12), or on the contrary, we
may desire to control (11) using the impacts. In this paper, we
will mainly focus on the control of from the input in (12),
via sequences of impacts. In other words, we shall restrict our-
selves to control tasks with zero-measure contact phases. The
controllability and stabilizability properties of such hybrid sys-
tems, which depend on the vector fields in (11) and (12) and on
in (13), have not yet been fully understood. It is advocated here
that impact Poincaré mappings [40] provide a suitable frame-
work for such analysis. Let us introduce the following defini-
tion.

Definition 1: A viable controller is a function
such that 1) or and

between programmed impact times,
and 2) and are right-continuous of local bounded
variation (LBV) in time.

Here, programmed impacts are defined as those shock in-
stants planned in the control design (contrary to accidental im-
pacts that may be caused by various model uncertainties or dis-
turbances in the control loop). As we shall see, the sequence

depends on the controller design that in turn must in-
corporate the object ballistic constraints. Let us recall that an
LBV function possesses a countable set of discontinuity points
[21]; hence, a viable input ensures the well-posedness of the
closed-loop system.

Definition 2: The “object” in (11) is controllable if given
, , satisfying the object’s ballistic constraints,

and , such that , and , a viable
control law that drives from to exists, with

.
The study of such notions, however, requires some interme-

diate steps, for which some basic properties are important (in-
terestingly enough, some of them are similar to those done in
[17] for the control of a class of cascaded nonlinear systems
that model some nonholonomic mechanical systems). Among
those:

1) the properties of the object’s flow
on [explicit knowledge of the trajecto-

ries, or controllability with state and input ];
2) the controllability of (12);
3) the controllability of (11) through impacts;



BROGLIATO AND ZAVALA RÍO: COMPLEMENTARY-SLACKNESS JUGGLING MECHANICAL SYSTEMS 237

4) the relative degree1 of with respect to and the
relative degrees of with respect to ;

5) , and ;
6) the boundedness of between impacts or the ability of

the robot to extracting energy to the object;
7) the restitution rule (i.e., the value of the restitution co-

efficient , the form of the constraint , the codi-
mension of the striked subspace in case of multiple
shocks).

To illustrate the so-called ballistic constraints in Definition 2,
consider for instance the one DOF juggler in the next section,
with : clearly, we must wait for the ball to
fall before hitting it, and the required time depends only on
the vector field . The interest for considering systems as
in (11)–(13) is that their study finds potential applications
in all types of juggling robots, catching tasks, nonprehensile
manipulation (pushing-and-striking tasks with a workpiece
free to slide on a work surface, which frequently occur in
robotic applications [24]), stabilization of manipulators on
passive dynamical environments (some “hammer-like” tasks
are possible), and platoons of carts with a leading cart. It is
also noteworthy that walking and hopping machines may be
written in a similar form as in (11)–(13), where (11) may
represent the dynamics of the mass center when all of the feet
are detached from the ground; see, e.g., [1] and [7], as well as
rocking-block-like models of buildings excited by earthquakes
[40], whose active control is a topic of research [18]. Finally,
models of systems with dynamic backlash also fit within the
framework in (11)–(13) (e.g., the impact damper; see [40] and
references therein). Therefore (11)–(13) constitute a large class
of dynamical systems that deserves close attention and whose
control is a challenging problem, as many of the above-cited
references witness.

Contrary to most of the previous works on the topic, we
shall consider the full dynamics of the system (11)–(13). We
are therefore interested in designing directly the controller

that is to be implemented on the robot and to propose a
general control design framework for complementary-slack-
ness juggling mechanical systems. In Section II, we briefly
recall the controller and the closed-loop analysis for the one
DOF juggler that constitutes the basic benchmark example of
complementary-slackness juggling systems. Controllability
concepts based on the study of some impact Poincaré mappings
associated with the object are introduced, which are thought
to be useful for the overall control design. Section III presents
the control strategy and the closed-loop analysis for a more
general class of complementary-slackness juggling systems.
The codimension one case is analyzed first. Then,
the multiconstraint case is examined. Conclusions are given in
Section IV. The relationships with various published results are
pointed out throughout the paper.

II. ONE DOF JUGGLER

In this section, we briefly recall the results presented in [37].
The proofs can be found in those references. As we shall demon-
strate in the next section, this benchmark example does not en-

1As defined in [23].

capsulate the whole essence of the general problem. It provides
us, however, with a nice starting point.

