
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 4, APRIL 2004 521

Stability and Instability Matrices for Linear Evolution
Variational Inequalities

Daniel Goeleven and Bernard Brogliato

Abstract—This paper deals with the characterization of the sta-
bility and instability matrices for a class of unilaterally constrained
dynamical systems, represented as linear evolution variational in-
equalities (LEVI). Such systems can also be seen as a sort of dif-
ferential inclusion, or (in special cases) as linear complementarity
systems, which in turn are a class of hybrid dynamical systems.
Examples show that the stability of the unconstrained system and
that of the constrained system, may drastically differ. Various cri-
teria are proposed to characterize the stability or the instability of
LEVI.

Index Terms—Convex analysis, copositive matrices, hybrid dy-
namics, instability matrices, Lyapunov stability, stability matrices,
unilateral constraints, variational inequalities.

I. INTRODUCTION

THE stability of stationary solutions of dynamic systems
constitutes a very important topic in applied mathematics

and engineering. It is well-known that in the case of a large class
of nonlinear differential equations the spectrum of “linearized”
operators determines the Lyapunov stability of an equilibrium.
This is known as the Lyapunov’s linearization method [31, Sec.
5.5]. However, many important problems in engineering (see
[16], [22]–[24], [28]) involve inequalities in their mathemat-
ical formulation and consequently possess intrinsic nonsmooth-
ness. This is for instance the case of complementarity dynamical
systems [16]–[18], whose study still presents many open chal-
lenging problems [5]. For these last cases the question of sta-
bility is much more complicated to be investigated, as it is the
case in general for hybrid dynamical systems, see e.g., [8], [9],
[34]–[36]. An interesting class of unilaterally constrained dy-
namical systems can be represented under the formalism of evo-
lution variational inequalities; see, e.g., [20]. Roughly speaking
(a rigorous definition will be given next), evolution variational
inequalities are a special type of dynamical systems whose state
is forced to remain in a set (i.e., the ambient state space
is ). When the state attains the boundary of , then the vector
field is suitably modified. Such dynamical systems are therefore
nonsmooth and nonlinear (the only case in which the dynamics
may be linear is the degenerate case , which is of no in-
terest here). Evolution variational inequalities are widely used in
applied mathematics and various fields of science with applica-
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tions to behavior of oligopolistic markets, urban transportation
networks, traffic networks, international trade, agricultural and
energy markets (spatial price equilibria) [37]–[39], [41], [42],
[44]. In fact, the research efforts made to model the cited phys-
ical systems are relatively new, and are meant to extend the static
variational inequalities [43] in order to incorporate dynamical
effects. This is often called disequilibrium models in the re-
lated literature [41], whose trajectories should converge to the
equilibrium that is a solution of a static variational inequality.
Though such models often are of the infinite-dimensional type,
suitable discretization may recast them into finite-dimensional
evolution variational inequalities [42]. Let us briefly present the
dynamical systems we will deal with and the relationships with
complementarity systems and differential inclusions.

The Class of Dynamical Systems: Let be a
nonempty closed convex set. Let be a given
matrix and a nonlinear operator. For

, we consider the problem : Find
a function with ,

and such that (1), as shown at
the bottom of the next page, holds.

Here denotes the euclidean scalar product in .
The corresponding norm is denoted by . The system in
(1) is an evolution variational inequality which we denote as

when . It follows from standard convex
analysis that (1) can be rewritten equivalently as the differential
inclusion

(2)

where
is the normal cone to at [19]. In case

for some matrix and vector ,
we can rewrite (1) as

(3)

where is a Lagrange multiplier, and the second line of
(3) means that both and have to be nonnegative, and orthog-
onal. System (3) belongs to the class of linear complementarity
systems (LCSs) with a relative degree between and

[16]–[18]. Variational inequalities and complementarity are
known to be closely related [32], [33], [37].

