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Adaptive Control of Robot Manipulators 
with Flexible Joints 

Rogelio Lozano and Bernard Brogliato 

Abstract-This paper presents an adaptive control scheme for 
flexible joint robot manipulators. Asymptotic stability is insured 
regardless of the joint flexibility value, i.e., the results are not 
restricted to weak joint elasticity. Moreover, the joint flexibility 
is not assumed to be a priori known. Joint position and velocity 
tracking errors are shown to converge to zero with all the signals 
in the system remaining bounded. 

I .  INTRODUCTION 
DAPTIVE control of rigid robot manipulators has been A thoroughly studied in the last decade [ 11 - [5]. However, 

robot manipulators usually have flexible joints due to gear 
elasticity, shaft wind up, etc. and flexibility has to be taken 
into account in the design if high performance is to be 
achieved. In some cases, joint flexibility can even lead to 
instability when neglected in the control design [6]. 

A way to understand the effect of joint flexibility is to 
consider adaptive control schemes designed for rigid robot 
manipulators and study their behavior in the presence of 
weak joint elasticity. This has been done in [7] using singular 
perturbation techniques. Global stability is guaranteed in 
[7] under the assumption of weak joint flexibility though 
the maximum flexibility that can be tolerated has not been 
explicitly given. 

In this paper, we present an adaptive control scheme for 
robot manipulators which takes joint flexibility into account. 
Asymptotic stability is ensured regardless of the joint flexi- 
bility value, i.e. the results are not restricted to weak joint 
elasticity. Furthermore the joint flexibility value is not as- 
sumed to be known. Joint position and velocity tracking 
errors are shown to converge to zero and all the signals are 
proved to be bounded. The adaptive control scheme pre- 
sented here has the attractive feature that it fully exploits the 
passivity properties of robot manipulators with flexible joints. 

Section I1 presents the control scheme when all the robot 
manipulator parameters are known. Section I11 is devoted to 
the adaptive control scheme and concluding remarks are 
finally given in section IV. 
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11. CONTROL OF FLEXIBLE JOINT MANIPULATORS 

Consider a robot manipulator with flexible joints defined 
by the following equations: 

D(qi)di + c ( q i ,  4i)qi + g(qi) -k K(qi - q 2 )  = 0 (1) 

J m 4 2  - K(q1 - q 2 )  = U ( 2 )  
where ql and q2 represent the link angles and motor angles, 
respectively, K > 0 represents the joint stiffness, D(q, )  is 
the inertia matrix, and C ( q , ,  q,)ql  represents the Coriolis 
and centrifugal terms, g( q l )  represents the gravitational 
terms, U is the input torque, and J, the actuators inertia 
matrix. The dynamic model (l) ,  (2) does not represent the 
most general dynamic description of this class of arms but is 
a simplified model introduced in [ 121. 

The control design will be based on the following 
properties. 
PI: The inertia matrix D( q)  is positive definite [ 11. 
P2: The constant parameters of interest (i.e., link masses, 

moments of inertia, etc.) in each of the terms in (1) appear as 
coefficients of known functions of the generalized coordinates 

P3: For C ( q , ,  q I )  chosen as in [I], the matrix b(ql) - 

Furthermore, the following lemma states the passivity of 

Lemma I :  Consider the dynamic equations in (1) and (2). 

[81, ~91. 

2C(q , ,  q l )  is skew symmetric. 

the system in (l), ( 2 ) .  

The mapping U + q2 is passive, i.e., 

LTuTq2 2 - y 2  for all T > 0 and some y E R . 

The proof is given in Appendix A. 
In the case of rigid manipulators the robot’s passivity 

property, i.e., passivity of the mapping: U + q1 has been 
very useful in the design of the adaptive control schemes 
[I]-[4]. However, in the case of flexible joint manipulators 
the mapping: U + q1 cannot be proved to be passive but 
instead the mapping: U + q2 is passive as stated in Lemma 
1. The above lemma is given for completeness purposes and 
although it is not directly used in the adaptive control law 
design, it was helpful in finding the Lyapunov function to be 
used in the control law synthesis. 