Lemma 1: Consider the dynamics of a one DOF juggler

(14)

(15)

(16)

(17)

Suppose that and are such that an impact or a contact
time exists. Define the following control input:

(18)

(19)

, with

(20)

(21)

(22)

(23)

where , and and
are chosen such that

if

if
(24)

and

(25)

Then, for all

1) , ;
2) ;
3) ;
4) .
Remark 1: The control input force (18)–(21) is based on

a dead-beat control strategy (inversion of the controllability
Grammian). Other dead-beat inputs can be derived by simply
adding position or velocity feedback to the robot, but they
may not be viable inputs. Such controllers are basically open
loop. We notice from (18)–(25), however, that the controller
is computed from the value of the state at(which does not
necessarily mean that the states are measuredat ). Property 1)
may be used to perform an indirect measurement by measuring
for instance the apex of the object’s orbit. Consequently,is
a state feedback for the system considered as a discrete-time
operator at the shock times.

From property 1), it is clear that we may replace the dynamics
in (14) by any integrable vector field. Difficulties in calculating
the flight times may occur, however, (hence,), for instance, if
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some damping is added on the object. In practice, we may use a
numerical estimation of or study conditions under which the
presented scheme is robust with respect to such uncertainty. As
shown in [37], the next step is to define the signals
and , which can be regarded as the desired trajectory
of the ball, whereas in (23) is the desired robot’s preimpact
trajectory. We still consider the system at a generic impact time

.
Lemma 2: Let and be given as

if
if

(26)

if
if

(27)

where , and is such that

(28)

Then, converges toward its desired value
after at most

two impacts, i.e., .
Notice that the logic conditions in (26)–(28) are necessary

because of the ballistic constraints imposed by the object’s mo-
tion, and they justify the difference between the desired values

and those denoted as . Such control strategy has been
shown to present several nice properties [37]: robustness with
respect to various uncertainties (measurement noise, restitution
coefficient), possibility of modification of and to cope
with control saturations, and flexibility to cope with various ob-
ject’s orbits.

Remark 2 [Three-Steps Recursive Control Design]:De-
scribe a systematic, recursive control design method, which
will enable us to recover the dead-beat strategy in (18)–(27) as
well as new controllers. Let us choose a structure for as

, , with and constant on
. Integrating (14) between impacts or using (17), we

get

(29)

and

(30)

with .

• Step 1:We choose and as the inputs of the
system in (29), such that and

. This step gives

(29)

(31)

where and are given in Lemma 1, and for
some function .

• Step 2:Introducing the values in (31) into (30), we get
for some function ,

from which we deduce and , which are equal to
those in Lemma 1.

• Step 3: Check viability, i.e., the sign of the function
on .

It is noteworthy that the success of Steps 1 and 2 relies on the
invertibility properties of the first “subsystem” [which is not to
be confused with the mapping in (36) that is obtained assuming
thea priori knowledge of an input satisfying properties 1)–3)
in the introduction of Section III] with and as in-
puts, i.e., on the existence of solution to the algebraic equations

and . We can choose another controller structure
.

Remark 3:

• The use of open-loop controllers during flight times
is further motivated by the results on control

holdability of sets of the form [30]. It
is shown in [30, Corollaries 5.6.2 and 7.4.9] that, for
linear mechanical systems , such
sets are neither positively invariant (with ) nor
closed-loop holdable by static or dynamic feedback. (i.e.,

such that those sets are invariant under
, . In other words, such control cannot

keep inside the set.) They may be open-loop controlled
holdable, however. Therefore, it is expected that in gen-
eral viability will be difficult to satisfy with time-invariant
closed-loop inputs (even on finite time intervals). At the
same time, this study shows that results on dead-beat
open-loop controllers for LTI systems [29, Theorem 5,
p. 3], do not straightforwardly extend to the unilaterally
constrained case; see [37] for counterexamples.

• The relationships with Bühler–Koditschek’s mapping and
mirror law [6] are explicited in [37].

