INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, VOL. I, 187-202 (I991)

ADAPTIVE MOTION CONTROL OF ROBOT
MANIPULATORS: A UNIFIED APPROACH BASED ON
PASSIVITY

BERNARD BROGLIATO AND IOAN-DORE LANDAU

Laboratoire d’Automatique de Grenoble, ENSIEG-INPG, URA CNRS 228, BP 46, 38402 Saint-Martin d’here:
France

AND

ROGELIO LOZANO-LEAL

Universit¢ de Technologie de Compiegne, Heudiasyc, URA CNRS 817, Centre de Recherches de Royalieu,
BP 233, 60206 Compisgne Cedex, France

SUMMARY

This paper presents a unified approach to direct adaptive motion control laws for robot manipulatc
that have been studied during the last few years by several authors. It provides a general approach bas
on passivity to demonstrate the global asymptotic stability of adaptive schemes applied to rif
multilinked manipulators. It is shown that most of the schemes fit within this framework, which prese
the advantage of being more systematic than other techniques and therefore will enable a unify
presentation of the several schemes proposed to date and will increase our understanding of adapt
control of robot manipulators.

I. INTRODUCTION

The last few years have witnessed an increasing interest in adaptive control of rob
manipulators and several different schemes have been proposed. The first robot adapti
control algorithms were based on local linearization techniques.! The main drawback of tt
approach is the lack of global stability. More recently adaptive schemes based on line
parametrization of the robot dynamics have emerged.2™ '* We will focus our attention on the
latter, which can in turn be separated into two classes: (i) inverse dynamics based contr
schemes assuming joints acceleration measurements or inversion of the estimated inert
matrix,?”* and (i) schemes which use only joint velocity and position measurements a
which do not require any inversion of the estimated inertia matrix.®~'* In view of the practic
limitations of the earlier ones, we will consider here just those schemes using only joi
position and velocity measurements. Passivity will be used as an analysis tool as advocat
in Reference 15, where the authors considered the analysis of References 6 and 7 from tl
hyperstability point of view,

This paper exploits the passivity properties of mechanical manipulators to present :
adaptive control scheme based on passivity. It provides a general framework that most of tl
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schemes proposed to date can be turned into. The simplicity of the approach will increase our
understanding of direct adaptive control of robot manipulators.

The paper is organized as follows. Section 2 presents the notation and robots dynamics. A
unified equivalent scheme of robot adaptive control is presented in Section 3. Section 4 is
devoted to showing that almost all direct adaptive laws can be turned into that scheme. In
order to complete the proof of stability, we show in section 5 that all the signals within the
system remain bounded, utilizing passivity results previously stated. Conclusions are given in
Section 6 and most of the proofs are given in the Appendices A-D.

2. DYNAMIC MODEL OF ROBOT MANIPULATORS

Consider a rigid, n-degree-of-freedom manipulator. Using the Lagrangian formulation, one
can show that the dynamic model of such a mechanical system can be written as follows:

M@+ Cg.q)g+e@) =7 M

Where: ¢, ¢, § represent the joint position, velocity and acceleration 7 X 1 vectors, M(q) is the
n X n inertia matrix, C(g, ¢) is a n x n matrix which represents centripets and Coriolis inertial
terms, g(g) represents the gravity torque # X 1 vector and 7 is the n x | torque vector supplied
by the joint actuators.

Though it is obvious that robot manipulators are complex nonlinear systems, the following
properties make thgm appear as a particular class of these systems, and facilitate their study
and design (see. References 17 and 18 for details):

(1) M(g) is a symmetric positive-definite matrix, lower-bounded for g€ R".

(2) Consider all the parameters of interest in adaptive control such as link masses, moments
of inertia etc., represented by an n x r vector §. Then the robot dynamic equations can
be expressed as a linear relationship between these unknown parameters and torque 7:

r="Y(g.¢.4%

where Y(g, ¢,§G) is a n X r matrix of known functions, known as the regressor.
(3) There exists a particular defi n of C(g, ¢) such that the matrix

M. 4) = €(q.4) - 5 ¥(q)

is skew-symmetric.

3. PASSIVITY RESULT

As will be shown in the next section, it is always possible (at least for the class of control laws
considered here) to interpret the closed-loop error equation obtained by replacing the control
law into the manipulator dynamics as a feedback system composed of three main blocks

(Figure 1) where:

(1) BI contains signals resulting from the closed-loop equation and is always strictly passive.
(2) B2 contains the robot-dynamics (with g(g) =0), i.e.