Consider the following Lyapunov function candidate: 

+’& 2 - u 2 ) r d l K J o ( u 1  - u 2 ) d l  (3) 
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where 
up > 0 

(8) 
- A  

(4) 

where 
U; = qi + xgi; 4" I = q.  I - q.  id'  

6 = 6 - 6  

is the param_etric error between the parameter vector 6 and 
its estimate 6 to be defined later. The term det (D) has been 
included in I/ in (7) to obtain a control input that is LP. 

In Appendix C we show that the nonadaptive control law 

X > 0 is a positive constant and qid and its derivatives 
represent desired values for qi and its derivatives, respec- 
tively. We assume that q l d E  C4[R+]. 

The control law is given in the following lemma. 
Lemma 2: Consider the system in (1) and (2) and the 

following control law: 

U = - U 2  + Jm( 4 2 d  - hi2) - U 1  + D( q l d  - X q " l )  

+ c ( q l d  - + g ( 5 )  
where qZd is given by 

q 2 d  K - '  - U 1  + D ( q I d  - X i , )  + C(q1, - A@,) + g { 
+ K  q l d  + 4"1(O) - 4"2(O) - h / ' ( @ I  - @ 2 )  ' (6) [ 0 

Then all the signals remain bounded, and q2 converge 
to zero as t -+ 00 and qZd can be computed from (5 )  and (6) 
noting that ql  and qi3' are bounded functions of q l ,  q2 ,  q1 , 
and q2.  

The proof is given in Appendix B. 
Remark I :  The control input in ( 5 )  involves the computa- 

tion of q2d which can be obtained by differentiating (6) 
twice. The expression for q2d involves terms like D ,  C 
which depends on q1 and qi3). The system parameters being 

can be written as 
6:hu + Y666 = 0 (9) 

where e 5 ,  e6 are unknown parameter vectors, h is a known 
vector function, and Y6 is a known matrix function. A 
constructive way to obtain Y,, h is given in Appendix C. 

The scalar 6;h multiplying U in (9) is in fact equal to 
det D as will be shown in Appendix C. This means that 
6Th > 0. This fact will be exploited to avoid singularities in 
the adaptive control scheme by adequately projecting the 
estimates into a region where no singularities (i.e., 6:h = 0) 
occur. 

A ConvexDomain A for  65 
We assume here that a lower bound aZ of D is known. 
Since 0Th L a h  and h is a known function of q l ,  we can 

define a subspace H spanned by h ( q , )  as 

H :  { U :  U = h ( q , )  for some q l } .  ( 10) 
known, ql  can be expressed, using (1) and the boundedness 
of D - ' ,  as a function of q l ,  q l ,  q2 ,  q2 .  The same proce- 

noting that D and C depend only on G I  and G I .  
Therefore the control input in (5 )  and (6) involves 

measurement of q l ,  q l ,  q2,  q2 but does not require any 
acceleration measurement. 

We can define A as 

dure can be repeated for qi3) by differentiating ( 1 )  once and A :  ( U :  uTh 2 a" V h E H } .  (11) 
The two main properties of A that are essential for project- 

1) A is convex (see Appendix D) 

ing the estimates to avoid singularities are as follows: 

111. ADAPTIVE CONTROL OF FLEXIBLE JOINT 
MANIPULATORS 

One of the fundamental properties of robot manipulators 
that allow the use of adaptive systems techniques is the fact 
that the system parameters appear linearly in the equations 
as coefficients of known functions of q l ,  q2, q l ,  and q2 
(see [8] and [9]). Throughout this section we will denote 
that a given function f is linear in the unknown parameters 
by " f is LP" (Linear in the parameters). 