III. T HE CONTROL OF COMPLEMENTARY-SLACKNESS

JUGGLERS

In this section, we present the control strategy and the
closed-loop analysis for the two DOF juggler (as depicted in
Fig. 1). In parallel, we propose a general analysis and control
design method for the class of systems as in (11)–(13). The two
DOF juggler is thus shown to constitute a simple case of such
nonsmooth systems, which does not satisfy all of the desired
requirements of the general framework. Moreover, it proves
very useful in highlighting some peculiarities of the control
design that are difficult to consider in a too-general approach,
like the influence of the restitution rule and ofon property 3).
One objective to be considered is to design a torque input
such that, given arbitrary initial conditions, the surface 1) hits
the object with a desired preimpact angular velocity, 2) at a
desired angular position (respecting the natural trajectories
of the ball: the ballistic trajectory of the system imposes a
time constraint on the control problem), and 3) the viability
conditions hold ( is a viable control). In the sequel, we shall
first assume that a suitable control inputsatisfying 1)–3) has
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been designed, and we shall investigate which trajectories the
object can be made to follow when it is controlled only through
the impacts with the rotating table. Then, it is shown how such
an input can be calculated.

A. An Intermediate Controllability Property

1) The Two DOF Juggler Case:This paragraph is devoted to
investigate Property 3) in Section I-B, i.e., what we have called
the controllability of the subsystem in (11) via the impacts with
the restriction . What follows is not to be confused with
the three-step recursive design method presented in Remark 2.
We assume that an ideal control law, which guarantees 1)–3)
above to be satisfied, exists. Hence, rather than providing us
with a control law, this step aims at examining whether the im-
pact Poincaré mapping associated with (11) is controllable when
the preimpact velocity of the robot is considered as the input.
Clearly, if the answer is negative, whatever the controllerwe
may find, the goal of the juggling (or manipulating-with-im-
pacts) task will be limited.

To begin with, we consider the system in (5)–(10) with
and (i.e., , ). Let us denote

. Integrating (5)–(7) on
and using the restitution rule in (9) and (10), it is possible to
show that

(32)

with (in the following, will stand for preimpact
values). Now, if we are able to design a torque inputsuch that
1)–3) above are achieved, then can be considered as the
input of the system (5), (6), i.e., (32). Indeed, notice that 2) fixes
the next impact time. [In case the ball has a vertical motion, it
can pass twice at the same position while going upward or down-
ward. The choice of the desired flight-time 2 elimi-
nates one of the two; see (22) for the one DOF juggler.] Now no-
tice that because we assume that we knowsuch that

, [then from
(9)], we can express

as

(33)

is the state-dependent restitution matrix
( ) and with

, and using the object’s dynamics only (the robot dy-
namics and the unilateral constraint are not needed at this stage).
Clearly, and have to be chosen on the object’s trajectory.
Substituting this expression into (32) yields the desired form of
the partial Poincaré mapping

2The notation� emphasizes that the underlying philosophy is to reach a
position on the object’s orbit, andd is ana priori choice of� from which
the attained position results.

[the total Poincaré mapping state being ] with fic-
titious input

(34)

where if
. More generally,

from (9). Recall that,
from the assumptions we made, the coefficientsdepend on

and . Notice that, if the ball is initially at rest at
the origin, then from (34) and (33) it follows that

because one must choose in
this case. Therefore, no impact occurs and the ball may start to
slide along the bar. In other words, those initial data are such that
the closed-loop impact Poincaré mapping is not defined because
the vertical orbit passing at the origin cannot be controlled. It
suffices, however, to make the ball leave this position to make
it detach from the bar, using a suitable input. (For instance, in
the one DOF case, the proposed input assures detachment even
if the two bodies are initially in contact at rest or if [37].
When , detachment becomes possible and is classically
checked by searching for the first derivative that is ,
with , .) Now, derive the same partial impact
Poincaré mapping when . We get

(35)

for some matrices and . Intuitively, the controllability and
stabilizability properties of the mapping in (35) should be better
than those of the mapping in (34).

2) Generalization: The interest for considering the con-
trollability and stabilizability properties of the nonlinear
discrete-time systems in (34) or (35) is that this may provide
us with a sequence of “inputs” and . More generally,
we may apply this philosophy to subsystems (11) and (12)
assuming as in 1)–3) that the following occurs.

Assumption A:A viable exists such that, given ,
, an impact time exists such that

• can be given an arbitrary value;
• can be chosen as desired on the object’s orbit;

Mimicking the developments for the two DOF juggler, such
an assumption allows us to derive a partial impact Poincaré map-
ping with state and input , similar to the one in (34).
Recall that the viability of guarantees that the sequence
is countable; see Definitions 1 and 2. Also, recall that the im-
pact Poincaré mapping is well defined. We can now set a first
definition of Property 3), which we shall refine in Section III-C.