Remark 1:

• Mechanical systems with unilateral constraints do not belong
to the class of systems studied in this paper. Indeed in (3) one
has with for mechanical systems.
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• The problems related to positively invariant sets and control
holdability of sets (see, e.g., [1], [2], and [29]) are essentially
different from what is studied in this paper. Indeed (see the-
orem 1 below) trajectories of (1) remain in for all and
all because the dynamics is modified on the boundary
of .

• Assume that for some convex
function . Then may possess an infinity of corners.
The framework in (1) encompasses such cases.

The stability of evolution variational inequalities has been in-
vestigated by various authors; see, e.g., [6], [10]–[12], [40], and
[45]. It is well-known that an EVI as in (1) can be stable when
it is not constrained , whereas it becomes unstable
for some , and vice-versa [40, Ex. 2.1 and 2.2]. In
particular this means that studying the stability of an EVI from
the spectrum of the Jacobian of its unconstrained dynamics (in
(1) this is ), is generally hope-
less: the tangent linearization of an unconstrained system may
be exponentially stable, while the constrained system (i.e., the
evolution variational inequality) is unstable. On the contrary, the
tangent linearization of the unconstrained dynamics may be ex-
ponentially unstable while the constrained system is asymptoti-
cally stable. It is consequently of great interest to study the sta-
bility of such unilaterally constrained dynamical systems. Per-
haps the first result on stability of EVI in the framework of trans-
portation sciences is in [44], who investigated the stability of
Wardropean equilibrium under a dynamical system constructed
to describe the drivers’ behavior in changing their route choice.
The results in [40] and [45] concern projected dynamical sys-
tems on polyhedra (which can be written as complementarity
systems in (3) [37]). They characterize the attractivity and sta-
bility of stationary solutions under monotonicity of the vector
field [corresponding to in (1)]. The results in [6]
generalize those in [10]–[12]. They provide general conditions
under which the second method of Lyapunov extends to EVIs.

The main achievements of this paper are the following.
Starting from the general results on the Lyapunov stability
of evolution variational inequalities in [6], 1) we show how
copositive matrices on can be used to construct Lyapunov
functions for linear evolution variational inequalities; 2) we
propose several practical criteria to test the stability; 3) we
present examples (the absolute stability problem, electrical
circuits) which were not previously studied in this framework
and, thus, bring original applications to the field. Compared to
the cited works on the stability of variational inequalities, our
work focuses on (which does not at all mean that
the systems we deal with are linear), and we provide a thorough
analysis of this particular case.

Let us note that in parallel to the above-mentioned studies
on stability of various classes of hybrid dynamical systems, the
stability properties of special classes of matrices (like so-called

P-matrices or M-matrices [21]) is still an active research area
[7]. Though the objective of these studies differ from ours (espe-
cially, the systems studied in this paper are not only nonsmooth,
but nonlinear), it is interesting to notice that the analytical tools
they use have strong similarities with some of the tools used in
this paper. Therefore this work can also be seen as a new branch
in the field of matrix stability analysis.

In Section II, some theoretical results concerning the well-
posedness, stability definitions and an extension of the second
method of Lyapunov are presented. In Section III matrices
in (1) that yield stable systems are studied, as well as criteria
to characterize unstable matrices . Section IV concerns stable
and unstable . Section V shows that stability is pre-
served under small nonlinear disturbances. Section VI is de-
voted to present various criteria which allow to test the stability
or the instability of matrices ; many examples illustrate the
developments. Section VII applies the results to some concrete
problems: an extension of the absolute stability problem, and
a class of dissipative linear complementarity problems (which
models some electrical circuits with ideal diodes). Conclusions
end the paper.

II. ABSTRACT RESULTS

Let us first specify some conditions ensuring the existence
and uniqueness of the initial value problem . The fol-
lowing existence and uniqueness result is a direct consequence
of [6, Cor. 2.2].

Theorem 1: Let be a nonempty closed convex subset of
and let be a real matrix of order . Suppose that

can be written as

where is Lipschitz continuous and is
convex. Let and be given. Then there exists a
unique such that

(4)

is right-differentiable on (5)

(6)

(7)

(8)

Suppose that the assumptions of Theorem 1 are satisfied and
denote by the unique solution of problem .
Suppose now in addition that

(9)

, a.e. (1)
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and

(10)

that is

Then

i.e., the trivial solution 0 is the unique solution of problem
.

