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Technical Notes and Correspondence 

Adaptive Hybrid Force-Position Control for 
Redundant Manipulators 

R. Lozano and B. Brogliato 

Abstract-This note presents an adaptive control scheme for manipu- 
lators with redundant degrees of freedom. The control purpose is to 
achieve a desired interaction force between the end-effector and the 
environment as well as to regulate the robot tip position in the Cartesian 
space. This control approach does not require measurement of the joint 
acceleration nor the force derivative. 

I. INTRODUCTION 

The last ten years have witnessed an increasing interest in 
adaptive control of robot manipulators. In particular, adaptive 
motion control of rigid robots has attained a certain degree of 
maturity [ 11-[9]. These studies have been carried out assuming 
that the robot moves freely in the task space. Nevertheless, the 
interaction between the robot and the environment has to be 
taken into account in most of the real industrial applications of 
articulated mechanical systems. This naturally leads us to con- 
sider control schemes that regulate the interaction forces be- 
tween the end-effector and the environment. Several types of 
such controllers have been proposed in the literature and can 
basically be classified as complaint motion control [lo]-[12], 
pure force control [31, [171, and hybrid schemes [31, [lo], [121-[151, 
and [18]. 

Recently, the first adaptive force controllers have been pro- 
posed in [3] and [17]. One of the problems encountered in [3] 
was the use of the first derivative of the measured force in the 
control law. Such problem has been solved in [17] for the case of 
single-link mechanical manipulators. To date, the extension of 
such an approach to more general manipulators does not seem 
feasible in view of the robot redundancies. 

In this note, we present an adaptive hybrid force-position 
control scheme applicable to general redundant mechanical ma- 
nipulators. As is currently assumed, the robot is supposed to 
work in a space free of singularities, i.e., a space where the 
Jacobian matrix is full rank. The control input does not require 
measurement of the force first derivative nor the joint accelera- 
tion. The stability analysis is based on the robot's passivity 
properties. 

This note is organized as follows. Section I1 presents the robot 
dynamic model and problem formulation. Section 111 is devoted 
to develop the control scheme for the known-parameters case. 
The adapative controller study is given in Section IV. The 
concluding remarks are finally given in Section V. 

11. DYNAMICS OF RIGID ROBOTS 
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Based on Euler-Lagrange equations [ 101, the mechanical ma- 
nipulators dynamic model is given by 

where q, q, q E 9" are the joint position, velocity, and accelera- 
tion, D(qXn x n) is the inertia matrix, C(q,  q X n  X n) contains 
the Coriolis and centrifugal terms, g(q) is the n-dimensional 
gravitational torque vector, ~ ( n  X 1) is the actuators torque, and 
T, is the interaction torque with the environment. 

The dynamic model (1) has the following fundamental proper- 
ties [7]. 

P1) The inertia matrix D ( q )  is symmetric, positive definite, 
and both D ( q )  and D- ' (q )  are uniformly bounded as a function 

P2) All the constant inertial parameters in D(q),  C(q,  q), and 
g ( q )  appear as coefficients of known functions of the general- 
ized coordinates [241, 1251. 

P3) N ( q ,  q )  = ( D ( q )  - 2C(q, q )  is a skew symmetric matrix 
(i.e., N = - N T ) .  

The end-effector position and orientation in the Cartesian 
space, x E 9"' and its derivative f E 9 " ' ( m  I 6) are related to 
the joint coordinates q and velocities q by 

of q. 

x =f(s) (2) 

f = J ( q ) q  (3) 

where J ( q )  is the m x n (rn I n) Jacobian matrix of the robot 
direct kinematic relation-f(q). 

The interaction force F E at the end-effector, performing 
work on x,  and the interaction torque T, €2" in the joint space 
are related by [19] 

(4) 

Remark 1: If the end-effector orientation is defined using the 
Euler angles, then the vector of linear and angular velocities 
w = [U, f l ]  is related to f by w = T ( x ) f  (see [15] and [18]) and 
w = j (q )q  where j is the Jacobian matrix. In this case, (3) will 
still hold with J = T - ' j .  We will assume that F is measurable. 
However, if instead we measure F,, performing work on the axis 
of the Cartesian frame, then the transformation matrix T can be 

Let us define x ,  as the position and orientation vector in the 
task frame in the same way as x .  Then the following relation 
holds [MI: 

used to compute F. V 

.tc = R ( x ,  x , ) f  ( 5 )  

where R(x,  x , )  is a transformation matrix-assumed to be non- 
singular-which depends on the environment geometly. This 
transformation is introduced to simplify the relationship be- 
tween the interaction force and the environment deformation 
defined below. 