In the development of the adaptive control presented in this 
section we will have to solve two main problems. First, we 
will prove that the control input U is LP and second, that 
there are no possible singularities in the control law. We also 
assume that the stiffness matrix K is diagonal. 

In order to insure that the control input U is LP we had to 
slightly modify the Lyapunov function in (3) to the following 

1 1 

2 2 
V = -ufDu, + -uTJm det (D)u2  

1 1 

2 
+ Tup4":4"l + -&'e' 

2 )  $ , E A .  

In the remaining of the paper we will assume that the 
computation of the convex region A has been carried out. 

Parameter Adaptation Law 
We will consider the following parameter adaptation law 

. hUTu2 if 8, E int ( A )  
8,= [ 

P:( huTu2) if ê , E d(A)  and ( huTu2) > 0 
( 12) 

86 = Y:u2 (13) 
where P: denotes orthogonal projection onto A ,  d(A) de- 
notes theA boundary of A ,  and 6: is the vector normal to 
d(A) at 6,. 

Adaptive Control Law 
The adaptive control law is given by (see also (9)) 

ê :hu + Y686 = 0 .  (14) 

The adaptive control convergence properties are established 
(7 )  in the following lemma. 
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Lemma 3: Consider the flexible joint manipulator de- 
scribed in (1) and ( 2 )  and the adaptive control defined in (13) 
through (15). Then all the signals remain bounded and the 
position and velocity tracking errors converge to zero. 

The proof is given in Appendix C. 
Remark 2: In the proof of Lemma 3 we have implicitly 

assumed a priori knowledge of an upper bound of the 
system parameters (see (C.24). 

The K stiffness matrix is estimated on line as part of the 
controller parameters. Singularity of the estimated matrix 
is avoided by using an appropriate parameter estimates 
projection (see (C.30)). 

CONCLUSIONS 
This paper presented an adaptive control scheme applicable 

to robot manipulators with flexible joints. In contrast to other 
approaches, global stability is ensured regardless of the joint 
flexibility value. The control input is computed using link and 
motor shaft position and velocity measurements. Link posi- 
tion and velocity tracking errors have been shown to con- 
verge to zero with all the signals in the control system 
remaining bounded. 

Possible singularities in the adaptive control algorithm 
have been avoided by projecting the estimates into a convex 
region in the parameter space. 

APPENDIX A 
Proof of Lemma 1: Equations (1) and ( 2 )  can be derived 

via the so-called Euler-Lagrange equations 

a Lagrangian function independent of time) L* is equal to the 
total energy in the system, i.e., 

('4.7) L* = TI + T2 + V. 
From (A.5) we have 

From (A.3), (A.4), and (A.6) it follows 

From (A.8) and (A.9) it finally follows that 
dL* 
dt 
- -  - qTu (A.lO) 

Integrating the above equation and noting that L* is positive 
v definite we conclude the proof. 

APPENDIX B 
Proof of Lemma 2: For simplicity of notation we will 

omit the arguments of D ( q , )  and C ( q , ,  4,). 
Differentiating V in (3) and using property P3 we get 

+ ( u l  - u ~ ) ~ K J " ( u ,  0 - u 2 )  dt 

= U; DUI + CU, + K L ' ( u ,  - u 2 )  dt1 I where qT = [q;,  q:], r is the generalized force vector 
r = [0 uT], and L is the Lagrangian of the system given by 

where TI is the kinetic energy of the rigid links, T2 is the 
kinetic energy of the actuators where the effect of q, has 
been neglected assuming a high-gear ratio [12], and V is the 
total potential energy considering both gravity and elasticity. 