Definition 3: The subsystem in (11) iscontrollable through
the impactsif its partial impact Poincaré mapping obtained
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from Assumption A, with state vector , and con-
sidering as an input restricted to values satisfying

, is controllable.
The restriction on the inputs is a consequence of the physics

of impact (and is equivalent to ). Clearly, Property 1) (after
Definition 2 in Section I) is crucial for the calculation of the
impact Poincaré mapping. Notice that the obtained partial im-
pact Poincaré mappings are generally strongly nonlinear in the
state and the input. Various types of auxiliary feedbacks may
then be applied, depending on their controllability and stabi-
lizability properties (local stabilization, input-to-state lineariza-
tion, I/O decoupling; see [22, Section 14.3]). Denote the object
and the robot’s inertia matrices as and , respectively,
(the arguments are dropped for convenience here). Define the
matrices ,

,
, . Then, using the restitution rule, the algebraic

shock dynamics (that relate the velocity jump to the percussion
vector; see, e.g., [40]), and integrating the object’s motion on

(let us recall that the notation in Lemma 3 means
), it is possible to show the following lemma.3

Lemma 3: Let the subsystem in (11) have the form
, where is a constant inertia matrix and

is a constant generalized gravity vector. Then

(36)

where and
. The “object” is controllable through

the impacts in the sense of Definition 3 if the nonlinear dis-
crete-time system in (36) is controllable, under the input con-
straint . Now, assume that
has full row rank. Then, this controllability property holds if the
pair is controllable and if the algebraic equa-
tion

(37)

is solvable in , with .
Notice that and depend on the ballistic constraints,

i.e., cannot be chosen arbitrarily; see (26)–(28). The up-
perscript is to emphasize that and depend on the desired
position trajectories. In other words, the controllability Property
3) may depend on the initial data.

denotes the Moore–Penrose generalized inverse.
The proof for the first part uses standard calculations of shock
dynamics. The second part follows by rewriting the system in
(36) and using as an intermediate input so that

. From the rank condition of ,
the result follows. This criterion, although restricted to a specific
class of “objects,” is interesting because it allows us to study the
influence of on such controllability properties. In partic-

3We keep the notationm, althoughm = 1 in this section, but some of the
developments that follow will be used in the multiple constraints case. Notice
that necessarily here the codimensionm of the striked surface satisfiesm =

m = 1, but form � 2,M 2 .

ular, because the rank condition implies , then invert-
ibility of implies so that , indicating that
such sufficient criterion is certainly too strong (it does not apply
to the two DOF jugglers with ) and must be refined. As
we shall see in Section III-C, the case requires particular
care.

The outlined method to study controllability of the object
through the impacts is expected to yield a general method of
design of manipulators such that, given some prespecified goals
(in terms of the object shape and motion), we may be able to de-
sign the mechanical structure of the robot in accordance. For in-
stance it is clear that input–output decoupling of (34) with
and as outputs is not possible because only one input [22]
exists; hence, the possible interest to consider is and
(35), which indicates that we should preferably have
in general, although this is not sufficient to assure controllability
of the partial Poincaré mapping .

Remark 4: Bühleret al. [6] made similar assumptions as 1)
and 2) and studied some controllability properties of a two DOF
juggler performing a vertical one-juggle task. In [7] and [8],
the control of a kangaroo hopping robot has been investigated.
In particular, controllability properties of the impact Poincaré
mapping with respect to the true inputs have been derived. In
those works, the goal is to stabilize (locally) the system around a
lossless natural (with no input) periodic trajectory of the system
(such trajectory does not exist in all juggling systems). Also
notice that viability conditions do not appear because the control
is applied during the contact phase, whose length is greater than
zero because it is assumed in [1], [7], and [8] that . Finally,
notice that the underlying idea of extracting a discrete system
and a controlling one variable with another coordinate as the
input has been used in the control of hopping robots [1], [8],
[25].

Remark 5:

• The results in [3] are not applicable (at most, they would
provide us with necessary conditions) because the “input”

at impacts is signed, which is the reason why we have
introduced the “robot” preimpact velocity through the
restitution rule.

• The controllability properties of the “object” may also be
analyzed using a similar basic idea to what has been done
in the vibro-impact literature to prove the existence of pe-
riodic trajectories in simple impacting devices with com-
plex dynamical behavior; see [20], [28], [36], and [40,
Section 7.1.4]. This process has been advocated in [38]
and will be further developed in future works.