Throughout the note, we will assume that the interaction 
force in the task space is proportional to the environment 
deformation x ,  - xe,, i.e., 

F, = K ( x ,  - X , , )  
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with projectors, i.e., idempotent matrices 

P = R T ( x ,  x,)F,  (7) J - J - =  J -  

where E is the ( m  X m) constant stiffness matrix and x,, is the 
environment/end-effector contact point position when the robot 
does not exert any force on the environment. This assumption 
clearly requires the environment to be homogeneous (i.e., com- 
posed of materials having the same elasticity properties) and 
also requires the shape of the environment to be such that the 

will be required in the design of an adaptive control scheme in 
the next section. It is clear that if the effect of the environment's 

K - K - =  K - .  

Note also that 

JJ+= I 

JJ-=  0 

KK+= I 

KK-= 0. 

stiffness does not depend on the contact point. This assumption 

Identity (9) allows us to decompose q in (3) as follows: shape on the stiffness matrix is known, it can be incorporated in 
expression (6) as long as the unknown parameters appear lin- 
early. 

Here, for simplicity x,, is considered constant. In the case 
when ne, is time-varying the analysis is still valid if the relation- 
ship between x,, and x is known. 

in (4) is not necessarily 
invertible. We will assume without loss of generality, that the 
elements of E have been chosen in such a way that F can be 
decomposed as 

In general, the stiffness matrix 

where F, ES', K is a full-rank (s X m) (s I m )  matrix and the 
rows of K '  depend linearly on the rows of K .  Therefore, we will 
only be able to control F,, the elements F,' being given as linear 
combinations of those of F,. 

In the next section, we will present a force position control 
scheme for robot manipulators.-The control scheme requires 
only measurement of q, q,  and F. Section I11 gives the control 
scheme structure for the case when the system parameters are 
known. Section IV presents the corresponding adaptive scheme 
and studies its convergence properties. 

q = J'Jq + J - q  = J + i  + J - q  (21) 

where J - q  is in the null space of J ,  [see (18)] and J + i  is in its 
complement [see (17)]. Similarly, from (9, (81, and (10) 

(24) 

(25) 

.it = K+F, + K-X, 

f = R - ' ( K + F ,  + K - i t ) .  

The above procedure can also be used to decompose q. 
Taking the first derivative of (3) 

x = ~ q  + j q .  (26) 

(27) 

Using identity (9) and the above 

4 = J+JQ + J - 4  = j + [ f  - j q ]  + J - 4 .  

Similarly from (8) and (10) 

111. FORCE / POSITION CONTROL SCHEME: THE KNOWN x ,  = K+IG, i- K-X, = K + C  + K-X,. (28) 

From (5) we have PARAMETERS CASE 

We will consider that the following assumptions are satisfied 
Al)  The Jacobian J ( q )  in (3) is a full-rank known matrix. 
A2) The transformation matrix R ( x )  in (5) is known. 
A3) The stiffness matrix K in (8) is a constant matrix. 

(29) f = R-1 ( j t  , - z i t ) .  

Introducing (2), (3), (21), and (25) through (29) into (1) we obtain 
A4) q,  q,  and F are physically measurable. 
In this section, we will present a nonadaptive control scheme 

for the case when all the system parameters are known, i.e., 

The following identities will be used in the control law synthe- 
D(q),  C(q, q )  are known. 

sis: 

I J + J  + J - (9) 

where 

+ c ( J + R - ~ ( K + F ,  + ~ - f , )  + J-4)  + g = - 7,. (30) 

This equation is exactly equivalent to (l), however, (30) en- 
ables to clearly distinguish those components of F,, x,, and q 
that can effectively be controlled. The following lemma proposes 
a control law that regulates the force F, and the component of 
the task-space position x ,  in the null space of K (i.e., K-x,). 

Lemma I: Consider the mechanical manipulator model in 
(30). Assume that the control input T is given by 

K - =  I - K T  [ KKT]- '  K .  (14) 

J +  and K +  are the Penrose pseudo inverse and J -  and K -  are 

+ C ( J + R - ' [ K + u f  + K-U,] + J - q d )  + g - Dz - Gr 

(31) 
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where 

d( J + R - ' )  dl- 
z =  { K f ( k f  - uf) + K - ( f ,  - uI)} + -4 (32) 

dt dt 

r = J f R p ' [  K+(# ,  - uf) + K - ( X ,  - uI)] + J - 4  (33) 

v f = F d - A F ;  A > O  (34) 

U, = X d  - A f ;  A > 0 (35) 

F, - Fd (36) 
f = x ,  - X d  (37) 
Q = q - q d  (38) 

where qd, xd ,  Fd, and their first and second derivatives are the 
desired bounded values for q, x f ,  F,, and their respective deriva- 
tives satisfying 

Fji) = K ( x 2 )  - x ~ J )  for i = 0,1,2. (39) 
G = GT > 0 is a constant matrix and A is a positive constant. 

system (30) gives the following closed-loop error equation 
Introducing the control input in (31) through (37) into the 

Di. + Cr + Gr = 0. 