Remark 2: The wellposedness results of Theorem 1 con-
tinue to hold for a controlled defined as

,
, with , and

; see [6]. This is important
in view of controllability issues. In relationship with (2) and
(3), let us notice that if in (3), then the
right-hand side of (2) becomes equal to , i.e.,
the convex set is
time varying. If and , then the obtained system
fits within Moreau’s sweeping process [27]. This case is not
studied in this paper. However, some electrical circuits possess
a relative degree 0 between and [17], so the extension of
the presented results toward convex sets is valuable.

We may now define as in [6] the stability of the trivial solu-
tion. The stationary solution 0 is called stable if small perturba-
tions of the initial condition lead to solutions which
remain in the neighborhood of 0 for all , precisely, the
following.

Definition 1: The equilibrium point is said to be stable
in the sense of Lyapunov if for every there exists

such that for any with the solution
of problem satisfies ,

.
If in addition the trajectories of the perturbed solutions are

attracted by 0 then we say that the stationary solution is asymp-
totically stable, precisely, the following..

Definition 2: The equilibrium point is asymptotically
stable if it is stable and there exists such that for any

with the solution of problem
fulfills

The notion of instability is now given as the negation of Defini-
tion 1.

Definition 3: The equilibrium point is unstable if it
is not stable, i.e., there exists such that for any ,
one may find with and such that the
solution of problem verifies

Let us now give general abstract theorems of stability, asymp-
totic stability and instability in terms of generalized Lyapunov
functions . The following results are particular
cases of the ones proved in [6].

Theorem 2: Suppose that the assumptions of Theorem 1 to-
gether with condition (10) hold. Suppose that there exist
and such that

1)

with satisfying , ;
2) ;
3) , ,
4) , , .

Then, the trivial solution of (7) and (8) is stable.
Theorem 3: Suppose that the assumptions of Theorem 1, to-

gether with (10), hold. Suppose that there exist ,
and such that

1)

with satisfying , ,
for some constants , ;

2) ;
3) , for all , ;
4) , for all , .

Then, the trivial solution of (7) and (8) is asymptotically stable.

Let us note that (3) is a sufficient condition which implies
for all , , where is the

tangent cone to at , and denotes the gradient of
at [19, Prop. 5.2.1]. Therefore, it characterizes the orientation
of the level sets of with respect to the boundary of . If the
conditions of Theorem 3 hold on [i.e., in (1), (3),
and (4)], the trivial solution of (7) and (8) is globally attractive
in . We formulate now an instability result.

Theorem 4: Suppose that the assumptions of Theorem 1 to-
gether with condition (10) hold. Suppose also that .
If there exist and such that

1)

with satisfying , ,
for some constants , ;

2) , , , near ;
3) , ;
4) , ;

then the trivial solution (7) and (8) is unstable.
The recession cone will be defined in Section III. We

note that Theorems 2–4 provide sufficient conditions for sta-
bility and instability. The same will apply for Definitions 4–6
in Section III.

III. STABILITY AND INSTABILITY MATRICES ON A CLOSED

CONVEX SET

The aim of this section is to introduce some classes of stability
and instability matrices. The results obtained here will be used
later in this paper to construct generalized Lyapunov functions
needed to apply the abstract stability results given in Section II.
Let us first recall some basic tools from convex analysis [19].
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Let be a nonempty subset of . We say that is a cone if
, . A nonempty closed convex cone is charac-

terized by the relations

Let be a nonempty closed convex set. The recession
(or asymptotic) cone of is defined by

where is an arbitrary fixed element of . In other words the
recession cone of is the set of directions from which one can
go straight from any point to infinity, while staying in

[19, Sec. A 2.2]. The set is a closed convex cone. One
has

and thus, if then . If is symmetric, i.e.,
then clearly is a subspace of . If

is bounded then . For we denote by
the unique solution of the variational inequality: Find ,
such that

The mapping ; is called the
projection on . If is a subspace of then is linear
and symmetric. In this case, we write where

denotes the symmetric matrix of orthogonal pro-
jection on .