B. Coordinate Transformations for Controller Design

The foregoing subsection has been devoted to studing system-
atic methods to provide a designer with sequences of a “robot’s”
preimpact velocities. We now pass to the second step of the de-
sign. We have solved the one DOF juggling control problem
using dead-beat control laws. A first question is: is it possible to
extend this kind of strategy to the two DOF case with and

? In other words, can we assure the requirements 1)–3)
using the ideas developed for the one DOF juggler? The answer
is, in some manner, yes.
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1) A General Framework for the SISCO4 Case: In order
to extend the previous ideas to more general complementary-
slackness jugglers, let us first make the following hypotheses.

Assumption B: .
Assumption C:The relative degrees , are defined ev-

erywhere.
Assumption D: .

Lemma 4: If Assumptions B–D are satisfied, then the system
in (11)–(13) can be transformed by a local diffeomorphism

into

(38)

where

if
is not defined, if

and .
The proof of Lemma 4 uses standard results of nonlinear con-

trol theory and may be seen as a partial linearization. Notice that

is full-rank if and only if is full-rank (which
is true because Assumptions C and D; [22]; actually, setting

and , we see that represents the
uncontrollable zero dynamics of the system with output; recall
[22, pp. 336–337] that the uncontrollable modes are necessarily
modes of the zero dynamics). In the sequel of this subsection,
we shall assume that the form is defined globally. Write
the vector fields and as and

, respectively. Denote and
. Then, if , we have

if
(39)

The other expressions for derivatives ofmay be derived
similarly and allow us to obtain and

.
Therefore, such a transformation generally yields measure

differential equations with singular distributions of order .
Notice that higher order derivatives , , may not be con-
tinuous, but in general are singular distributions of order .
In fact, we have the following lemma.

Lemma 5: If the system in (11) and (12) is a mechanical
system with a unilateral constraint , then .

The proof follows from the fact that, necessarily, is a
right-continuous function of bounded variation, and is

4Single-input-single-constraint.

a measure [21]. Hence, , , is a distribution of order
, and it follows that . This result can be proved

also directly, noticing that with
, that is different from zero as

long as (true by assumption), which can be checked
on examples. For the two DOF juggler and the kangaroo in (40),

and . is not defined globally in these cases,
however, because of. Note that, when (the permanently
constrained mode), the order of the system is

.
The following lemma is also true.
Lemma 6: Consider the system in (11) and (12) with output
in (13). Then, .
To prove Lemma 6, let us consider . Assume that

, . Then, the system can be transformed in the
normal form, i.e., a chain of integrators. Thus, the strong
accessibility distribution (i.e., the controllable subspace) has ev-
erywhere dimension [22, Th. 3.4.9, Def. 11.15], which is
a contradiction because the uncontrollable subspace has dimen-
sion [the subsystem (11) with ]. This process shows
that the partial linearization performed in is in some sense
the best result we may expect.

Example 1: Consider now the system in Fig. 2, which rep-
resents a one DOF flexible joint robot that collides a dynam-
ical environment. The canonical form of the dynamics as in (38)
yields because . Notice
that Definition 2 may not be always appropriate in this case,
because it means that the aim of the task is to control the en-
vironment, not the robot. The dynamics of the two carts with a
hook yields , , . The
four DOF hopper studied in [1] also fits within our framework,
with , , and .

Finally, consider the kangaroo hopper in Fig. 2. It is assumed
that the total mass is concentrated at the joint. Its dynamics in
coordinates with is given by

(40)

This process is a simplified model of a kangaroo hopper, as in [1]
and [7]. In (40), we may take and .
As expected, the fact that the constraint is frictionless hampers
us to create a horizontal motion, contrary to what is proposed
in [1], [7] and [8]. Hence, the system in (36) is not controllable.
It is not clear at this stage how, or friction at shocks may
influence the property in Definition 3.

Three-Steps Recursive Method:Let us now apply the
three-step recursive control design method to the system in
(38).

• Step 1: Choose , , and via
. Obtain the expressions

(41)

Deduce the fictitious inputs and .
• Step 2: Choose

[recall the system is considered
on intervals ]. Choose .
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Fig. 2. One DOF flexible joint, two carts with a hook, and kangaroo robots.

