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On the Control of Complementary-Slackness
Juggling Mechanical Systems

Bernard Brogliato and Arturo Zavala Rio

Abstract—This paper studies the feedback control of a class h(q, t) >0 (2)
of complementary-slackness hybrid mechanical systems. Roughly, A >0 )\Th( H=0 (3)
the systems we study are composed of an uncontrollable part (the = )=

“object”) and a controlled one (the “robot"), linked by a unilateral —\yhare the classical dynamics of Lagrangian systems is in (1),
constraintand animpact rule. A systematic and general control de-

sigh method for this class of systems is proposed. The approach isthe set of unilateral constraints '.S in (2) _V\_/Iﬂﬁq, t) € Rn.l’

a nontrivial extension of the one degree-of-freedom (DOF) juggler and the so-called complementarity conditions [14] are in (3),
control design. In addition to the robot control, it is also useful to whereA € R™ is the Lagrange multiplier vector. We assume
study some intermediate controllability properties of the object's  frictionless constraints; € R”, M(q) € R™™, C(q, )¢ €
impact Poincaré mapping, which generally takes the form of a non- R, g(¢) € R, andu € R™ are the generalized coordinate

linear discrete-time system. The force input mainly consists of a . . . L .
family of dead-beat feedback control laws, introduced via a recur- vector, the inertia matrix, the Coriolis and centrifugal terms, the

sive procedure, and exploiting the underlying discrete-time struc- gravity forces and torques, and the control input, respectively,
ture of the system. The main goal of this paper is to highlight the and7” € R™**"=. In order to render the dynamical system com-

role of various physical and control properties characteristic of the  plete, we must add to (1)—(3) a so-called restitution law that re-
system on its stabilizability properties and to propose solutions in lates postimpact and preimpact velocities. Such physical rules
certain cases. ~are necessary [30], [40]. The most widely used restitution rule
Index Terms—Complementary slackness, feedback, hybrid, im- s known as Newton’s conjecture [4]. It is based on the knowl-
pact Poincaré mappings, nonsmooth, underactuated, viabililty. edge of restitution coefficients. Whenh(g, t) = h(q), it is
represented in its generalized form as follows:

a(t0) Vehila(te) = —eiq(t;) T Vehia(tn))  (4)

) ) whereV, h; € R*, 1 < i £ m, andt; generically denote

R ECENT researches in the robotics and the systems afd impact times (the superindicesand— stand, respectively,

control communities on mechanical systems subject {gr the instants just after and just before the collisions), with
unilateral constraints have focused on stabilization of manipwt;)Tvqhi(q(tk% #:) < 0. In case of a codimension 1 con-
lators during complete robotic tasks [10], [39], well-posednegggint (n = 1), ¢ € [0, 1] from energetical arguments. The
and system theoretic issues [9], [30]-{32], walking and hoppingstem in (1)—(4) is complete, in the sense that, given preimpact
machines [1], [5], [7], [8], [12], control of juggling and catchingyelocitiesg(t; ), we are able to calculate the postimpact veloci-
robots [6], [26], [27], [33], [37], systems with dynamic backlaskes and continue the integration after the collision has occurred.
[2], [16], stabilization of polyhedral objects in some manipulaygtice that the system in (1)—(4) is a complex hybrid dynamical
tion tasks [35], and nonprehensile manipulation [11], [19], [24%ystem [32]. This class of dynamical systems can be divided fur-
see [19] for a more complete bibliography on this last topigher into subclasses. In particular, the case in which the free-mo-
The work presented in this paper focuses essentially on the lgsf dynamics are controllable has recently received attention
five listed topics. The open-loop models used are basically rig{igll], [39]. This class does not, however, cover some impacting
body dynamics with a set of unilateral constraints on the genegpotic systems. Indeed, write the dynamical equations of a two
alized position. Such hybrid dynamical systems may be repfsgree-of-freedom (DOF) juggler; i.e., a system composed of

I. INTRODUCTION

A. General Introduction

sented as follows: an object (a point mass) subject to gravity, which rebounds on a
M(q)i+ C(q, §)g + g(q) =Tu+ V,h(g, ) (1) controlled table, as shown in Fig. 1:
mid = — Ap sin(f + «) — Az sin(f — «) (5)
Manuscript received November 28, 1997; revised June 18, 1998. Recom-mlg =—myg+ A cos(f + @) + Ay cos(f — a) (6)

mended by Associate Editor, O. Egeland. This work was supported by the Centre = =%
National de Recherche Scientifique, France, Consejo Nacional de Cienciay Tec- [o6 =wu; — A1 [(y — Y) sin(f + «) + 2 cos(6 + «)]
nologia, Mexico, and the Agency of Industrial Science and Technology, MITI,

Japan. = Xof(y = Y)sin(f — ) +z cos(f — )] (1)
B. Brogliato is with the Laboratoire d’Automatique de Grenoble (UMR 5528 V —ae — _ _
CNRS-INPG), ENSIEG, BP 46, 38402 St. Martin d'Hores, France (e-mail; "2} =2 ~ AL cos(f + a) — Az cos(f O_‘) (8)
Bernard.Brogliato@Ilag.ensieg.inpg.fr). hi(z,y,Y,0)=w—Y)cos( +a)—xsin(0+a) >0
A. Zavala Rl'q was with the Mechanical En_gineering_Labqratory (MITI) ho (a:, Y, Y, 9) — (y _ Y) COS(9 _ a) -z sin(9 _ a) >0
Tsukuba, Ibaraki 305-8564, Japan. He is now with the University de Queretaro, T
Facultad de Ingenieria, DEPFI, 76010 Queretaro, Qro., Mexico (e-mail: A h(z,y,Y,0)=0, A>0 (9)
azari@sunserver.dsi.uagq.mx). L .
Publisher Item Identifier S 0018-9286(00)01064-3. Restitution rule in (4) (10)

0018-9286/00$10.00 © 2000 IEEE



236 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 2, FEBRUARY 2000

VibE---Q l'g

Y2 |-
777 lu

Fig. 1. One and two DOF jugglers.

Notice that the ball dynamics in (5) and (6) are not controlldike the impact damper [2], [16], we may consider that (11) cre-
because only gravity acts on the ball. Hence, the only way &bes disturbances in the dynamics of (12), or on the contrary, we
influence the trajectory of the ball is through impacts. This isiay desire to control (11) using the impacts. In this paper, we
a strong motivation for considering the feedback control ofill mainly focus on the control of; from the inputw in (12),
two DOF juggler, as in (5)—(10), because it represents a simia sequences of impacts. In other words, we shall restrict our-
plified model of manipulation of objects through “controlled”selves to control tasks with zero-measure contact phases. The
collisions with a robotic device [35]. We may suppose that theontrollability and stabilizability properties of such hybrid sys-
length of the surface is infinite. Hence, the impacts always oca@ms, which depend on the vector fieldsin (11) and (12) arid on
with the same side of the table. In this paper, we shall use tims(13), have not yet been fully understood. It is advocated here
example as an illustration of the influence of the physical anbdat impact Poincaré mappings [40] provide a suitable frame-

control parameters on the control design. work for such analysis. Let us introduce the following defini-
tion.
B. A Class of Complementary-Slackness Hybrid Systems Definition 1: A viable controller« is a functionu(q, 4, t)
Juggling robots may also be considered as a particular 46N ;hat Dh(g,t) > 0 or {h(g(r0), o) = 0 and
of a class of complementary-slackness systems (19 )* Vyh(r0) = 0} between prqgrammed impact times,
and 2)z (¢) and z»(t) are right-continuous of local bounded
2L =f1(z1,t, A) (11) variation (LBV) in time.
2o =fa2(z2, u, A) (12) Here, programmed impacts are defined as those shock in-

stants planned in the control design (contrary to accidental im-
pacts that may be caused by various model uncertainties or dis-
whereu € R™, z 2 (qF, ¢DYT e R, i =1, 2 (ny; andns turbances in the control loop). As we shall see, the sequence

may have the same or different values), and a restitution rdi&: }xen depends on the controller design that in turn must in-
has to be added to complete the model. Notice thatéf R™, corporate the object ballistic constraints. Let us recall that an
such a system mag priori evolve in2™ different modes [32]: LBV function possesses a countable set of discontinuity points
its hybridness is therefore intrinsic. As indicated in the title arld1]; hence, a viable input ensures the well-posedness of the
the abstract, we choose to generically name such systems closed-loop system.