In the sequel, denotes a real matrix of order
and is a subset of . Let us also point out the
following notations: denotes the spectrum of , is
the spectral radius of and for , denotes the
corresponding eigenspace. The transpose of is denoted by

, is the null space of and is the trace of
. The Kronecker product of two matrices and

is denoted as and [26]. The interior

and boundary of are respectively denoted by and . We
assume that

is closed;
is convex;

.
Only the possible additional conditions needed on will be
specified in this paper.

Definition 4: The matrix is Lyapunov positive
stable on if there exists a matrix such that

1) ;
2) , ;
3) .
Definition 5: The matrix is Lyapunov positive

strictly-stable on if there exists a matrix such
that

1) ;
2) ;
3) .

Stable matrices are sometimes called semistable, whereas
strictly-stable matrices are sometimes called stable [7].

Remark 3: Condition (1) of Definition 4 (and 5) is equivalent
to the existence of a constant such that

(11)

Indeed, set

If then it is clear that (11) holds with . If
, then necessarily and the relation in (11)

is trivial. On the other hand, it is clear that if (11) holds then
.

Recall that a matrix is said to be copositive on
if

A matrix is said to be strictly copositive on if

These classes of matrices play an important role in complemen-
tarity theory (see e.g., [21]). The set of copositive matrices con-
tains that of positive–semidefinite (PSD) matrices [21, p. 174
]. Indeed, a PSD matrix is necessarily copositive on any set .
However it is easy to construct a matrix that is copositive on a
certain set , but which is not PSD.

Condition (3) of Definitions 4 and 5 correspond to (3) in The-
orems 2 and 3. Let us here denote by (resp. the set of
copositive (resp. strictly copositive) matrices on . Let us also
denote by the set of matrices satisfying condition (1) of
Definition 4, that is

It is clear that

Proposition 1: If is a cone, then

Proof: We know that . It suffices to check that
. Let , that is ,

and let us verify that there exists such that
, . If we suppose the contrary, then we

can find a sequence such that
. Let . We have and thus

there exists a subsequence such that ,
and . This contradicts the
strict copositivity of .

Remark 4: Let be a positive strictly-stable ma-
trix, i.e.,
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Then, there exists a matrix satisfying conditions (1)
and (2) of Definition 5. Indeed, let be any posi-
tive–definite matrix. From Lyapunov’s theorem (see [25]) there
exists a positive–definite matrix satisfying the Lya-
punov equation . Thus,

, .
Remark 5: A first step in finding a matrix satisfying con-

dition (2) of Definition 4 (resp. Definition 5 ) may consist to deal
with the Lyapunov equation and by taking
as a matrix of (resp. . The Lyapunov equation can be
written as

where and denotes the column vectors formed from the
rows of and , respectively, taken in order. Note also that
by choosing and symmetric then, redundant equations and
variables can be removed to give a system of order

.
Let us now denote by the set of Lyapunov positive stable

matrices on and by the set of Lyapunov positive strictly
stable matrices on . We see that

such that

and

and

Let us note that needs not be symmetric.
Definition 6: A matrix is said to be Lyapunov

unstable on if there exists a matrix and a constant
such that

1) ;
2) , ;
3) .
The set of Lyapunov unstable matrices on will be denoted

by . We have

and such that

and

Remark 6: If

then (2) of Definition 6 holds with . Note that if
then necessarily and condition (2) is, in this

case, trivial.
Various classes of stability and instability matrices will be

given later in this paper. According to the comments at the end

of the foregoing section, there may exist matrices which satisfy
none of the conditions of Definitions 4–6, and nevertheless are
stable or unstable. Two examples are given in Section VI-D,
Example 3.

IV. STABILITY OF LINEAR EVOLUTION VARIATIONAL

INEQUALITIES

Let be a closed convex set such that .
We consider Problem with , i.e.,: Find

such that and

a.e. (12)

(13)

(14)

Theorem 5: Let be a set satisfying hypothesis
– .