Therefore, r E L2 n L-,, q E L, and i. E L,  which implies 
that r + 0 Jand finally, F, K-k,  and J-Q converge to zero as 

(40) 

t + m and F and K - i  are in L,.  V 
The proof is given in Appendix A. 
Remark 2: Lemma 3 uses partitions of both the environment's 

stiffness and the manipulator's Jacobian to achieve a desired 
contact interaction force. In view of redundancies, there are 
some components of x and q denoted K-x  and J-q,  respec- 
tively, which can be controlled independently of the interaction 
force. This fact is exploited in the controller design presented in 
Lemma 3. The next lemma states that the ideal control input 
proposed in Lemma 1 can in fact be given as an expression that 
is linear in the parameters. This property is essential to the 
development of an adaptive control scheme in the next section. 

Lemma 2: The ideal control input in Lemma 1, (31) can be 
rewritten as 

Tideal = 7, + y ( r ,  F ,  q ,  418 (41) 

Fd, Fd, and r .  V 

where 8 ES' is a constant parameter vector and Y is a known 
( n  x p )  matrix function of K ,  F,  4, 4, qd, qd, q d ,  x d ,  i d ,  i d ,  Fd, 

The proof is outlined in Appendix D. 

Iv. ADAPTIVE FORCE / POSITION CONTROL SCHEME 

In this section, we present an adaptive force/position control 
law for mechanical manipulators and study its convergence 
properties. 

The control law will only require measurement of q, q,  and F 
and will not require a priori knowledge of the inertial parame- 
ters in D(q),  C(q, 4>, and g. 

The adaptive control law is obtained from (41) by replacing 8 
by their estimates 6,  i.e., 

T = Te + Y ( r ,  F ,  q,  416 
which can also be rewritten as [see (4111 

7 = 7, + ye + Y8 - ye = Tideal 

where - , .  
8 = 8 - 8 .  

Introducing (43) in (30) and following a procedure similar to the 
one used in the Proof of Lemma 1 we obtain 

Di. + Cr + Gr = Ye (45) 
with r as in (33). We can now propose the following parameter 
adaptation law: 

6 = -ryTr (46) 
where r = T T  > 0 is a constant matrix. This adaptation law 
together with (45) allows for global convergence of the algorithm 
as stated in the following lemma. 

Lemma 3: Consider (45) and (46) with r as in (33)-(39). Then 
it follows that r E-L, n L,, q E L,, i. E L, which implies that 
r + 0: and finally F, K-5, and J - Q  converge to zero as t + 
and F and K - i  are in L, .  V 

The proof is given in Appendix B. 
Remark 3: The adaptive force/position control scheme pre- 

sented in the previous section requires a priori knowledge of the 
stiffness matrix K in (8). 

When K is unknown, the main problem is Lo propose an 
estimation algorithm that provides an estimate K such that: i) 
the equati:n error F, - K ( x ,  - xe, )  converges to zero and ii) the 
estimate K converges to a constant full-rank matrix. If these two 
conditions areAverified, the stiffness matrix K can be replaced by 
its estimate K in the adaptive scheme of the previous section. 
Convergence of the equation error in the L ,  sense is a standard 
property of either gradient pr LS estimation algorithms. On the 
other hand, the estimate K can be constrained to be full-rank 
matrix by using the technique developed in [20]. 

Even though this seems to be a promising technique to cope 
with the problem of an unknown stiffness matrix, a complete 
stability analysis is not yet available. 

Remark 4: Equations (3)-(6) and the decomposition in (24) 
and (25) allow us to avoid any force derivative measurement. 
However, this avoidance is obtained at the expense of some 
complexity in the control law, which is of crucial importance in 
view of a practical implementation. 

V. CONCLUSIONS 

This note has proposed an adaptive force/position control 
scheme for robot manipulators. The hybrid force/position con- 
troller is based on a particular decomposition of the robot 
Jacobian and environment stiffness matrices. The approach is 
applicable to general redundant robots working on a homoge- 
neous environment. The control scheme does not require mea- 
surement of the joint acceleration nor the force first derivative. 