From (A.l)  we obtain 

P . 3 )  

(A.4) 

Consider the adjoint Lagrangian function 

(A.5) 

(-4.6) 

L* = pTq - L 

where 
aL 

a 9  
p = -  

is the generalized momentum. It is well known that in the 
case of scleronomic systems (i.e., holonomic systems having 

+ U:[ Jmlj2 - K l ' (  u I  - u 2 )  d t ]  

The first term in brackets in the (B.l) can also be rewritten 
using (4) as 

w, = D[ - q l d  + A i , ]  + c[ - 4 l d  + A411 - g 
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Note that (6) and (B.4) are equivalent. Introducing (B.2) 
through (B.4) into (B. l )  we get 

(B . 5 )  

differentiating (6) we conclude that q2d is bounded and since 
g2 E La then q2 E L , .  Differentiating (1) we can also .con- 
clude in the same manner that qi3' E L ,  since D and C are 
functions of q l ,  q l ,  and q, which are also bounded. Thus w4 
in (B. 14) is bounded and so is q2d in (B. 13) which implies 
that U in (5) is bounded. Let us also note that in the case 
when D, C ,  and g.are,Fown, q1 and qi3' canbe computed 
and are bounded, ijl, g2 being bounded and gl, Q2 E L ,  it 

v 

v = - U T U ,  + u;w2 

with 

(B.6) 

which can also be written using (2) and (4) as follows that QI, g2 -+ 0. 

APPENDIX C " 2 -  - J m ( 4 2  - 4 2 d  + A$2) 

Proof of Lemma 3: We will omit the arguments in 
- 42 - 'I(') + ',(') + - ") " 1  D ( q , )  and C ( q , ,  q l )  whenever the arguments are q1 and q1 0 

otherwise they will be indicated. 
= u + w ,  (B'7) Differentiating (7) and using property P3 we obtain the 

where following: 

- K S t ( u 1  - U,) dt + 8.i. (c.1) 1 Using the control input in (5) it follows from (6), (BS),  

v = - U T U l  - u;u2 .  (B.9) 

(B.7), and (B.8) that 0 

Let us manipulate the first term in brackets in the RHS of 
(C.1). Using (1) and (4) we obtain Therefore from (3) and (B.9) it follows that 

U , , ~ , E L , ~ L ,  (B.lO) DUl + CU, + K ~ ' ( u ,  - u 2 )  d t ]  
and 

L t ( u I  - u 2 )  d tEL, .  ( B . l l )  

From (4) and (B. 10) it follows [ 1 1 ,  p. 591 that gl, o2 E L ,  
n L,, il, g2 e L 2  n L,, and gl, d2 -+ 0 as t + 03. In view 
of (B. 11) and the fact that O I ,  o2 E La it follows that 

l ' ( 4 ,  - 4 2 )  d tEL, .  (B.12) 

From (B.3) and the above we conclude that q2d in (B.4) is 
bounded. 

In order to prove boundedness of U in (3, (6) it suffices to 
prove that q2d is bounded. For that purpose let us differenti- 
ate q2d in (B.4) which gives 

Kq2d = -Ul  - w4 + K [  - q l d  + A ( b l  - b2) ]  (B.13) 

with 

d 2  

d t2  
w4 = - [ D( - q ] d  + A&) 

+ C (  -e ld  + A q l )  - g ] .  (€3.14) 

Since q2d in (6) is bounded and o2 E La it follows that 

Let us note that in view of (1) and the fact that qI , q1 , and 
D - ' ( q l )  are bounded it follows that ql E L , .  Therefore, 

q 2  EL,. 
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q l d ,  q,,, and the dynamic model parameters. Note that vector O 3  which depends on the system parameters. 

- All dl 11 I - )I u1  I / ]  + ( 1  + X) 11 U ,  11 11 GI 1 1  where we have used (C. 16) and the linearity with respect to 
the parameters to define a new function Y, whose partition 
depends on Jl Y3 dt ,  Jd q, dt and q l ,  respectively. 