• If , then the trivial solution of (12) and (13) is
stable.

• If , then the trivial solution of (12) and (13) is
asymptotically stable.

• Suppose here in addition that . If ,
then the trivial solution of (12) and (13) is unstable.
Proof:

i) and thus there exists a matrix such
that

(15)

(16)

and

(17)

Let be defined by

(18)

Then, and we see that all the as-
sumptions of Theorem 2 are satisfied. Indeed, (15) en-
sures the existence of a constant (see Remark 3)
such that

It is clear that . Finally, from (16) and (17), we
deduce that

and

The conclusion follows from Theorem 2.
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ii) and thus there exists a matrix
satisfying (15), (17), and

(19)

We define as in (18) and we verify as
in part i) that assumptions 1), 2), and 3) of Theorem 3 are
satisfied. Moreover, from (19), we deduce the existence
of a constant such that

It results that

Thus

with . This yields Assumption (4) of
Theorem 3. The conclusion follows from Theorem 3.

iii) If then there exists a matrix and
such that

(20)

(21)

and

(22)

Let be defined by

We see that all the conditions of Theorem 4 are satisfied.
It is clear that (1) is satisfied with

. Condition (20) ensures that (2) is satisfied. Con-
dition (21) yields (3). Finally, from (22), we deduce that

so that assumption (4) holds too. The conclusion follows
from Theorem 4.

V. NONLINEAR PERTURBATIONS OF LINEAR VARIATIONAL

INEQUALITIES

Let be a closed convex set such that . Let
us now consider problem : Find
such that and

a.e. (23)

(24)

(25)

Theorem 6 : Let be a set satisfying hypothesis
– . Let be given by

where is Lipschitz continuous and is
convex. Suppose also that

(26)

If then the trivial solution of (23) and (24) is asymp-
totically stable.

Proof: There exists a matrix such that

(27)

(28)

and

(29)

Our aim is to verify that all conditions of Theorem 3 are satisfied
with defined by

From (27), we see that there exists a constant such that

This yields Assumption 1) of Theorem 3. It is clear that
so that Assumption 2) of Theorem 3 is also satisfied. Here,

and (29) yields Assumption 3) of Theorem
3. Finally, from (28), we obtain that

for some constant . On the other hand, because of (26)
there exists a constant such that

Thus, if then

It results that

and, thus, Assumption 4) of Theorem 3 holds with
.

Theorem 7: Let be a set satisfying hypothesis
– . Let be given by
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where is Lipschitz continuous and is
convex. Suppose also that

(30)

and

(31)

If , then the trivial solution of (23) and (24) is asymp-
totically stable.

Proof: We first note that (30) and (31) ensure that
. Let us now define by the

formula

We see that all the assumptions of Theorem 3 are satisfied. In-
deed, assumptions (1), (2) and (3) are clearly satisfied. More-
over, and thus there exists a constant such that

On the other hand, is monotone and, thus

From (30), it results that

Finally, (31) ensures the existence of such that

It results that if , then

and, thus

That means that assumption (4) of Theorem 3 is satisfied with
. The conclusion follows from Theorem 3.

VI. STABILITY AND INSTABILITY CRITERIA AND EXAMPLES

A. Stability Matrices

Let us first give important classes of matrices satisfying the
conditions of definition 4 and definition 5. Let be a
set satisfying hypothesis - .

Proposition 2: Suppose that , i.e.,

Then, .
Proof : Let . Conditions (1) and (2) of Defi-

nition 4 are clearly satisfied. Moreover,
.

Proposition 3: Suppose that , i.e.,

Then, .
Proof: As in the proof of Proposition 2, we see that the

choice is convenient.
Remark 7: From Propositions 2 and 3, we deduce that

We see now that, with some additional conditions imposed on
the set , it is possible to consider larger classes of matrices.