Then, integration of the chain of integrators yields for

(42)

Calculate the ’s by setting
and . Notice that the equalities in
(42) can be rewritten as , where

and , .
Hence, we must have to calculate the coefficients

.
• Step 3:Check viability on with the sign of

that is a polynomial in , of
order . For instance, for the one DOF juggler
with the control as in Lemma 1, we get

, where ,
and we can prove that on [37].

The procedure applies to the one DOF juggler defining
. We retrieve the same controller as in Section II, Re-

mark 2. In general, step 3, which is crucial for satisfing the con-
trollability property in Definition 2, will be difficult to check.
It is possible, however, to numerically search for desired mo-
tions such that and to restrict the task to
such motions. Moreover, notice that
for some , which (slightly) simplifies the problem. Most
importantly, other types of controllers can be tried, e.g.,

. By a density argument, we know that
such an input can be approximated by smooth controllers. Also,
piece wise constant inputs may be applied. Notice that com-
binations of such controllers is also possible; see [16]. Still, an-
other solution is to apply a control during the phases [1],
[7]. As noted in Remark 4, however, this is feasible only when

, which may be a restrictive assumption. The goal is
then to control the reduced-order system ,

to get detachment

at some and with . Finally, it is possible
to derive tracking controllers for the robot, by designing de-
sired trajectories on under the constraint

and the boundary conditions
, , , . This process

may not be easy in certain cases.
Remark 6: Notice that from Lemma 3 we may deduce a se-

quence of inputs , hence . Those values can
be used in Step 2.

The explicit derivation of in (41) is in general possible
only if the vector field is linear in and is related to Prop-
erty 1). This feature is common in such manipulations in which
integration is needed [7], [8]. The second equation, however,
can be obtained in a more general setting for mechanical sys-
tems. Indeed, if and denote the inertia matrices
of both subsystems in (11) and (12), respectively, and
at impacts, then it is easy to show that

(43)

and

(44)

with as in Lemma 3. Clearly, , , and are full-rank
provided and are. Thus, we have5 the following
lemma.

Lemma 7: The second algebraic equation in (41) is solvable
if and only if the matrix
has full row rank. Then

(45)

with , as in Lemma 3, , and
Ker .

Notice in particular that the conditions of Lemma 7 imply
and because rank

, which indicates that in case we deal with
Lagrangian mechanical systems, implies to fit

5Similarly as for Lemma 3, we keep the notationm, although only the case
m = 1 is analyzed for the moment.
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within Lemma 7 (and part 2 of Lemma 3) framework. If
and we have to search for suitablesuch that

.
Notice that the results of Lemmas 3 and 7 are not equivalent,
although the well-conditioning of the matrix is
useful in both cases.

The canonical form is not needed to perform Step 1, as
the result of Lemma 7 shows. It greatly facilitates Steps 2 and 3,
however. Let us notice that contrary to the controllability of the
impact Poincaré mapping associated with (11), the input/output
strong decoupling of the “free-motion” system with inputand
output is a property that facilitates the control design, but it is
not a fundamental property.

Remark 7: The control design method based on the canon-
ical form in (38) applies to various systems, like some hopping
robots, jugglers, and manipulators with dynamic passive envi-
ronments. The system in (40) and the two DOF juggler have a

, however, that is not defined globally. This obstacle may be
overcome by either performing some other coordinate transfor-
mations or by adding a DOF and an input, i.e., by increasing

. Consider, for instance, the two DOF juggler as in Fig. 2
with and ( ). It is easy to verify
that the choice of the quasicoordinate , for
as defined by the constraint in (9) yields a relative degree
that is not well-defined in the neighborhood of the subspace

. Now, if
( ), , we get

for some
smooth function . Thus, the space in which the system loses
its relative degree with respect to both and reduces to

. Comparison with
shows that by suitably switching betweenand , the system
may be partially linearized to the canonical form in a much
larger work space. The whole analysis of the two DOF juggler
will be the object of future investigations and is not done here
for the sake of briefness of the paper.

C. The MIMCO Case6

This subsection is devoted to extending the foregoing SISCO
setting to the MIMCO case ( , ). We have seen
that control of the partial impact Poincaré mapping associated
with (11) is facilitated if , even if (consider,
for instance, the two DOF juggler with ). The first step
of the recursive method requires also in general ; see
Lemma 7. Moreover, it is clear that the partial I/O strong decou-
pling performed in (38) requires . Notice that simple
examples exist, in which several unilateral constraints naturally
appear: hopping robots [consider, for instance, the kangaroo in
(40), and rotate it to obtain a compass gait with ], the two
DOF juggler with , building models relying on the simple
rocking model [40], vibratory feeders [34], and nonprehensile
manipulation systems.