glers even though, as we shall see later, other types of sysDefinition 2: The “object” in (11) is controllable if given
tems may fall into this class. In this setting, (11) plays the rofe 7', 7" > t, T’ satisfying the object’s ballistic constraints?)

of the “object,” and (12) is the “robot.h(-, -, -) may repre- andzx(t), such thati(qi(¢), ¢2(), ¢) > 0, andz.(T’), a viable
sent the “distance” between the object and the robot, but thiscntrol laww that drivesz; from z, () to z,(T') exists, with

not always the case, as some examples will prove. A necessaig: (1), ¢2(T), T) = 0.

condition to transform (1) into (11) and (12) is that a general- The study of such notions, however, requires some interme-
ized coordinate transformation = Q(qi, ¢») exists and ful- diate steps, for which some basic properties are important (in-
fills (0Q/9q¢}) M (q)(8Q/dq}) = Oforalli € {1,---,n,}, terestingly enough, some of them are similar to those done in
j € {1,---, ny}. Also considerx = 0, and notice that the [17] for the control of a class of cascaded nonlinear systems
system in (11) and (12) corresponds to (1) written in a nofat model some nonholonomic mechanical systems). Among
controllable canonical form. Such systems are therefore quif@se:

different from so-called triangular systems [15]. In particular, 1) the properties of the object’s floy., (¢; t, z1(tf)) =
settingA = 0, (11) and (12) are not in general locally feedback z1(t) on (tx, tr4+1) [explicit knowledge of the trajecto-
stabilizable because the uncontrollable mogdesire not nec- ries, or controllability with state; () and inputz; (¢;)];
essarily stable. The control problem for (11)-(13) may change 2) the controllability of (12);

depending on our goal: for instance, in a system with clearance,3) the controllability of (11) through impacts;

h(qb qo, t) 2 07 )‘Th(q]n q2, t) = 07 A 2 0 (13)
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4) the relative degréer* of h with respect tou and the capsulate the whole essence of the general problem. It provides

relative degrees™ of i with respect to; us, however, with a nice starting point.

5) ny1, no andn,; Lemma 1: Consider the dynamics of a one DOF juggler

6) the boundedness 9{ between impacts or the ability of madi + mig =X (14)
the robot to extracting energy to the object; 8 B

7) the restitution rule (i.e., the value of the restitution co- M2z +mag =u — A (15)
efficient ¢, the form of the constrairtt(, -, -), the codi- 1 —¥220, AMyr—y2)=0, A>0 (16)
mensionm, of the striked subspace in case of multiple 4, () — 42(t}) = —e[in (¢, )—92(t;)], e€[0,1]. (17)

shocks). :

. . L _r h h th

To illustrate the so-called ballistic constraints in Definition Ztsir%gaosei;stesltg)gfﬁlldtﬁea;gllzuwﬁngt c?)tn?rrg)llirzgsgt or a contact
. 0 . .

consider for instance the one DOF juggler in the next section,
with 41 (T) < w1(t): clearly, we must wait for the ball to u =mag + mav (18)
fall before hitting it, and the required time depends only on v =A(t — t1) + By (19)
the vector field f;. The interest for considering systems a$ < o with

in (11)-(13) is that their study finds potential applications = ™

in all types of juggling robots, catching tasks, nonprehensild, =2 (g3(k+1) +520) — % (" (E+1) —y(k))
manipulation (pushing-and-striking tasks with a workpiece k k

free to slide on a work surface, which frequently occur in 5 5 (20)
robot_ic applicat_ions [24]), stabilization of manipulgtors ong,, = — - (@3 (k+ 1) + 200(t1)) + = (5" (k + 1) — y(k))
passive dynamical environments (some “hammer-like” tasks k k

are possible), and platoons of carts with a leading cart. It is (21)
also noteworthy that walking and hopping machines may be sy [o2(+45) — 20 (4 (k + 1) — y(k

written in a similar form as in (11)-(13), where (11) mayd, :yl( ) \/yl( w) 20 ) (k) (22)
represent the dynamics of the mass center when all of the feet 9

are detached from the ground; see, e.g., [1] and [7], as well as Blk+1) = l+m

rocking-block-like models of buildings excited by earthquakes l+e

[40], whose active coptrol is a tppic of research ['18].' Fi'nally, = —|—T —< \/?)f(tt) — 29 (y*(k + 1) — y(k))
models of systems with dynamic backlash also fit within the te

framework in (11)—(13) (e.g., the impact damper; see [40] and (23)
references therein). Therefore (11)—(13) constitute a large clagserey(k) 2 y1(te) = ya2(ty), andy*(k + 1) andyi(k + 1)
of dynamical systems that deserves close attention and whage chosen such that

control is a challenging problem, as many of the above-cited 2 ()
i it . A J ylk) + B i gy (k) > 0
references witness. _ _ vik+1) < hp = 29 (24)
Contrary to most of the previous works on the topic, we y(k), if 1 (k) < 0

shall consider the full dynamics of the system (11)—(13).

are therefore interested in designing directly the controller

u that is to be implemented on the robot and to propose a vt +di) —y2(k+1) <0. (25)

general control design framework for complementary-slack-

ness juggling mechanical systems. In Section I, we brieflhen, for allk > 0

recall the controller and the closed-loop analysis for the one 1) v (¢) — y2(t) > 0,Vt € (¢, tx + di);

DOF juggler that constitutes the basic benchmark example of2) ¢;,; = t; + dy;

complementary-slackness juggling systems. Controllability 3) y(k + 1) = y*(k + 1);

concepts based on the study of some impact Poincaré mappingg) g, (tktrl) =gk +1).

associated with the object are introduced, which are thoughtRemark 1: The control input force (18)—(21) is based on

to be useful for the overall control design. Section Ill presenis dead-beat control strategy (inversion of the controllability

the control strategy and the closed-loop analysis for a matgammian). Other dead-beat inputs can be derived by simply

general class of complementary-slackness juggling systemgding positiony, or velocitys. feedback to the robot, but they

The codimension ongm = 1) case is analyzed first. Then,may not be viable inputs. Such controllers are basically open

the multiconstraint case is examined. Conclusions are givenggp. We notice from (18)—(25), however, that the controller

Section IV. The relationships with various published results ajg computed from the value of the statet§t(which does not

pointed out throughout the paper. necessarily mean that the states are measurgq. Property 1)

may be used to perform an indirect measurement by measuring

Il. ONE DOF JGGLER for instance the apex of the object’s orbit. Consequentlig

In this section, we briefly recall the results presented in [373 state feedback for the system considered as a discrete-time

The proofs can be found in those references. As we shall dem

strate in the next section, this benchmark example does not enl_:rom p“’pefty 1).itis clear tha_t wemay rep_lac_e the dyna_mlcs
In (14) by any integrable vector field. Difficulties in calculating

1As defined in [23]. the flight times may occur, however, (hendg), for instance, if

Rerator at the shock timeg. .
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some damping is added on the object. In practice, we may use a
numerical estimation af;, or study conditions under which the
presented scheme is robust with respect to such uncertainty. As
shown in [37], the next step is to define the signgliék + 1)
andyj (k + 1), which can be regarded as the desired trajectory
of the ball, whereag; in (23) is the desired robot’s preimpact

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 2, FEBRUARY 2000

whered,, andi;(k + 1) are given in Lemma 1, and for
some functionf;.

Step 2:Introducing the values in (31) into (30), we get
FEy(dy, 95(k + 1), Ay, By) = 0 for some functionFs,
from which we deduced;, and By, which are equal to
those in Lemma 1.

trajectory. We still consider the system at a generic impacttime ¢ Step 3: Check viability, i.e., the sign of the function

ty.
Lemma 2: Let y*(k + 1) andyj (k + 1) be given as

Yd, if hy > ya

y<k+1):{y(/€)+7’, if Ay < ya (26)
" | Ya, if hi > ya
yl(k+1)_{\/ﬁ‘f‘zg(yd—y(/@)—’m if hi < ya
(27)
wheregy > 0, and~ is such that
y(k) +~ < Iy (28)

Then,(z, Ag) converges toward its desired valug;,, Ay) =

(Yas Ya; Ya, (1 —e—2em)/(1+¢))ya, (2/9)ya) after at most
two impacts, i.e.(zx4i, Apti) = (Tg, Ag) Vi > 2.