Proposition 4: Suppose that is a cone such that

where denotes the th canonical vector of . If there exists
a positive-diagonal matrix such that

then .
Proof: We set where

. The matrix is symmetric and positive
definite. Moreover, and
thus , . Finally,

. Then,
using the assumptions on , we see that for we have

.
Proposition 5: Suppose that is a cone such that

If there exists a positive-diagonal matrix such that

then .
Proof: As in Proposition 4, we set

with . Here,
and, thus,

. The proof is
achieved as in Proposition 4.

Remark 8: If is a nonsingular -matrix, i.e., ;
, is such that for all , then

there exists a positive-diagonal matrix such that

is positive definite (see, e.g., [13] ). It results that

. Thus
and the condition required

in Proposition 5 on the matrix is satisfied.
Proposition 6 : Suppose that satisfies the property

If there exists a positive-diagonal matrix such that

1) ;
2) .
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Then, .
Proof: Let . We set

It is clear that . Moreover,
. Finally,

. If , then . Moreover,
since (1) holds and
. It results that, for , we have

.
Proposition 7: Suppose that satisfies the property

If there exists a positive-diagonal matrix such that

1) ;
2) .

Then, .
Proof: With the choice of as in the proof

of Proposition 6, we see that (1) and (3) of Def-
inition 5 hold. Moreover, as above, we check that

and thus using assumption
(2), we obtain .

Proposition 8: Suppose that is symmetric. If there exists
such that

then .
Proof: We know that

and thus letting we get

Let

Then

and . We have also

. Thus, by assumption
. Finally, recalling that here we

see that .
Proposition 9: Suppose that is symmetric. If there exists

such that

then .
Proof: We choose as in Proposition 8 and check that

. By assumption, it
results that . The
proof is achieved as in Proposition 8.

Proposition 10 : If there exists a symmetric nonsingular
-matrix such that

then .

Proof: There exists with ,
and such that . We set .
The matrix is positive definite and, by assumption,

. Moreover, so that
.

Proposition 11: If there exists a symmetric nonsingular
-matrix such that

then .
Proof: The proof is similar to the one of Proposition 10.

Proposition 12 : Let us consider a linear state transformation
, full-rank, and . Then

(respectively, ) if and only if
(resp. ) with (see Definitions 4 and 5) transformed
to .

Proof: The set
is convex and closed since [19, p. 71 ].
Since , it follows that

. Moreover, for one has
if and only if .

B. Examples

Let us here illustrate the previous results with some simple
examples.

Example 1:

i) Let and

It is clear that and from Proposition 2 we obtain
that .

ii) Let and such that .
Then, clearly

and, thus, . Proposition 2 ensures that .
iii) Let and

Here, and
. It results that .

Proposition 3 ensures that .
iv) Let and

The matrix is a nonsingular -matrix. Moreover,
is a cone and if then .
Using Proposition 5 and Remark 8, we obtain that

.
v) Let and
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Setting , we check easily that
, . Using Proposition 5, we

get .
vi) Let and

It is clear that if then
. Set . Here

and, thus, condition 1) of
Proposition 6 holds. Moreover

and thus .
All the conditions of Proposition 6 hold and, thus,

.
vii) Let be defined as in example vi) and set

Let be defined as in example vi). we have

and, thus, It
results that . From
Proposition 7, we deduce that .

viii) Let and

The set is symmetric and .
Then

Setting , we see that
and .
Using Proposition 8, we see that .

ix) Let be defined as in example viii) and set

Setting , we see that
and . Thus,

and Proposition 9 ensures that
.

x) Let and

The set is symmetric and
. We have

and setting , we see that

Thus, is positive definite and
. Using

Proposition 9, we obtain that .
xi) If with , , then

for all closed convex sets

xii) If

, , then (1) if ,
(2) if . In case (1),

for all closed convex sets
and for all closed convex sets

. In case 2), this holds for
the quadrants and

.

C. Instability Matrices

Let us now provide some criteria to characterize instability
matrices.

Proposition 13: Suppose that is a cone. If , then
.

Proof: We set . The set is a cone and thus
there exists such that , . For

, we have
. It results that (2) of Definition 6 holds with

. Moreover, and thus
.