+ ( 1  + A) 11 U I  11 1 1  @ I  11 '. ( c . 7 )  5-+- Introducing (C. 18) into (C.14) we get 
II V I  II XII 41 II 

4 4 

Introducing (C.7) into (C.6) we have TI = uT(A1 + A,)  - Y2JK + Y2keK 

UTA, 5 a,uTu, + a24T41 + a311~11121141112 (C.8) +(UU + ~,ll4I1l2)UTY4e4 

where a,,  a,, and a3 are positive bounded functions of q ld ,  
O l d ,  q l d ,  and the dynamic model parameters. 

- (U,, + U,, 11 O l e 2 )  u T D v ~ .  (C.19) 

Provided the elements of eK are all strictly positive we can 
define q2, by the following equation: From (C.4) and property P2, A2 can be expressed as 

A2 = Y,(q,,, 4 1 d ,  a l d ) 4  ( c . 9 )  

where Y, is a matrix of appropriate dimension and O 1  is a 
vector of parameters. Since K is a diagonal matrix we can 
rewrite the last term in (C.2) as follows: 

uTK[q, ,  + w5] = 8idiag(uf)[q2,  + w5] (C.10) 

with: e $ =  [ k , , ,  k,, ,  k,,,] ( C . l l )  

where k j j  represents the ith diagonal element of K and 
diag( u ; )  is a diagonal matrix whose diagonal entries are equal 
to the elements of U,. Therefore, from (C.10) we have 

uTK[q2, + ws] = e,Tdiag(vf)[q2, + Wj] 
= y,,(q,, 41, w5, q 2 d ) e K  (C.12) 

Y,,(q,, 41, w5, q2,) = [ q , ,  + W5ITdi%(Uf). (C.13) 

where 

Introducing (C. 12) into (C.2) we have 

TI = uT(A, + A,)  - Y2,JK + Y2&TK 

* ( U , ,  + ~,ll@,l12)~TD~, (C.14) 
where 

e;( = e, - e,. (C.15) 

The last term in (C.14) will be used to compensate the term 
UTA,. On the other hand, using (1) and (4) we have 

where 

8 2  = D(q1(0))41(0) (C.17) 

and we have used property P3 to define a function Y3 and a 

K [ q 2 ,  + ws] = - ( U , ,  + unI141112)Y4e4 - Y$I - upBI 

(c .20) 

where K is a, diagonal matrix whose entries are given by the 
elements of 8,. Introducing (C.20) into (C.13) we have 

diag( u f )  [ qzd + w5] = u;k[ q,, + w5] Y2,eK = 

= - (U,  + u,I( 41 l/2)u:Y4e4 - u;r,e, 
- .,UT41 ( c . 2 1 )  

where up > 0 will be defined later. Introducing (C.21) and 
(C.9) into (C.19) we obtain 

TI = uTA1 - uTY,e", - Y2,JK - ( U ,  + u,,II 
( u;Y4e", + uTDu,) 

- upu;4,. (c .22) 

Furthermore from (C.8) we have that 

UTA, - (U,, + ~ , l 1 4 1 1 1 2 ) ~ T ~ ~ l  - ~~p1141ll2 

I - u~u,(&,,, Du, - a,) - qTQ1( Xup - a,) 

II II 41 II '(kin Dun - a3) - II (C .23) 

and if U,, up, U, are chosen large enough such that 

kin Du,, - a, 2 6, > 0 
Xup - a2 2 6 ,  > 0 

kin Dun - a3 2 0. (C .24) 

We obtain 

TI I - 6 , , u ~ u I  - 6,4TQ1 - upiT4, - uTY,6, 

- Y,,JK - (U,, + U, 11 @ 1 \ )  ')UT Y4J4. (C .25) 

Combining (C.l) ,  (C.2), and (C.25) we obtain 

V I  -60uTu1 - 6, fgq" ,  - U;Y,J, - Y2,JK 

- ( U, + U,, 11 o1 11 ')UT Y46, + 6'6 + v,TT2 (C .26) 
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where 
Jm d T2 = Jmdet(D)C2 + --(det(D))u, 
2 dt 