Notice that the logic conditions in (26)—(28) are necessary
because of the ballistic constraints imposed by the object’s mo-
tion, and they justify the difference between the desired values
(-)a and those denoted &§*. Such control strategy has been
shown to present several nice properties [37]: robustness with
respect to various uncertainties (measurement noise, restitution

coefficient), possibility of modification ofjf andy; to cope

with control saturations, and flexibility to cope with various ob-

ject’s orbits.
Remark 2 [Three-Steps Recursive Control Designpe-

scribe a systematic, recursive control design method, which
will enable us to recover the dead-beat strategy in (18)—(27) as

well as new controllers. Let us choose a structuredfg) as
v(t) = ARA + By, A = t — t;, with A3 and B, constant on

h(A) 2 yi(t) — ya(t) ON (g, trra).

It is noteworthy that the success of Steps 1 and 2 relies on the

invertibility properties of the first “subsystem” [which is not to

be confused with the mapping in (36) that is obtained assuming

thea priori knowledge of an input satisfying properties 1)—3)

in the introduction of Section I1] withA;, andy»(t,,,) as in-

puts, i.e., on the existence of solution to the algebraic equations

Fy = 0andZl; = 0. We can choose another controller structure

v(t). .
Remark 3:

» The use of open-loop controllers during flight times
[tx, tr+1) is further motivated by the results on control
holdability of sets of the form{¢: Cq > 0} [30]. It
is shown in [30, Corollaries 5.6.2 and 7.4.9] that, for
linear mechanical systeme ¢ + C¢ + Kq = T'u, such
sets are neither positively invariant (with = 0) nor
closed-loop holdable by static or dynamic feedback. (i.e.,
AF € R™>*2?" such that those sets are invariant under
u = Fz 2z¥ = (q, ¢). In other words, such control cannot
keepgq inside the set.) They may be open-loop controlled
holdable, however. Therefore, it is expected that in gen-
eral viability will be difficult to satisfy with time-invariant
closed-loop inputs (even on finite time intervals). At the
same time, this study shows that results on dead-beat
open-loop controllers for LTI systems [29, Theorem 5,
p. 3], do not straightforwardly extend to the unilaterally
constrained case; see [37] for counterexamples.

» The relationships with Buhler—Koditschek’s mapping and
mirror law [6] are explicited in [37].

(tx, tx+1). Integrating (14) between impacts or using (17), we

get

witisn) = v1(t) + () A — § A

. m-—e,, 1+e . _
(i) = 1+—m(y1 (B5) — 9Ak) + Tom U2(tii)
(29)
and
. A3 A2
Yo(tryr) = va(tr) + 9285 Ay + A =% + B =%
6 2 (30)

s ) A2
Ua(tpyy) = 2(0) + Aka + BrAy,

with m = ml/mg.
* Step 1:We chooseA;, andy»(t,,,) as the inputs of the
system in (29), such thag (tx+1) = #7(k + 1) and
ity ) = vi(k + 1). This step gives

(29) & Fi(yi(k+ 1), gi(k+1), Ak, 9a(tpy,)) =0

=

eltipy) = 30k + 1) (31)

I1l. THE CONTROL OF COMPLEMENTARY-SLACKNESS
JUGGLERS

In this section, we present the control strategy and the
closed-loop analysis for the two DOF juggler (as depicted in
Fig. 1). In parallel, we propose a general analysis and control
design method for the class of systems as in (11)—(13). The two
DOF juggler is thus shown to constitute a simple case of such
nonsmooth systems, which does not satisfy all of the desired
requirements of the general framework. Moreover, it proves
very useful in highlighting some peculiarities of the control
design that are difficult to consider in a too-general approach,
like the influence of the restitution rule and/obn property 3).
One objective to be considered is to design a torque imput
such that, given arbitrary initial conditions, the surface 1) hits
the object with a desired preimpact angular velocity, 2) at a
desired angular position (respecting the natural trajectories
of the ball: the ballistic trajectory of the system imposes a
time constraint on the control problem), and 3) the viability
conditions hold ¢ is aviable control). In the sequel, we shall
first assume that a suitable control inpusatisfying 1)-3) has
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been designed, and we shall investigate which trajectories fttee total Poincaré mapping state be{ng, 6(k), t;,)] with fic-
object can be made to follow when it is controlled only througtitious inputé(%)
the impacts with the rotating table. Then, it is shown how such

an input can be calculated. A |z(k+1)
ze(k+1) = [WH 1)}

A. An Intermediate Controllability Property ey ez [#(k) ez ]

1) The Two DOF Juggler CaseThis paragraph is devoted to N [521 622} [z)(/f)} * {523} o)
investigate Property 3) in Section I-B, i.e., what we have called 0
the controllability of the subsystem in (11) via the impacts with - |:gAz(é(k)’ xz(/{))} (34)
the restrictionn = 1. What follows is not to be confused with
the three-step recursive design method presented in RemartyRerecy; = 1, €15 = 13 = €21 = €23 = 0, £20 = —c if

We assume that an ideal control law, which guarantees 1)23%) = y(k) = (k) = 6(k) = 0. More generallyg;; =

above to be satisfied, exists. Hence, rather than providing &S(x(k), y(k), 8(k)) = ei;(x(k), y(k)) from (9). Recall that,
with a control law, this step aims at examining whether the |n‘ffom the assumptions we rnade7 the Coefﬁcien;wepend on
pact Poincare mapping associated with (11) is controllable whef( 1) and y*(k). Notice that, if the ball is initially at rest at
the preimpact velocity of the robot is considered as the inpyhe origin, then from (34) and (33) it follows thatk + 1) =
Clearly, if the answer is negative, whatever the contrallere (1 1) = A, = 0 because one must choaggk +1) = 0in

may find, the goal of the juggling (or manipulating-with-im-this case. Therefore, no impact occurs and the ball may start to

pacts) task will be limited. _ _ slide along the bar. In other words, those initial data are such that
To begin with, we consider the system in (5)—(10) th;lg: 0 the closed-loop impact Poincaré mapping is not defined because
andY = 0(i.e.,m = n, = 1,n2 = 2). Letusdenotgs:(k)" = the vertical orbit passing at the origin cannot be controlled. It

(z(tr), y(tr), #(ty ), 9(ty ). Integrating (5)—(7) ot tr+1)  suffices, however, to make the ball leave this position to make
and using the restitution rule in (9) and (10), it is possible i@ detach from the bar, using a suitable input. (For instance, in

show that the one DOF case, the proposed input assures detachment even
if the two bodies are initially in contact at rest orif= 0 [37].
ys(k+1) = As(ys(k), Ap)ys(k) When X < 0, detachment becomes possible and is classically

+ Bx(ys(k), Ak)é(k) + Cs(Ar)AL (32) checked by searching for the first derivatit€’ that is >0,
with h®*) = 0, VEk < j.) Now, derive the same partial impact

with §(k) 2 (77) (in the following, k will stand for preimpact POIncaré mapping whem, = 2. We get
values). Now, if we are able to design a torque inpstich that . . .
1)-3) above are achieved, théf:) can be considered as the {”_C(k + 1)} —¢& {”?(k)} 4 & [ o(k) }
input of the system (5), (6), i.e., (32). Indeed, notice that 2) fixes gk +1) y(k)

the next impact time. [In case the ball has a vertical motion, it B [ . 0

can pass twice at the same position while going upward or down- gAL(O(k), Y(E), xx(k))
ward. The choice of the desired flight-tinde} (= dy)2 elimi-

nates one of the two; see (22) for the one DOF juggler.] Now nfer some matrice$’ and£”. Intuitively, the controllability and
tice that because we assume that we kn@uch that:(k+1) =  stabilizability properties of the mapping in (35) should be better
*(k+1),y(k+1) = y*(k+1) [thend(k+1) = 6*(k+1) from than those of the mapping in (34).