Global convergence results are obtained in the sense that all 
signals remain bounded and the force and position tracking 
errors converge to zero. 
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APPENDIX A 

Proof of Lemma 1: Introducing (31) in (30) one obtains 

D ( J + R - ~  [ K +  (F, - G ~ )  + K -  ( a ,  - G,)] + J - +  + z 

+ C ( J + R - ' [ K + ( F ,  - uf> + K - ( x ,  - 

+ G r = O .  (A.1) 

1 
+ J-+)  



Taken now into account (32) and (33), (A.l) can be rewritten as 

Di. + Cr + Gr = 0. 

n L,. We will next prove that this implies that q is bounded. 

r = J + R - ’ [ K + ( G ,  - u f )  + K - ( x ,  - U,)] + J - G  

( A 4  

Using the results in Appendix B for 0 = 0, we obtain r E L ,  

Note that using (8), r in (33) can be rewritten as 

= J+R-’[x, - K’uf - K-U,]  + J - 4  [using (IO)] 

= J + J ~  + 3-4 - J + R - ’ [  K + ~ ~  + K - ~ ,  - &] 
- J - q d  [using (3)] 

= q - J + R - ‘ [  K’ur + K-U,] - J - q d  [using ( 9 ) ] .  (A.3) 

Due to physical limitations, (we consider revolute joints only) 
x is bounded and therefore F [see (S)], U, and uf [see (34) and 
(35)] are bounded too. Finally, it is clear from (A.3) that q E L,. 
In view of P1) in Section 11, D-’(q) is bounded, C(q, q )  E L, 
and thus i. E L,. This implies (see Appendix C) that r -+ 0 as 
t -+ m. 

Note that KRl is bounded and then KRJr E L ,  n L,. There- 
fore, multiplying (33) by KRJ and using (17)-(20) one obtains 

PI - Uf --f 0 

and 
( F ,  - u f )  E L ,  n L,. (A.4) 

Multiplying (33) by RI and using (17) through (20) and (A.4) 
one gets 

and 
K - ( X ,  - U,) -+ 0 

K - ( i t  - U,) E L ,  n L,. (‘4.5) 

Then, from (331, (A.41, (AS) it follows 

J - 4  + 0 
and 

J - 4  E L, n L,. ( A 4  

Using (34) and (35) one obtains 

( d  i F , - u f =  ; + A $  

K-(Xt  - U,) = (g + A ) K - f .  

From (A.4) and (A.7), (AS) and (A.8), and the results: in 
--f 0, F E 

v 
Appendix C we finally conclude that F E L, p L,, 
L, n L,, K-2 E L, n L,, K - f  + 0, and K - f  E L, n L,. 

APPENDIX B 

Proof of Lemma 3: Consider the positive definite function 
1 1 ,  

V = -rTDr 2 + - t I T T - ’ 6 .  2 

Therefore 

V = rTDi + 1/2rTDr + err-% 
= rT[Y6 - Cr - Gr] + 1/2rTDr 

- GTYTr [using (44)-(46)] 

From (B.2) and since G = Gr > 0, it follow_s that r E L ,  and 
then I/ E L, which implies that r E L, and 6 E L,. The rest of 
the proof follows as in Appendix A. 

APPENDIX C 

Review of some results from L-theory are as follows: 
1) We say that r E L ,  if 

10 

lr’rdt < 
0 

r E L, if r is bounded. 
2) If r E L, and i E L, then r --f 0 [23, page 2321. 
3) Let H ( s )  be an asymptotically stable strictly proper trans- 

fer function. Then if Y ( s )  = H(s)U(s)  and u(t )  E L, n L,, they 
y ( t )  E L, n L,, y ( t )  E L, n L, and y -+ 0 [23, p. 591. 

APPENDIX D 
Proof of Lemma 2: Note that r,deal in (31) is a function of 

Uf, U,, q,  q ,  uf,  v,, z ,  and r. Using (34)-(38), (51, and (3)-(7) it is 
clear that uf, U,, UI, and UJ can be expressed as functions of q, q,  
and P .  