- K / f ( u ,  - U,) d t .  (C.27) 
0 

Let us define 

e T  = [e ; ,  e;, e:, e;, e:] (C .28) 

where 8, and 0, will be defined later. Consider the following 
parameter estimation algorithms: 

e ,  = YZUl (C.29a) 

(C .29b) e 4  = (0" + %Il!71112)Y4TU1 

Since K is a diagonal matrix with strictly positive entries and 
we require K to be invertible in (C.20) we will use the 
following parameter adaptation law 

1. 1 xi e; = 
'k if 6; L - and x i  2 0 
2 

where 

x i  = and o < 6, I mine; (C.30b) 

8; denotes the ith element of e K .  
A suitable choice of a smooth function 0 I f ( 6 ; )  I 1 

with f(6, /2) = 0 and f(6k) = 1 implies that the parameter 
projection in ((2.30) has smoothness properties that will be 
used later in the proof. This estimation algorithm guarantees 
that e; 2 6, /2 for all i. 

Introducing (C.28) through (C.30) into (C.26) we obtain 

where we have used the fact (see (C.30)) that 

T -  

( e K  - Y,,) eK = (e; - yld)(e; - o;) I o. 
I 

Consider now the following lemma. 
Lemma C.l:  T2 in (C.27) can be expressed as 

0, and 0, are unknown parameter vectors and h ( q l ) ,  Y, are 
a known vector and a known matrix, respectively. 

Proof: From (2), (4), and (C.27) we have 

T2 = de t (D) [u  + K ( q l  - q 2 ) ]  
+ J m d e t ( D ) ( - q 2 , +  Ab2)  + --det(D)u, Jm d 

2 dt 

- K / ' ( u ,  - U,) d t .  
0 

( c . 3 4 )  

Since D is positive definite, then det (D) is strictly positive 
and LP (see property P3) and therefore it can be written as in 
(C. 33). 

Since the model is LP (see property P3), terms obtained by 
differentiation of model terms or by sum of them are indeed 
still LP, while terms obtained as products can be given as LP 
structure, eventually in terms of a new extended set of 
parameters. Therefore premultiplying (1) by the adjoint ma- 
trix of D we conclude that det (D)ql  is LP. 

We prove next that det(D)q2d can be expressed as a LP 
function of ql, q, , q2,  q2. Taking the second derivative of 
(C.20) we see that q2, is a function of q l ,  q,, q l ,  and the 
following functions: w, (CS) ,  Y4 ((C.16), and (C.l8)), Y, 
(C.9), K ((C.13), and (C.30)), d l  and O4 (C.29) and their 
first and second derivatives. 

Now that in view of (C.5), (C.13), (C.18), (C.20), and 
(C.30), q2d is a measurable signal. Furthermore q2d is a 
linear function of measurable signals and q,. However, 
det ( D ) q l  is an LP function of q l ,  q,, and q,. Therefore we 
conclude that det (D)q2d is an LP function of measurable 
variables and thus (C.34) can be written as in (C.32). V 
Introducing (C.32) into (C.31) we get 

I - ~ , u ~ u l  - 6,q";g", + &;e, + e;$, + U;e;hu 

- U;hTe;T~ + U ; h T i ; ~  + r,e, (c .35) 

+ u;y6e6 = - 6 , u ~ u l  - 6,g"Tq", + e;e, 

where we have defined (see (13)) 

66 = Y:uZ. (C .36) 

Introducing the parameter adaptation law in (12) and the 
adaptive control law in (14) into (C.35) we finally obtain 

P I  -60u;ul - 6,G:q", + e;.[i, - h U T U , ] .  ( c .37 )  

The term huTu, can be decomposed as 

huTu, = P:( huTu2) + P,' ( huTu2) (C.38) 

where P,!( z) denotes the orthogonal projection on the hyper- 
plane tangent to a(A) at z and P,' ( z )  is the component of z 
perpendicular to this hyperplane at z. Therefore using (12) 
we have 