(9)], we can expresd;, = Ak (ys(k), 8(k), z*(k+1), y*(k+ 2) Generalization: The interest for considering the con-

} (35)

1)) as trollability and stabilizability properties of the nonlinear
discrete-time systems in (34) or (35) is that this may provide
AF x*(k+1) — z(tr) us with a sequence of “input¢/(k) andY (k). More generally,
k= C - e — ; i i
end(ty) + eyt ) + e130(k) we may apply this philosophy to subsystems (11) and (12)
assuming as in 1)-3) that the following occurs.
gt + \/g)(t;’)Q —2g9(y*(k+ 1) — y(tx)) Assumption A:A viable v exists such that, gives (t),

= p - (33)  2y(t), an impact timet;, > ¢ exists such that
* g2(t, ) can be given an arbitrary value;

£ = (eij)1<i<3, 1<; <3 is the state-dependent restitution matrix * g1(tx) can be chosen as desired on the object’s orbit;
(q(th) = €4(t;,)) and withg(t) = exnd(ty) + e22y(ty,) + Mimicking the developments for the two DOF juggler, such
£236(k), and using the object’'s dynamics only (the robot dyan assumption allows us to derive a partial impact Poincaré map-
namics and the unilateral constraint are not needed at this staga)g with statej; (k) and inputj>(t;, ), sSimilar to the one in (34).
Clearly,z* andy* have to be chosen on the object’s trajectorRecall that the viability of: guarantees that the sequer¢g}
Substituting this expression into (32) yields the desired form & countable; see Definitions 1 and 2. Also, recall that the im-
the partial Poincaré mapping:(k+1) = Fx(zs(k), 6(k), k) pact Poincaré mapping is well defined. We can now set a first
2The notationA; emphasizes that the underlying philosophy is to reach (ejieﬁnition of Property 3), which we shall refine in Section lll-C,

k Definition 3: The subsystem in (11) sontrollable through

position on the object’s orbit, andk. is ana priori choice ofA, from which ) e e - : 4 )
the attained position results. the impactsif its partial impact Poincaré mapping obtained
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from Assumption A, with state vectog;(¢;7), and con- ular, because the rank condition implies < ns, then invert-
sidering ¢»(t;)) as an input restricted to values satisfyingpility of B* implies2m > n so thatn; < 2, indicating that
Vh{q(te), te)* 4(t; ) < 0, is controllable. such sufficient criterion is certainly too strong (it does not apply
The restriction on the inputs is a consequence of the phystosthe two DOF jugglers witlhk = 0) and must be refined. As
ofimpact (and is equivalent to > 0). Clearly, Property 1) (after we shall see in Section 11I-C, the case> 1 requires particular
Definition 2 in Section 1) is crucial for the calculation of thecare.
impact Poincaré mapping. Notice that the obtained partial im-The outlined method to study controllability of the object
pact Poincaré mappings are generally strongly nonlinear in teough the impacts is expected to yield a general method of
state and the input. Various types of auxiliary feedbacks mdgsign of manipulators such that, given some prespecified goals
then be applied, depending on their controllability and stal{in terms of the object shape and motion), we may be able to de-
lizability properties (local stabilization, input-to-state linearizasign the mechanical structure of the robot in accordance. For in-
tion, 1/0 decoupling; see [22, Section 14.3]). Denote the objestance it is clear that input—output decoupling of (34) with)
and the robot’s inertia matrices d¢; and M-, respectively, andy(k) as outputs is not possible because only one input [22]
(the arguments are dropped for convenience here). Define thests; hence, the possible interest to consider,is= 2 and
matricesM; = M; YV, h) M(V, T € R/2x(m/2) - (35), which indicates that we should preferably have= n.
M = (Ml_l + M;l)—l, Mi_l = (tih)TMi_l(tih) ¢ ingeneral, although this is not sufficient to assure controllability
R™>™ 4 = 1, 2. Then, using the restitution rule, the algebrai€f the partial Poincaré mapping-.
shock dynamics (that relate the velocity jump to the percussionRemark 4: Buhleret al. [6] made similar assumptions as 1)
vector; see, e.g., [40]), and integrating the object’'s motion @nd 2) and studied some controllability properties of a two DOF
[tx, trr1) (let us recall that the notatiohin Lemma 3 means juggler performing a vertical one-juggle task. In [7] and [8],
t,), it is possible to show the following lemnia. the control of a kangaroo hopping robot has been investigated.
Lemma 3: Let the subsystem in (11) have the foifi j; = In particular, controllability properties of the impact Poincare
g, whereM; € R("1/2x(n1/2) js 3 constant inertia matrix andMapping with respect to the true inputs have been derived. In
g € R™/2 is a constant generalized gravity vector. Then those works, the goal is to stabilize (locally) the system around a
lossless natural (with no input) periodic trajectory of the system
ik + 1) = A*(k)du (k) + B*(k)da (k) (su_ch trajec_tory_ does not exist in all juggling systems). Also
21 ks . notice that viability conditions do not appear because the control
+ My gA(G2(k), 21 (R), 2((k + 1)) (36) is applied during the contact phase, whose length is greater than
zero because itis assumed in [1], [7], and [8] that 0. Finally,
wherelA*(k) = (1 +e)My + I, andB*(k) = —(1 + notice that the underlying idea of extracting a discrete system
)M (Vg hMV 4, hT). The “object” is controllable through and a controlling one variable with another coordinate as the

the impacts in the sense of Definition 3 if the nonlinear disppyt has been used in the control of hopping robots [1], [8],
crete-time system in (36) is controllable, under the input copys).

straintVa(q(k))T (k) < 0. Now, assume tha¥,, hMV ,, h" Remark 5:
has full row rank. Then, this controllability property holds if the
pair (A*(k), B*(k)) is controllable and if the algebraic equa-
tion

» The results in [3] are not applicable (at most, they would
provide us with necessary conditions) because the “input”
py at impacts is signed, which is the reason why we have
introduced the “robot” preimpact velocity through the
restitution rule.

» The controllability properties of the “object” may also be

is solvable ing>(k), with VA(g(k))"4(k) < 0. analyzed using a similar basic idea to what has been done
Notice thatA* and B* depend on the ballistic constraints,  jn the vibro-impact literature to prove the existence of pe-

i.e., ¢ (k) cannot be chosen arbitrarily; see (26)—(28). The up-  rjodic trajectories in simple impacting devices with com-

perscriptx is to emphasize that* and B* depend on the desired plex dynamical behavior; see [20], [28], [36], and [40,

position trajectories. In other words, the controllability Property  section 7.1.4]. This process has been advocated in [38]

3) may depend on the initial dat@B*)" = B*"(B*B*")~! € and will be further developed in future works.
R(#2/2)x(71/2) denotes the Moore—Penrose generalized inverse.

The proof for the first part uses standard calculations of sho
dynamics. The second part follows by rewriting the system

(36) and using/(k) as an intermediate input so tha{k +1) = The foregoing subsection has been devoted to studing system-
A*(k)qu(k) + B*(k)v(k). From the rank condition aB*(k), atic methods to provide a designer with sequences of a “robot’s”
the result follows. This criterion, although restricted to a specifisreimpact velocities. We now pass to the second step of the de-
class of “objects,” is interesting because it allows us to study tBgjn. We have solved the one DOF juggling control problem
influence ofh (¢, t) on such controllability properties. In partic-using dead-beat control laws. A first question is: is it possible to
extend this kind of strategy to the two DOF case witk- 0 and

SWe keep the notatiom, althoughr» = 1 in this section, but some of the ' = 2 In other words. can we assure the requirements 1)-3)
developments that follow will be used in the multiple constraints case. Notice . h id d | ’ d for th . ler? Th
that necessarily here the codimensian of the striked surface satisfies. = ysmg the ideas developed for the one DOF juggler? The answer
m =1, butform,. > 2, M € Rmexme, iS, in some manner, yes.