Proposition 14: Suppose that is a cone such that

If there exists a positive-diagonal matrix such that

then .
Proof: We set . As in the proof of Propo-

sition 4, we check that . Here,
is a cone and, thus, . Thus, there exists

such that , . Thus
, . Setting

we see that (2) of Definition 6 holds. Moreover,
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if then
.
Proposition 15: If there exist and

such that

1) ;
2) ;
3) ;

then .
Proof: We first remark that

Setting , we see that is symmetric and

and, thus, is PSD. It results that

Assumption 2) ensures that

and, thus

It results that .
We have

.
Setting , we see that ,

. This together with assumption 3) yield the conditions
of Definition 6.

Proposition 16: Suppose that there exist , ,
and such that

1) ;
2) , ;
3) ;

then .
Proof: We first remark that

Let us set

Assumptions (2) and (3) yield (1) and (3) of Definition 6. We
have

. and setting , we obtain that
, .

Proposition 17: Suppose that is a cone satisfying the
properties

(32)

(33)

(34)

If there exist and such that

(35)

then .
Proof: We set . Note that (32) together

with (34) ensure that . We have

We remark now that

Indeed, suppose by contradiction that for some

. Then, and since we obtain
from (34) that which is a contradiction. Proposition 1
ensures that since is a cone. We see also that if

then
. Indeed , because of (33) and

is a cone. Finally, ,
if then and from (35),

. It results that
.

D. Examples

Let us here illustrate the previous results with some simple
examples.

Examples 2:

i) Let and

We see easily that and thus from Proposition
13, we deduce that .

ii) Let and

Here, and if then
and . It results that ,

. Proposition 13 ensures that .
iii) Let and

Setting we see that [see
Example 1 vii)] and Proposition 14 ensures that .

iv) Let and

Then, and let we check that

. Here
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and thus .
Moreover so
that . Using Proposition 15 ,
we obtain that .

Note that the result can also be obtained from Proposi-

tion 17 since , and
satisfies the conditions (32)–(34) required in Proposi-

tion 17.
v) Let and

Then, . Set and . We

see that and

. Here

and, thus, ,
. Moreover, if , then

The result follows from Proposition 15.
Examples 3:

i) Let and

The matrix is neither Lyapunov positive stable on
nor Lyapunov unstable on in the sense of Definitions 4
and 6, respectively. Indeed, suppose on the contrary that
the matrix is Lyapunov positive stable on . The struc-
ture of entails that conditions (1) and (2) of Definition
4 are satisfied on and, thus, we obtain the existence
of a positive–definite matrix such that

is semipositive–definite. A necessary condition for to
be positive definite is . On the other hand, a neces-
sary condition for to be semipositive definite
is . The contradiction is obtained. Suppose now
that is unstable on . Here and condition
(3) of Definition 6 implies that

. This is a contradiction since condition (1)
ensures here that is nonsingular.

ii) Let and

The matrix is neither Lyapunov positive stable on
nor Lyapunov unstable on . Indeed, let be
a strictly copositive matrice on the cone as required

in condition (1) of Definition 4 and Definition 6. Then
necessarily and . On the other hand, we
have . Thus,
it is clear that neither condition (2) of Definition 4 nor
condition (2) of Definition 6 can be satisfied.

Examples 4: Let us here use Theorem 5 to discuss the sta-
bility of the trivial solution of Problem (12) and (13) for different
matrices and sets given in Examples 1 and
Examples 2. We also discuss the stability of the trivial solution
of Problem (12) and (13) without constraint, i.e., with ,
and see by the way that the stability of an equilibrium may sub-
stantially change as soon as inequality constraints are involved.
These results are reported in Table I.

Remark 9: Note that if is a subspace then the so-
lution of (12)–(14) satisfies the system

Here, is linear, , and, thus

It results that

with

where denotes a Jordan curve enclosing an open disk con-
taining . It is known that variational inequalities, com-
plementarity and projected dynamical systems, are closely re-
lated one to each other [37].