On the other hand, Fl can be expressed as a function of q and 
q using (3)-(7). Finally, it is known [24], [25] that D(q), C(q, q), 
and g in (1) are linear with respect to the inertial parameters 
that multiply known functions of q and q. In view of this 
property and the fact that K is a constant matrix and 
f(q), J ,  J - ,  J + ,  R and their derivatives are known functions of q,  
then T ~ ~ ~ ~ ,  in (31) can be rewritten as in (41) where 0 contains 
the inertial and stiffness parameters and Y is a known matrix 
function. 
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A Method for Verifying Sector Conditions in 
Nonlinear Discrete-Time Control Systems 

Y. Mutoh and P. N. Nikiforuk 

Abstrmt-This note is concerned with the stability of a discrete 
feedback system with a continuous broken-line nonlinearity. Many non- 
linearities in practice are included in this class. Sufficient conditions for 
this type of nonlinear feedback system to be asymptotically stable in the 
large are developed using the contraction mapping theory. It is then 
shown that Kalman’s conjecture for a feedback system, with a sector 
nonlinearity also applies to discrete systems under a restricted sector 
condition. Another contribution of this note is to present a method for 
obtaining this restricted sector by solving a quadratic equation. 

I. INTRODUCTION 

Although control systems often contain nonlinearities such as 
dead zone or saturation, a practical and meaningful stability 
theory for these systems is still lacking. The describing function 
[l] is a useful and practical method for studying the stability of 
such systems, but it gives only approximate results. Other meth- 
ods, such as Popov’s theorem, the circle criteria or the hypersta- 
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bility theorem may be also applied to the stability analysis of 
such systems if they are regarded as a Lurie problem [2 ] .  
However, because these theories are concerned with a wide class 
of nonlinear feedback systems, the results are too conservative 
for the stability analysis of practical nonlinear systems. 

In this note, the stability of a discrete feedback system with a 
continuous broken line nonlinearity is considered. Using the 
contraction mapping theorem, sufficient conditions for this type 
of nonlinear feedback system to be asymptotically stable in the 
large are derived. It is also shown that Kalman’s conjecture for a 
feedback system with a sector nonlinearity also applies for 
discrete systems in the restricted form. 

The sufficient conditions for stability of these nonlinear sys- 
tems require the feedback nonlinearities to satisfy a certain type 
of sector condition. It is important to know the size of this sector 
in order to evaluate the stability region. It is shown that this 
problem is equivalent to finding a set of linear output feedback 
gains as a solution of the simultaneous Lyapunov problem which 
has been investigated in [5] and [6] for continuous-time systems. 
This note offers a simple calculation method for obtaining a 
stability region for the above nonlinear feedback systems by 
solving the discrete simultaneous Lyapunov problem. However, 
it should be noted that any stability region thus obtained is not 
necessarily the maximum set of the stability region. 

11. SUFFICIENT CONDITION FOR STABILITY OF NONLINEAR 
FEEDBACK SYSTEMS 

Consider the single-input, single-output discrete nonlinear 
feedback system shown in Fig. 1 which consists of linear dynamic 
elements in the forward path and a memoryless nonlinearity 
f ( y )  in the feedback path, described by the following equations. 

A. Nonlinear Feedback System S 
Linear Part: 

X ( t  + 1 )  = R r ( t )  + bu(t) ,  u ( t )  = - f ( y ( t ) )  

y ( t )  = c‘x(t) 
Nonlinear part 

k , y  - ( k ,  - k 2 ) a  if y > a 
f ( Y )  = k2Y if - p l y  I a (2) i k,Y + (k3 - k , )P  ifY < - P  

where x ( t ) ,  b,  c E R”, y ( t ) ,  u ( t )  E RI, A E R n X ” ,  and a ,  /3 > 0. 
R” and R”’” denote the n-dimensional real vector space and 
n x n real matrix space, respectively. 

Definifion 1: Consider a linear system X A ,  b,  c )  described by 
(1). A set of real numbers a ( P )  is called a set of equivalent 
stabilizing feedback gains (ESF-gains) if there exists a positive 
definite matrix P ( =  P’) such that ( A  - bcTk)‘P(A - bcTk) - 
P is negative definite for all k E a ( P ) .  

This means that x( t )Tpk( t )  can be taken as a Lyapunov 
function for a system described by x ( t  + 1) = ( A  - bc‘k)x(t) 
for all k E N P ) .  

Theorem 1: The origin of the nonlinear feedback system S is 
asymptotically stable in the large if k , ,  k , ,  and k ,  are ESF-gains. 

Proof Since k , ,  k, ,  and k ,  are ESF-gains, there exist 
symmetric and positive definite matrices, P ,  Q,, Q 2 ,  and Q3, 
such that 

( A  - bcTk , )TP(A - bc‘k,) - P = -Q, ( i  = 1,2,3). (3) 
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