(k) = go(k) + (B (k) M gAL(G@2(k), (k) (37)

k . . .
% Coordinate Transformations for Controller Design
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1) A General Framework for the SISE@ase: In order a measure [21]. Hences"), j > 3, is a distribution of order
to extend the previous ideas to more general complementajy- 2, and it follows that? = »* — 2. This result can be proved
slackness jugglers, let us first make the following hypotheseslso directly, noticing thal.v_,Lh = V AT M~V h with

Assumption B:n, = 1(= m). M = diag(M;, My) € R™*", that is different from zero as

Assumption C:The relative degrees', r are defined ev- long asV  h # 0 (true by assumption), which can be checked
erywhere. on examples. For the two DOF juggler and the kangaroo in (40),

Assumption D:r* = ns. r* = 2andg = 0. »* is not defined globally in these cases,

Lemma 4: If Assumptions B-D are satisfied, then the systerowever, because &f Note that, wherp = 0 (the permanently
in (11)-(13) can be transformed by a local diffeomorphismonstrained mode), the order of the systé®) isn; + 3 =
Fiz e (o)) iNto ny 41t =2 = 2((n)/(2 + n2/2) - 1),
5= fule £, ) The following lemma is also true.
(;1(7:) :1 1:_}7(271’ o Ao )\(’8)) b G, 22)u _Lemma 6: Coisiderthe system in (11) and (12) with output
o)) (38) hin(13). Then;* < ny.
=20, A=0, A=0 A
S(EH) = —eg(£r) To prove Lemma 6, let us consider = 0. Assume th_at
Pk k 7" =ns+ 7,7 > 1. Then, the system can be transformed in the

where normal form, i.e., a chain of, + j integrators. Thus, the strong
A if ry < ot accessibility distribution (i.e., the controllable subspace) has ev-
p= { is not defined ity > o erywhere dimension, + j [22, Th. 3.4.9, Def. 11.15], which is

a contradiction because the uncontrollable subspace has dimen-
. P A H . = . .
= (p, @, -, o 1))T 2 (g1, )T = B(21, 2), sionn [the .sub'syste.m (11) with = 0] Th|§ process shows
andg = h. that the partial linearization performed (&) is in some sense

The proof of Lemma 4 uses standard results of nonlinear cdR€ best result we may expect.

trol theory and may be seen as a partial linearization. Notice thaEX@mple 1: Consider now the system in Fig. 2, which rep-
I 0 resents a one DOF flexible joint robot that collides a dynam-
ny

B (n14n2) X (n1+n2) ical environment. The canonical form of the dynamics as in (38)

DF=102 02 | €R yields ™ = w(q, a1, g22, u, A, \) because™ = 4. Notice
Oz1 Oz that Definition 2 may not be always appropriate in this case,

is full-rank if and only ifo® /9z, € R™2*"2 is full-rank (which because it means that the aim of the task is to control the en-
is true because Assumptions C and D; [22]; actually, settivgonment, not the robot. The dynamics of the two carts with a
A = 0andy = 0, we see that; = f(z, t) represents the hook yieldsm = 2, m. = 1,7} = r§ = r{ = r3 = 2. The
uncontrollable zero dynamics of the system with outguecall  four DOF hopper studied in [1] also fits within our framework,
[22, pp. 336—-337] that the uncontrollable modes are necessaviiyh n,, = 2, ny = ns = 4, andm = 1.
modes of the zero dynamics). In the sequel of this subsectionFinally, consider the kangaroo hopper in Fig. 2. It is assumed
we shall assume that the for(X) is defined globally. Write that the total mass is concentrated at the joint. Its dynamics in
the vector fieldsf, and f» as fi0(z1) + V., kA and fog(#2) + coordinategz, y, 61, 63) with 83 = 1,6, + 1,6, is given by
g20(22)u + V2, hA, respectively. Denot¢” = (fio, fo) and 1, 5 =0, myj= —mig+ A, L6 =u+ LA\ cos 6,

T _ (nT T if oA . .
g = (0 920). Then’ it < T, we have 93 Ill)\ COSs 91, Yy + ll sin 91 Z 0, (y + ll sin 91))\ = 0,

ny?

W =Ly h+ LoLy ~hu A >0, (40)
o rZL R » This process is a simplified model of a kangaroo hopper, asin[1]

+ Lol ThA+ g Lvan Ly hA]. and [7]. In (40), we may take! = (x, y) andg? = (61, 63).
- "‘jo As expected, the fact that the constraint is frictionless hampers
—oif >0 us to create a horizontal motion, contrary to what is proposed

39) in[1],[7]an . Hence, the system in is not controllable.
(39) in[1],[7]and[8]. H h in (36) i llabl
The other expressions for derivatives ofmay be derived .lt IS not clear at this stage ho_w_ M OF friction at shocks may
L . NG influence the property in Definition 3.

similarly and allow us to obtait (21, 22, A, -, X'¥) and Three-Steps Recursive Methobet us now apply the

_ r*—1
G(z1, 22) = LgLi ™ h. . . three-step recursive control design method to the system in
Therefore, such a transformation generally yields meas%eg)

differential equations with singular distributions of ordet.
Notice that higher order derivatives?, > 2, may not be con-
tinuous, but in general are singular distributions of order1.

* Step 1:Chooseq;(tf,,), ¢f(trs1), and g3(trs1) via
h{q5 (tr+1), ¢5(try1), t) = 0. Obtain the expressions

In fact, we have the following lemma. @i (tr1) = Qu(Ax, tr, 21(8))
Lemma 5: If the system in (11) and (12) is a mechanical Q‘T(tﬂ;l) =R[z1(t ), ()] (41)
system with a unilateral constraibt= ¢ > 0, theng = r* — 2. Deduce the fictitious inputd, and®*(¢7)
The proof follows from the fact that, necessarily—= h is a . b k.
right-continuous function of bounded variation, apd= 7 is * Step 2: Choose - (1/G(z1, z2))lv =
' H(z, 22,0, ---,0)] [recall the system is considered

4Single-input-single-constraint. on intervals(tx, tx41)]. Choosev = Ef:o AkyiA"’.
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Fig. 2. One DOF flexible joint, two carts with a hook, and kangaroo robots.

Then, integration of the chain of integrators yields foat somer > 0 and with (¢, + 7). Finally, it is possible

1< to derive tracking controllers for the robot, by designing de-
. ot sired trajectoriesaq(t) on (tx, tx + di) under the constraint
0ilte) = Z ‘fz( g )' = h(qi(t), q2a(t), t) > 0 and the boundary conditioo@d(t,j) =
= =) 2(t5), 2a(tiyy) = 73 (try)s 21(8), 21 (k+1). This process
» A may not be easy in certain cases.
+ Z 1 ] al S Remark 6: Notice that from Lemma 3 we may deduce a se-
= U+l =g+ quence of inputg»(k) = ¢3(k), henceAj. Those values can
. Afjr**ﬂl_ (42) beusedin Step 2. .
, . _ . The explicit derivation of); in (41) is in general possible
Ca(ljciate thef;’” SN bty Sett:]m? ;i\j(t]:;) - I't% (k.) only if the vector fieldf, is linear inz; and is related to Prop-
?;2) c;n Ee re\’;v'rittecrzlcaes? a j;l iq? ' \I/Sk?erlg erty 1). This feature is common in such manipulations in which
- * ' .~ Integration is needed [7], [8]. The second equation, however,
AT = [Ay, -, Arand A € RP, B e R, rodration ! L7], 8] quarion, Nowsy

can be obtained in a more general setting for mechanical sys-
tems. Indeed, if/; (¢; ) and M2 (q2) denote the inertia matrices

of both subsystems in (11) and (12), respectively, arédp;,6;,

at impacts, then it is easy to show that

Hence, we must haye > »* to calculate the coefficients
AkJ.