VII. APPLICATIONS

Let us here discuss the stability of a system described by a
transfer function and a feedback branch
containing a sector static nonlinearity, known as the absolute
stability problem [15], [30] (see Fig. 1). Here ,

and . The static nonlinearity is
usually assumed to be a locally Lipschitz single-valued function
[30, Sec. 10.1], possibly time-varying and piecewise continuous
in .

The feedback nonlinearity is here assumed to be a multi-
valued monotone mapping of the form where is
a set satisfying conditions – of Section III, is the
indicator function of and denotes the convex subdifferen-
tial operator. The study of such systems has been initiated in [3].
The state–space equations of such a system are given by: Find

such that
and

(36)

(37)

(38)

(39)

(40)
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TABLE I
STABILITY AND INSTABILITY DEPENDING ON K

Fig. 1. Absolute stability problem.

Assume there exists a symmetric and invertible matrix
such that . Suppose also that there exists

(41)

Then, using the change of state vector and setting

(42)

we see that problem (36)–(40) is equivalent to the
following one: find such that

and

Indeed, it suffices to remark that

and

Indeed, and, thanks to (41), we
obtain . We remark also that
the set satisfies the conditions – .

Applying now the results of the Section VI, we may discuss
the stability of the trivial solution of (36)–(39).

Corollary 1: Let be a set satisfying hypothesis
– together with (41) and define as in (42). Suppose

that there exists a symmetric and invertible matrix
such that .
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i) If , then the trivial equilibrium point of
(36)–(39) is stable.

ii) If , then the trivial equilibrium point
of (36)–(39) is asymptotically stable.

iii) Suppose here in addition that . If
, then the trivial equilibrium point

of (36)–(39) is unstable.
Example 1: Assume that ,

with a minimal representation, is strictly positive
real (SPR), i.e., , . From the
Kalman–Yakubovitch–Popov Lemma there exist
positive definite and positive definite, such that

and . Choosing as the
symmetric square root of , i.e., , positive definite
and , we see that and, thus, .
Moreover

(43)

Thus

(44)

It results that

(45)

Setting , we see that

(46)

So . All the conditions
of Corollary 1 (part ii) are satisfied and the trivial solution of
(36)–(39) is asymptotically stable. The results of [3] with

and [17, Th. 11.2] are here recovered. In case is pos-
itive real (PR) then corollary 1 (part i) applies. As shown in [3]
the equilibrium point is unique in this case.

In relation to Proposition 12, we have the following.
Corollary 2: Consider a dissipative linear complementarity

system , , with a
PR (resp. SPR) transfer function. Then, Proposition 2 (respec-
tively, Proposition 3 ) applies whatever the state-space represen-
tation with , nonsingular and .

Proof: The proof follows from the calculations in
(43)–(46) (or using the results in [3] or [17]). Indeed whatever
transformation , the above shows that there is always
a transformation such that the transformed
evolution matrix satisfies Proposition 2.

Remark 10: For a relative degree 0 passive LCS (
, positive definite) the framework in this paper no

longer applies since the system is an ordinary differential equa-
tion (with Lipschitz continuous single-valued right-hand-side)
and no longer an inclusion as in (2). This is easily seen since
is the unique solution of a linear complementarity problem with
matrix [21].

Electrical circuits with ideal diodes and relative degree one
between and [see (3)] are an example of dissipative systems
that fit within this framework with PR or SPR transfer functions

in feedback connection with the corner law [22], [24]. Let

us notice that passive LCS have the operator which is dis-
sipative, but not necessarily not the operator . Hence, pas-
sive LCS may not be asymptotically stabilised by output feed-
back , , as passive unconstrained systems are
[15].

VIII. CONCLUSION

In this paper, the stability of linear evolution variational in-
equalities is studied. These dynamical systems have unilateral
effects, hence, are nonsmooth and nonlinear. The Lyapunov sta-
bility is considered, and Lyapunov’s second method is investi-
gated. It is shown that the extension is nontrivial, and that the
stability of the unconstrained system may drastically differ from
that of the constrained system. Examples are given to illustrate
the developments, as well as criteria which allow one to test the
stability (or the instability). Links to other classes of hybrid dy-
namical systems (like differential inclusions, complementarity
systems) are provided.
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