&:(e, - h U T U , )  

if ê , E int ( A )  

= [ og;P/  (huTu2) I 0 if e , ~ d ( A )  

and ( h ~ ~ u , ) ~ B ^ :  > 0 

( c .39 )  
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and then finally where the last term comes from the product Y4i4. Using a 
similar argument we conclude that q2,  q2d remained 

(‘ *40) bounded. i. I - G O U ~ U ’  - 6,4”:4”’. 

From (7) and (C.40) we conclude that (see also Appendix B) 

U , E L ,  n L,   EL, n L,,   EL^ n L,, 4’ + o  

e E L , .  (C .41) 

What remains to be proved is that q2,  q2 ,  and U remain 
bounded. This, in turn, will imply that q, and q2 are 
also bounded (see (1) and (2)). 

Boundedness of q2: Since G2 EL,, it suffices to prove 
that q2d E + ,  to conclude that q2 EL, .  Note from (C.20) 
that since K-’ is bounded (see (C.30)) and in view of (C.41) 
we conclude that q 2 d  is bounded by Y,, i.e., we have (see 
(C.18)) 

q 2 d  = B ( t )  + B ( t ) / ‘ y 3 ( q l ,  41) dt + B ( t ) / ‘ q 2  dt 
0 0 

(C .42) 

where B( t )  denotes a generic bounded function. On the other 
hand, using (1) we have- 

L‘q, dt = K-’ L ‘ ( D q ,  + Cql + g + K q , )  dt 

= K-I l ‘ D q l  dt + K-’  l ‘ ( C q l  + g + K q , )  d t .  

(c .43) 

Integrating by parts we obtain 

l ‘ D q l  dt = 0 4 ,  - D(q,(O))q,(O) - d t .  (C.44) 

Combining (C.42) through ((2.44) we can see that q2d can be 
expressed as 

0 

q2d = B ( t )  + B ( t )  [ ‘ B ( t )  dt 
J O  

(c .45) 

Boundedness of U: From the control law (14) we see that 
U is bounded by 11 Y6II since @h 1 CY” > 0. On the other 
hand, Y6 was defined to express (C.27) as in (C.32). In other 
words, Y6 is a function of bounded signals as &U , - u 2 )  d t ,  
q l ,  q l ,  U*, lj2 and the other known functions used to 
parametrize det ( D)q2d.  

Note that in view of the smoothness of the parameter 
projection in (C.30) I? is well defined for all finite time. 
Therefore, differentiating (C .20) twice and premultiplying by 
det (D) we see that det (D)q2d is parametrized with known 
functions such that U is bounded as follows: 

U = B ( t )  + B ( t ) / ‘ B ( t )  dt + B ( t ) [  l ‘ B ( t )  dt]’ .  
0 

(c.47) 

If U grows unbounded so will q2 (see (2)). But Q2 is 
bounded so that using similar arguments as above we con- 
clude that U remains bounded. v 

APPENDIX D 
Proof of the Convexity of A in (IO), (11): Let x 1  and 

x2 E A ,  therefore xrh 1 C Y ”  and xrh 1 a” for any h E H .  
Consider now 

x = Ax, + (1 - A ) X ,  A €  [o, 11. 

It is clear that xTh 2 an for any h E H  and therefore A is 
convex. v 
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Therefore qZd cannot grow (Or decrease) faster than ct for 
some constant c. If qZd grows unbounded so will q2 (see 
(C.41)). This implies that ql will grow unbounded at the 
same rate (see (1)). But 4’ = /: ql dt + and then if G I  
grows unbounded at a rate no faster than ct, this implies that 
41 will also grow unbounded. Since this contradicts (c.41) 
we conclude that q 2 d ,  q2,  and q, remain bounded. 
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