» Step 3:Check viability on(ty, tx41) with the sign of
hA) = ¢1(t) = ¢(t) that is a polynomial inA, of

order(p + r* — 2). For instance, for the one DOF juggler pe=—(1+e)M(Vh)Tq(t) 2 0 (43)
with the control as in Lemma 1, we gkfA) = ¢(A) = and

A(A = di)Y(A), whereY (A) = (Ax/6)A — (¢r/di),  ¢(t5) = —(1 + )MV, WM(V )T 4(t7) + qu ()
and we can prove that(A) > 0 on (0, dx) [37]. (44)

The procedure applies to the one DOF juggler defining
y1 — y2. We retrieve the same controller as in Section Il, R
mark 2. In general, step 3, which is crucial for satisfing the co
trollability property in Definition 2, will be difficult to check.

with M asin Lemma 3. Clearlyl/, M, andM, are full-rank
providedV,, h and V,,h are. Thus, we havethe following
lemma

It is possible, however, to numerically search for desired m

tions ~{ (k) such thath(A) > 0 and to restrict the task to
such motions. Moreover, notice thatA) = A(A — dj)h(A)
for someh(A), which (slightly) simplifies the problem. Most

_Lemma 7: The second algebraic equation in (41) is solvable
it and only if the matrix(V,, h)M (V)T € R(/2)x(n2/2)
has full row rank. Then

i M

(]; (t;) = (V(h hﬂqu hT) 1+e

importantly, other types of controllergt) can be tried, e.g., . L
o(t) P, A 6. By a density argument, we know that o [ (k) +{(1 te)Ml - I}qj(tk )l MK (45)
such an input can be approximated by smooth controllers. Alg§th M1, as in Lemma 3¢ (¢,) = ®(21(t;, ), z3(f;, ), and
piece wise constant input€t) may be applied. Notice that com-7 € Ker[Vg,h']. N _
binations of such controllers is also possible; see [16]. Still, an-Notice in particular that the conditions of Lemma. 7 imply
other solution is to apply a control during the phages 0[1], 71 < 72 and2m > n; because rar®¥/, hMV,,h') <
[7]. As noted in Remark 4, however, this is feasible only whetin(n1/2, n2/2, m), which indicates thatin case we deal with
¢ = 0, which may be a restrictive assumption. The goal i@gdrangian mechanical systems,= 1 impliesn; < 2 to fit

then to control the reduced-order systém = fi(z1, ¢, A), 5Similarly as for Lemma 3, we keep the notation although only the case
H(zy, 22, A, -+, X))+ G(21, z2)u. = 0 to get detachment m = 1 is analyzed for the moment.
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within Lemma 7 (and part 2 of Lemma 3) frameworknif=1 suppose that a correct impact rule has been defined, without
andn; > 2 we have to search for suitab}¢ such that M; /14  explicitly specifying it. This process may be a solution for the
e)gr (k) + {(1 + e)My — I} (t)] € Im(Vy, hMV ,hT).  control of “objects” with(n;/2) > 1; see Lemmas 3 and 7.
Notice that the results of Lemmas 3 and 7 are not equivaleAt,first approach is the direct extension of the developments
although the well-conditioning of the matrik,, hM V,, kT is in Section Ill-A to the case okimple multiple shocksin
useful in both cases. other words, the object always strikes the robot at the same
The canonical form{¥) is not needed to perform Step 1, asingularity of the admissible domain of the configuration
the result of Lemma 7 shows. It greatly facilitates Steps 2 andspace [that is defined by, = Ni<i<m (g, t) = 0,
however. Let us notice that contrary to the controllability of the:. < m]. Therefore, the codimension one setting extends
impact Poincaré mapping associated with (11), the input/outgatthis codimensionn,. > 1 setting once an impact rule is
strong decoupling of the “free-motion” system with inpuand defined. To simplify, assume orthogonality of the attained
outputh is a property that facilitates the control design, but it isonstraints in the kinetic metric; i evqh;fol(q)thj =
not a fundamental property. Ve hF MYV by + Vi, hE My (q)V i,k = 0. In this
Remark 7: The control design method based on the canonase, it is known that Newtons conjecture in (4) can be
ical form in (38) applies to various systems, like some hoppirextended to the case. > 1. To simplify again, assume that
robots, jugglers, and manipulators with dynamic passive envi- = ¢ for all . Then, the settings of Lemmas 3 and 7 can be
ronments. The system in (40) and the two DOF juggler haveuaed withim, > 1.
r*, however, that is not defined globally. This obstacle may be As an illustration of Lemma 3, let us consider the two DOF
overcome by either performing some other coordinate transfquggler witha > 0 (m. = 2) andn, = 2, whose partial
mations or by adding a DOF and an input, i.e., by increasimgpact Poincaré mapping is given in (35). The computation of
n... Consider, for instance, the two DOF juggler as in Fig. the matrix” = B*(k) € R?*? shows that rankB*(k) =
with « = 0 andY = 0 (n, = m = 1). It is easy to verify 1, using the fact that(¢;) = Y (¢x) — y(tx) = 0. Adding a
that the choice of the quasicoordingte= h(x, y, 8), for .  horizontal DOFX (¢) to the robot (and modifying, and/. in
as defined by the constraint in (9) yields a relative degree accordance), however, it is possible to show fagk) € R2*?
that is not well-defined in the neighborhood of the subspabas rank 2. Thus, provided (37) is solvable, we deduce that we
= {(z, y, ): ysinf + zcos® = 0}. Now, if « = 0 needn, = 3, n2 =6, andm,. = 2 to apply Lemma 3-sufficient
(m = 1), ny = 2, we geth = —(g + (u2/m))cos@ — conditions.
(uy/I)[wcos 6 + (y — Y)sin 6] + g(z, &, 4, 6, ) for some  We conclude that multiple shocks improve the controllability
smooth functiory. Thus, the space in which the system losgsroperties of the object’s partial impact Poincaré mapping (see
its relative degree with respect to both andu, reduces to the second item of Lemma 3): this is not surprising because a
Z]', =A{(z,Y,y, 0) = (z,Y, Y, 7/2)}. Comparison withZ, multiple impact has more capabilities of reorientation of the ob-
shows that by suitably switching betweenandu., the system ject after a shock. Notice also that item 2) may become difficult
may be partially linearized to the canonical form in a mucto satisfy because it implies that the “robot” is able to strike the
larger work space. The whole analysis of the two DOF juggléobject” at any point of its orbit. Because we assume that colli-
will be the object of future investigations and is not done hesgons are restricted to some subspace of the admissible domain

for the sake of briefness of the paper. e boundary and because orthogonality conditions generally imply
particular configurations of the whole systentgtthe “robot”
C. The MIMCO Case should possess enough DOF to assure 2). Consider the two DOF

é@glerwnha > 0 andn,, = 2. Obviously, the robot is not able

to satisfy 2) because. = 2 and the rotational DOF(¢) is use-

| 5S in moving the poink, in the object’s configuration space
z, y). Add the horizontal DOEX (¢) to the robot. The table
singular pointh, can now attain any point in thee, y)-plane.
Such mobility problems depend on the application at hand.

2) Successive Simple Impactslow, deal with tasks that
consist of successive simple collisions. Indeed, it may not be
c&aswed to haven,. > 2 in certain systems, or even impossible

This subsection is devoted to extending the foregoing SIS
setting to the MIMCO casen(, > 1, m > 1). We have seen

with (11) is facilitated ifn; = n», even ifin = 1 (consider,
for instance, the two DOF juggler with = 0). The first step
of the recursive method requires also in generalk ns; see
Lemma 7. Moreover, itis clear that the partial 1/0 strong decou-
pling performed in (38) requires. = n,,. Notice that simple
examples exist, in which several unilateral constraints natura
appear: hopping robots [consider, for instance, the kangaro
(40), and rotate it to obtain a compass gait with= 2], the two
DOF juggler witha > 0, building models relying on the simple
rocking model [40], vibratory feeders [34], and nonprehensi
manipulation systems.

k of dynamic backlashn = 2, butm,. = 1). We notice
at once that the controllability as defined in Definition 3 must
be modified to cope with possible successive collisions with
ifferent constraint$; = 0. Indeed, the restitution rule may
change from one shock to the next, hence, modifying the partial

1) Simple Multiple ImpactsWhenm > 1, the design of impact Poincaré mapping as in (34). In other words, the form

the control scheme requires more care than for the codim&.the mappinges(k + 1) = Iy, j(2s(k), 42(k), k) depends

sion one case. As pointed out above, multiple shocks creSte which constrainty; = 0 is striked. Within this setting,

modeling problems. For control purposes, however, we Cgﬁ conclude that it is not possible to derive an explicit form
' ' ' of the application that drives the statg(k), without taking

6Multi-input-multi-constraint. into account the order of the attained surfaces (this is a similar
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conclusion as the one in [13] concerning modeling of multiplihe framework of Lemma 3, we get the special structureffor
shocks). Assume that the vector relative dedrge---, »*,] in (47)
of the system (11), (12) with input € R™ and outputh € R™

is globally defined, so that strong 1/0 decoupling can be @(j+1) =A"(a(s) + B (HUG)
performed. Then, the second subsystem in (38) takes the form + A7 - -A;MflgAan
+ooF Ml_lgAz—l—n—l—l—jn (48)