1) Simple Multiple Impacts:When , the design of
the control scheme requires more care than for the codimen-
sion one case. As pointed out above, multiple shocks create
modeling problems. For control purposes, however, we can

6Multi-input-multi-constraint.

suppose that a correct impact rule has been defined, without
explicitly specifying it. This process may be a solution for the
control of “objects” with ; see Lemmas 3 and 7.
A first approach is the direct extension of the developments
in Section III-A to the case ofsimple multiple shocks: in
other words, the object always strikes the robot at the same
singularity of the admissible domain of the configuration
space [that is defined by ,

]. Therefore, the codimension one setting extends
to this codimension setting once an impact rule is
defined. To simplify, assume orthogonality of the attained
constraints in the kinetic metric; i.e.,

. In this
case, it is known that Newton’s conjecture in (4) can be
extended to the case . To simplify again, assume that

for all . Then, the settings of Lemmas 3 and 7 can be
used with .

As an illustration of Lemma 3, let us consider the two DOF
juggler with ( ) and , whose partial
impact Poincaré mapping is given in (35). The computation of
the matrix shows that rank
, using the fact that . Adding a

horizontal DOF to the robot (and modifying and in
accordance), however, it is possible to show that
has rank 2. Thus, provided (37) is solvable, we deduce that we
need , , and to apply Lemma 3-sufficient
conditions.

We conclude that multiple shocks improve the controllability
properties of the object’s partial impact Poincaré mapping (see
the second item of Lemma 3): this is not surprising because a
multiple impact has more capabilities of reorientation of the ob-
ject after a shock. Notice also that item 2) may become difficult
to satisfy because it implies that the “robot” is able to strike the
“object” at any point of its orbit. Because we assume that colli-
sions are restricted to some subspace of the admissible domain
boundary and because orthogonality conditions generally imply
particular configurations of the whole system at, the “robot”
should possess enough DOF to assure 2). Consider the two DOF
juggler with and . Obviously, the robot is not able
to satisfy 2) because and the rotational DOF is use-
less in moving the point in the object’s configuration space

. Add the horizontal DOF to the robot. The table
singular point can now attain any point in the -plane.
Such mobility problems depend on the application at hand.

2) Successive Simple Impacts:Now, deal with tasks that
consist of successive simple collisions. Indeed, it may not be
desired to have in certain systems, or even impossible
(think of dynamic backlash: , but ). We notice
at once that the controllability as defined in Definition 3 must
be modified to cope with possible successive collisions with
different constraints . Indeed, the restitution rule may
change from one shock to the next, hence, modifying the partial
impact Poincaré mapping as in (34). In other words, the form
of the mapping depends
on which constraint is striked. Within this setting,
we conclude that it is not possible to derive an explicit form
of the application that drives the state , without taking
into account the order of the attained surfaces (this is a similar
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conclusion as the one in [13] concerning modeling of multiple
shocks). Assume that the vector relative degree
of the system (11), (12) with input and output
is globally defined, so that strong I/O decoupling can be
performed. Then, the second subsystem in (38) takes the form

if

for (46)

We thus restrict ourselves to tasks involving a succession of
simple impacts with the surfaces . Let us modify As-
sumption A as follows.

Assumption E: exists such that given an im-
pact time with the surface exists such that

• can be given an arbitrary value;
• can be chosen as desired on the object’s orbit;
• on , for all ;
• for all , .

In other words, the “robot” can strike the “object” on any
point of the object’s orbit, with any preimpact velocity, with
an arbitrary constraint, and with a viable control. Such viable
inputs can be derived similarly as in the SISCO case. Vi-
ability conditions, however, are more stringent because of the
fourth item in Assumption E; see, e.g., [16] for dynamic back-
lash as the two carts with a hook in Fig. 2. Define a sequence

of indices .7 there-
fore fixes the ordering of the successive simple impacts with

. Notice that, for each , possible sequences
exist. The impact Poincaré mapping is thus defined between
times for . Mimicking what we have done in
(34), we get on

. Then, we have on the application

, and so

on for the whole sequence . Defining , ,
so that represents the number of sequences, ,

, , , and

, we obtain

(47)

Definition 4: Let Assumption E be true. Then, the subsystem
in (11) is controllable through the impacts if at least one se-
quence exists such that the associated impact Poincaré map-
ping in (47) is controllable with input , whose
entries satisfy the preimpact velocity condition.