<Pg('rj) :Hj (Zlv 22, )‘7 Tt )‘(ﬂj)) + Gj(zlv ZQ)U’jv
Bi=rj—2, yj=9;20, @A =0, with A*(j) = AJ, (k + n + jn) - A, (k + jn) andB” is
. defined similarly. This special structure should be used in fu-
Aj20,1<j<m o ;
. T ture works to prove further results on controllability and stabi-
@ity ) = — e;0; () if hi(ty) > 0, lizability of such closed-loop impact Poincaré mappings. The
fori e {1, ---, m}, i £ J. (46) concept in Definition 4 may provide us with a starting point to
) ) ) ~study controllability (in the sense of Definition 2) of the kan-
We thus restrict ourselves to tasks involving a succession gﬂiroo withm = 2 and successive shocks with both feet.

simple impacts with the surfaces; = 0. Let us modify As- ~ Remark 8—Object’'s ControllabilityNotice that we may

sumption A as follows. also consider the kangaroo in (40) and add one DOF in the
Assumption E:u exists such that givem, (t), z2(t) anim- |eq that contacts the ground to gel, = 2. It is, however

pact timetgj) with the surfacep; = 0 exists such that possible in certain cases that the free-motion uncontrollable
. q'2(t(4j)’_) can be given an arbitrary value; part of the “robot” plays a role in the overall controllability

. ql(tkj)) can be chosen as desired on the object’s orbit; @nd stabilizability because it may be indirectly “controlled”

. onlt t(j)), hi > Oforalli € {1,--, m}; via the multiplier A, which depends om(g, ¢). With this in

. h‘(t(}))k> Oforalli  j.i e {1’ o m} mind, we conclude that the controllability of the object (see
v\ Js T ' Definition 2) is a complex property. Notice further that because

In other words, the “robot” can strike the “

_ 0S, 1 Obot _ object” on anyy¢ the pallistic constraints or to the designer requirements, we
point of the object’s orbit, with any preimpact velocity, W'thmay have to choos& # ¢ in Definition 2 (for instance by

an arbitrary constraint, and with a viable control. Such Viabl‘argeting the apex of the “object's”; orbit). Then, we can state
inputs «; can be derived similarly as in the SISCO case. Vit if the object is controllable in the sense of Definition 3, if

ability conditions, however, are more stringent because of tl(;ggz1 is controllable as in )and if a viable input: exists, then

fourth item in Assumption E; see, e.g., [16] for dynamic backpe opject is controllable in the sense of Definition 2; i.e., we

lash as the two carts with a hook in Fig. 2. Define a sequenggy, fing a viable input that drives the state to the desired target

Sp = {51, ---, sn} of nindicesj € {1, ---, m}.7 S, there- o4 ime T (perhaps after a series of impacts).
fore fixes the ordering of the successive simple impacts with

hs, = 0. Notice that, for eactr, m"™ possible sequence$,
exist. The impact Poincaré mapping is thus defined between
timestgj)” for j € S,. Mimicking what we have done in  This paper deals with the extension of feedback control strate-
(34), we getrs(k + 1) = F, (ax(k), @(tfl)”), tgfl)) on gies for one DOF jugglers prewou‘s‘,_Iy propOfed in [37] to a
[tfjl), t;j.ﬂl))- Then, we have O{tgfl), tg:z—;z)) the application class_of complementary-sla_\ckness jugglers. The mtere.sF for
) =\ L (sien) studying the control properties of such systems is twofold: first,
ws(b +2) = Fy,, (es(k +1), QQ(thrl A)’ frp ), and so they belong to a large class of complementary-slackness sys-
on for the whole sequenc®,. Definingj =k + jn, j € N, tems whose controllability and stabilizability properties have
so thatj represents the number of sequensgst; 2 [tx+jn, ot yet fully been understood; second, they encompass many
oy bl UG)T a [@(tf_i])»;;), o QQ(tﬁg:jn)], and impacting co_ntrolled systems. AIt_hough it |s_cle_ar that suitable
A . controllers will depend on the particular application at hand (the
F=F, o---0oF, : R®/2 x R""2/2 s R*2/2 we obtain : ; ;
o o1 ’ goals and the technological constraints are different from one
ex(j+ 1) = Flas(h), UG), - (47) System to another), itis important to recast the analysis of such
systems into a general stabilizability and control design frame-
Definition 4: Let Assumption E be true. Then, the subsystemork.
in (11) is controllable through the impacts if at least one se- This study should, in our opinion, be seen as a first step to-
guences,, exists such that the associated impact Poincaré mayard a better understanding of control properties of the gen-
ping in (47) is controllable with input’(j) € R"*2/2, whosen  eral class of complementary-slackness juggling systems as in
entries satisfy the preimpact velocity condition. (11)—(13). Indeed, we believe that the developments in this note
In practice, we have to fix, then search for one sequeri,e  pave the way toward a general control design method for such
among then™ possible ones, such that controllability holds. Alnonlinear nonsmooth systems and shed a new light on a topic
though it might appear clumsy, such enumerating procedurdligt has been the object of many studies in the past 10 years.

inherent to systems involving multiple shocks [13]. If tAg's ) ) . )
8]t is easily checked that this is the case for the one and two DOF jugglers, the

are nonlinear in general’ Only local results will be obtained. ltﬂwe-DOF and the kangaroo hoppers. This process is less direct for the one DOF

flexible joint robot with a passive environment as in Fig. 2. We may also imagine
“Clearly, thisn has nothing to do with the number of DOF’s of the system irfobjects,” e.g., on moving belts, with dry friction and other nonlinear effects,
(2). for which ¢, takes more complex forms and is not necessarily controllable.

IV. CONCLUSIONS
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Two steps have been proposed. The first one is to examine the2]
object’s controllability through impacts, by studying the con-
trollability and stabilizability properties of the closed-loop im-
pact Poincaré mapping associated with the subsystem in (11)3]
with the robot’s preimpact velociti (¢, ) as a fictitious input.

The second one concerns the controller design. It uses soré!
state-space transformation (partial linearization), which allows; 5
us to perform a recursive algorithm from which a viablean

be calculated. Although some parts of such method have beéf!
alluded to in the related literature, their systematic analysis in
a general control framework is thought to be proposed for th¢i7]
first time.

The limitations of the proposed design method have bee
pointed out, as well as some alternative paths (e.g., concerning
the “robot’s” control during flight phases). We have also studied
the role played by some properties of the subsystems (order{é?]
relative degrees, number of inputs) as well as the restitution rulgy
on the controllability of the system, both in particular cases (two
DOF juggler) and in a more general framework. The two DOH21]
juggler analysis is expected to serve as a basis for other types
of systems. Future work should concern the extension of thig2]
work toward more complex complementary-slackness jugglers
(adding DOF's in both the “object” and the “robot,” taking into [23]
account friction and more complex restitution rules), in the outq24]
lined stabilization framework. In particular, the influence of the
various characteristic numbers, ry, ni, ns, m, n,, ¢, M.,
the friction impulse ratiq: [4], and of the contact geometry on
the intermediate controllability properties of the “object’'s” dy-
namics has been studied all through the paper and should be i8¢
vestigated in more detail to enlarge the class of systems to which
the proposed developments apply. [27]

(28]
REFERENCES

[1] M. Ahmadi and M. Buehler, “Stable control of a simulated one-legged
running robot with hip and leg compliancd EEE Trans. Robot. Au-
tomat, vol. 13, pp. 96-104, 1997.

[2] A. Azenha and J. A. Tenreiro Machado, “Variable structure control of
systems with nonlinear friction and dynamic backlash,Pioc. IFAC
13th Triennal World CongrSan Fransisco, CA, 1996, pp. 512 -520.

[3] Z. Benzaid and M. Sznaier, “Constrained controllability of linear im-

pulse differential systemsJEEE Trans. Automat. Contrvol. 39, pp.

1064-1066, 1994.

R. M. Brach, Mechanical Impact Dynamics, Rigid Body Colli-

sions New York: Wiley, 1991. 133]

M. Buehler and D. E. Koditschek, “Analysis of a simplified hopping

robot,” Int. J. Robot. Resvol. 10, pp. 587-605, 1991.

M. Buehler, D. E. Koditschek, and P. J. Kindklmann, “Planning and con- [34]

trol of robotic juggling and catching taskdrit. J. Robot. Resvol. 13,

pp. 101-118, 1994.

[7] C. Francgois, “Contribution é’, la locomotion articulée dynamiquement[35]
stable,” Ph.D. Dissertation, Ecole des Mines de Paris, Sophia Antipolis,
France, 1996.

[8] C. Frangois and C. Samson, “Running with constant energyPrac.
IEEE Int. Conf. Robot. AutomatSan Diego, CA, 1994, pp. 131-136.

[9] W.P. M. H. Heemels, J. M. Schumacher, and S. Weiland, “Linear com-[37]

plementarity systems,” Eindhoven Univ. Technol., Intern. Rep. 97 1/01,

1997.

H. P. Huang and N. H. McClamroch, “Time optimal control for a

robotic contour following problem,TEEE J. Robot. Automatvol. 4,

pp. 140-149, 1988.

W. Huang, E. P. Krotkov, and M. T. Mason, “Impulsive manipulation,”

in Proc. IEEE Int. Conf. Robot. AutomafNagoya, Japan, 1995, pp.

120-125.

[29]

(30]
[31]

(32]
[4]
(5]
(6]

(36]

(38]
[10]
[39]

[11]
[40]

245

Y. Hurmuzlu, “Dynamics of bipedal gait—Part 1: Objective functions
and the contact event of a planar 5-link biped—Part 2: Stability analysis
of a planar 5-link biped,ASME J. Appl. Mechvol. 60, pp. 331-334,
1993.

A. P. lvanov, “On multiple impacts,Prikl. Math. Mekh, vol. 59, no. 6,

pp. 930-946, 1995.

P. Lotstedt, “Mechanical systems of rigid bodies subject to unilateral
constraints,"SIAM J. Appl. Math.vol. 42, pp. 281-296.

R. Marino and P. TomeNonlinear Control Design: Geometric, Adap-
tive, Robust Englewood Cliffs, NJ: Prentice Hall, 1995.

M. T. Mata Jimenez, B. Brogliato, and A. Goswami, “On the control of
systems with dynamic backlash,” Rroc. IEEE Conf. Decision Contr.
San Diego, CA, Dec. 1997.

I. Kolmanovsky and N. H. McClamroch, “Hybrid feedback laws for
a class of cascade nonlinear control systentSEE Trans. Automat.
Contr, vol. 41, 1996.

8] T.S. Lee, Y. H. Chen, and C.H. Chuang, “Robust control of building

structures,” inProc. Am. Contr. Conf.Albuguerque, NM, June 1997,
pp. 3421-3426.

K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,”Int. J. Robot. Resvol. 15, pp. 533-556, 1996.

S. F. Masri and T. K. Caughey, “On the stability of the impact damper,”
ASME J. Appl. Mechvol. 33, pp. 586-592, 1966.

M. D. P. Monteiro-MarquespDifferential Inclusions in Nonsmooth
Mechanical Problems: Shocks and Dry FrictionBoston, MA:
Birkhauser, 1993.

H. Nijmeijer and A. van der Schaftyonlinear Dynamical Control Sys-
tems London: Springer-Verlag, 1990.

A. lIsidori, Nonlinear Control Systems3rd ed.
Springer-Verlag, 1995.

M. A. Peshkin and A. C. Sanderson, “The motion of a pushed, sliding
workpiece,”|EEE J. Robot. Automatvol. 4, pp. 569-598, 1988.

London, U.K.:

] M. H. Raibert, H. B. Brown, M. Chepponis, E. Hastings, S. S.

Murphy, and F. Wimberley, “Dynamically stable locomotion,”
Robot. Inst., Carnegie-Mellon Univ., Pittsburgh, PA, Internal Report
CMU-RI-TR-83-1, 1983.

A. A. Rizzi, L. L. Whitcomb, and D. E. Koditschek, “Distributed
real-time control of a spatial robot juggletEEE Comput.vol. 25, pp.
12-24, 1992.

S. Schaal and C. G. Atkeson, “Robot juggling: Implementation of
memory based learninglEEE Contr. Syst.pp. 57-71, 1994.

S. W. Shaw, “The dynamics of a harmonically excited system having
rigid amplitude constraints—Part 1: Subharmonic motions and local bi-
furcations—Part 2: Chaotic motions and global bifurcatiodsSME J.
Appl. Mech, vol. 52, pp. 453-464, 1985.

E. D. SontagMathematical Control Theory, Deterministic Finite Di-
mensional Systems New York: Springer-Verlag, 1990.

A. A. ten Dam, “Unilaterally constrained dynamical systems,” Ph.D.
dissertation, Rijksuniversiteit Groningen, The Netherlands, 1997.

A. A. ten Dam, E. Dwarshuis, and J. C. Willems, “The contact problem
for linear continuous-time dynamical systems: A system theoretical ap-
proach,”IEEE Trans. Automat. Contwol. 42, pp. 458-472, 1997.

A. J.van der Schaft and J. M. Schumacher, “The complementary-slack-
ness class of hybrid systemgyfath. Contr. Signals Systvol. 9, pp.
266-301, 1996.

Y. Wang, “Dynamic modeling and stability analysis of mechanical sys-
tems with time-varying topologiesASME J. Mech. Desigrvol. 115,

pp. 808-816, 1993.

P. Wolfsteiner and F. Pfeiffer, “Dynamics of a vibratory feeder,” in
Proc. DETC'97, ASME Design Eng. Tech. CorBacramento, CA,
Sept. 14-17, 1997.

N. B. Zumel and M. A. Erdmann, “Balancing of a planar bouncing ob-
ject,” in Proc. |IEEE Int. Conf. Robot. AutomaBan Diego, CA, 1994,
pp. 2949-2954.

V. I. Babitsky, Theory of Vibro-Impact Systems and Applicationblew
York: Springer-Verlag.

A. Zavala-Rio and B. Brogliato, “On the control of a one degree-of-
freedom juggling robot,Dynamics Contr.vol. 9, pp. 67-90, 1999.

A. Zavala-Rio, “On the control of juggling robots,” Ph.D. dissertation,
Laboratoire d’Automatique de Grenoble, Nov. 1997.

B. Brogliato, S. I. Niculescu, and P. Orhant, “On the control of finite di-
mensional mechanical systems with unilateral constrailEEE Trans.
Automat. Contr.vol. 42, pp. 200-215, 1997.
B. Brogliato,Nonsmooth Mechanic&nd ed.
Verlag, 1999.

London, U.K.: Springer-



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 2, FEBRUARY 2000

Bernard Brogliato was born in 1963 in Saint-Sym-
phorien-de-Lay. He received the degree in mech
anical engineering and manufacutring from the
Ecole Normale Superieure de Cachan, Paris, Franc
in 1987, and the Ph.D. degree in automatic contrc
from the Insitut National Polytechnique de Grenoble
in 1991.

He has been a CNRS Researcher in the Laboratoi
d’Automatique de Grenoble since September 1991
His main research interests include modeling, ana
ysis, and control of nonsmooth mechnical systems

Arturo Zavala Rio was born in 1967 in Mérida,
Yucatén, Mexico. He received the B.E. degree in
electronic system engineering and the M.E. degree in
control engineering from the Instituto Tecnol6gico
y de Estudios Superiores de Monterrey, Mexico, in
1989 and 1992, respectively, and the Ph.D. degree
in automatic control from the Institut National
Polytechnique de Grenoble, France, in 1997.

He has been with the Universidad Auténoma
de Querétaro, Mexico, since January 1999. He
held a postdoctoral fellowship at the Mechanical

as well as in dissipative and flexible system control. He coauthdhesbry of Engineering Laboratory, AIST-MITI, Japan, in 1998. His research interests
Robot Control(London: Springer-Verlag, 1996), with 11 other European colinclude dynamics and control of robots and mechanical systems subject to
leaguesDissipative Systems Analysis and Conifiobndon, U.K.: Springer- unilateral constraints.

Verlag, 2000) with R. Lozano, O. Egeland, and B. Maschke, and he \nate

smooth Mechani¢2nd edition (London: Springer-Verlag, 1999), all appearing

in the Communication and Control Series.