In practice, we have to fix , then search for one sequence
among the possible ones, such that controllability holds. Al-
though it might appear clumsy, such enumerating procedure is
inherent to systems involving multiple shocks [13]. If the’s
are nonlinear in general, only local results will be obtained. In

7Clearly, thisn has nothing to do with the number of DOF’s of the system in
(1).

the framework of Lemma 3, we get the special structure for
in (47)

(48)

with and is
defined similarly. This special structure should be used in fu-
ture works to prove further results on controllability and stabi-
lizability of such closed-loop impact Poincaré mappings. The
concept in Definition 4 may provide us with a starting point to
study controllability (in the sense of Definition 2) of the kan-
garoo with and successive shocks with both feet.

Remark 8—Object’s Controllability:Notice that we may
also consider the kangaroo in (40) and add one DOF in the
leg that contacts the ground to get . It is, however
possible in certain cases that the free-motion uncontrollable
part of the “robot” plays a role in the overall controllability
and stabilizability because it may be indirectly “controlled”
via the multiplier , which depends on . With this in
mind, we conclude that the controllability of the object (see
Definition 2) is a complex property. Notice further that because
of the ballistic constraints or to the designer requirements, we
may have to choose in Definition 2 (for instance by
targeting the apex of the “object’s”; orbit). Then, we can state
that if the object is controllable in the sense of Definition 3, if

is controllable as in 1)8 and if a viable input exists, then
the object is controllable in the sense of Definition 2; i.e., we
can find a viable input that drives the state to the desired target
at time (perhaps after a series of impacts).

IV. CONCLUSIONS

This paper deals with the extension of feedback control strate-
gies for one DOF jugglers previously proposed in [37] to a
class of complementary-slackness “jugglers.” The interest for
studying the control properties of such systems is twofold: first,
they belong to a large class of complementary-slackness sys-
tems whose controllability and stabilizability properties have
not yet fully been understood; second, they encompass many
impacting controlled systems. Although it is clear that suitable
controllers will depend on the particular application at hand (the
goals and the technological constraints are different from one
system to another), it is important to recast the analysis of such
systems into a general stabilizability and control design frame-
work.

This study should, in our opinion, be seen as a first step to-
ward a better understanding of control properties of the gen-
eral class of complementary-slackness juggling systems as in
(11)–(13). Indeed, we believe that the developments in this note
pave the way toward a general control design method for such
nonlinear nonsmooth systems and shed a new light on a topic
that has been the object of many studies in the past 10 years.

8It is easily checked that this is the case for the one and two DOF jugglers, the
one-DOF and the kangaroo hoppers. This process is less direct for the one DOF
flexible joint robot with a passive environment as in Fig. 2. We may also imagine
“objects,” e.g., on moving belts, with dry friction and other nonlinear effects,
for which� takes more complex forms and is not necessarily controllable.
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Two steps have been proposed. The first one is to examine the
object’s controllability through impacts, by studying the con-
trollability and stabilizability properties of the closed-loop im-
pact Poincaré mapping associated with the subsystem in (11),
with the robot’s preimpact velocity as a fictitious input.
The second one concerns the controller design. It uses some
state-space transformation (partial linearization), which allows
us to perform a recursive algorithm from which a viablecan
be calculated. Although some parts of such method have been
alluded to in the related literature, their systematic analysis in
a general control framework is thought to be proposed for the
first time.

The limitations of the proposed design method have been
pointed out, as well as some alternative paths (e.g., concerning
the “robot’s” control during flight phases). We have also studied
the role played by some properties of the subsystems (orders,
relative degrees, number of inputs) as well as the restitution rule,
on the controllability of the system, both in particular cases (two
DOF juggler) and in a more general framework. The two DOF
juggler analysis is expected to serve as a basis for other types
of systems. Future work should concern the extension of this
work toward more complex complementary-slackness jugglers
(adding DOF’s in both the “object” and the “robot,” taking into
account friction and more complex restitution rules), in the out-
lined stabilization framework. In particular, the influence of the
various characteristic numbers ,
the friction impulse ratio [4], and of the contact geometry on
the intermediate controllability properties of the “object’s” dy-
namics has been studied all through the paper and should be in-
vestigated in more detail to enlarge the class of systems to which
the proposed developments apply.
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