7=~ [M(@)+ C(q ¢)v] 2

(3) B3 contains the parameter adaptation algorithm.
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(4) In order to avoid acceleration measurement, ¢ is obtained by filtering the tracking er1
= H(s)™'q
where the transfer function H(s) will be specified later and the tracking error is given
) =qt) - ga(t)
g4 denoting the twice differentiable bounded desired trajectory.

We are now able to apply the following theorem (Reference 16, p. 181).

Theorem

Consider the scheme in Figure 1. Assume Bl is a strictly passive system. 1f B2 and B3

passive blocks, then
v()e L3

Proof. The proof follows from standard uw&?zz arguments (see References 15 and 16).
order to prove that the tracking error signal converges to zero, we now invoke the follow
lemma (Reference 16, p. 59).

Lemma

Let
G=H(s)

where H(s) is an nx m strictly proper, exponentially stable transfer function.
Then ve LY implies that Ge L N L%, e L¥, G is continuous and § - 0 as { = .

4. SYSTEM EQUIVALENT REPRESENTATION OF SEVERAL ADAPTIVE SCHEM

We present in this section several adaptive control laws that can be studied using the passi
result presented in the previous section. For each of them, we will demonstrate that:

(1) they can be analysed as an interconnection of the three main subsystems in Figure
(2) the blocks Bl and B3 are strictly passive and passive respectively.

First, we show that the subsystem B2 which contains the robot dynamics is passive.

o]

Figure 1. Closed-loop equivalent system
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Passivity of the robot dynamics B2 block. We have

7= — [M(g) + C(g, g))

Therefore
T
(r, —vdr= A

W0

13
EoTFdr= % OTM@) + vC(g, ¢y dr
0

ﬂ_a _. .
- .f TH @' Mg -3 v"Migw + v'C@, Scw dr

T

_lrrd s ,
- r S EASS&J;

1 ..
3 %AQ@ N-3 Esv vde

0
Knowing that C(q, §) - WA»NSV can be chosen as a skew-symmetric matrix (see, for example,
Reference 17), we obtain

7 =012 -3 T OM@OO)

The remainder of the section will ro organized as follows.

(€3] ,m,:.& we show that the adaptive laws proposed in References 6—8 can be treated together,
in the sense that only the block Bl changes from one to another.
(2) Then we perform a separate analysis for each law.%™
-
.

System equivalent representation of schemes proposed in References 6—8

We now consider the first three laws proposed in References 68, For each case the control
law is given by

r=M(@a+Clg,§a+g(g) - H®v,§) 6)

with nn.@._ - K.cum.‘y >0 where a is a signal resulting from an outloop control law:
a = a(q,q,94,qG4) and (.) represents the estimates of () at time 7 and ()= () - (.). H is an
operator to be defined later (see Reference 18 for details).

Substituting this control law into the robot dynamics, one gets the following error equation:

M)t + C(g, gy + H(v, §) = Y(q, 4, &, al§ ©)]
where the three blocks B2, B, and B3 clearly appear. The update law is given by:
0=-TYv TI=rT>0 ®

Passivity of the parameter estimation algorithm in the B3 block

— T -
(-v, YO)r= % -0TY8dr
o .

T. B _
- faf_?: > 30" Or 50 )

Where we simply use from (8) that:
v'y=-§7r"!

So the mapping — v — Y9 is passive.
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Strict passivity of the BI block. 1t is sufficient that H be strictly passive for these adap:
laws to ensure the global asymptotic convergence of the tracking error. This is achieved
choosing in each case:

(1) Scheme proposed in Reference 7. In this case
H{(G,v)= Fr+ Fod,  with Fp, Fy > 0

so there exists a 6 > 0 such that

T
(0, F+ Fgr= | @TFu+ o Ry di > 6] o] GOV F:3(0)
0

where || 2,1 denotes the truncated L, norm.
(2) Scheme proposed in Reference 8. This time
H(G,v)= H(v) = pH"(x)v
where > 0, H*(x) = J TH(g)J ' and x _.ou._.omoim the cartesian co-ordinates. J is the squ

Jacobian matrix of the manipulator, assumed to be full-rank. In this case one needs
following additional assumption:

there exists a > 0 such that of < H*(x)
Then
,
W AH' 0= | o v de > e v 3
[i]

Remark. In case (2), the authors considered a unified approach of motion and force con
in the cartesian space. The signal v is then defined by the following relation:

b+ €= —R[G(5)SE+ (I - SYF(s)R™'F)

where \ is a positive scalar, £ is related to the tracking error e = x4 — x and the measured fi
F by

t=R e+ AG(s)"'R™'F
Where A is a selection matrix: A =1 or 0, R is a constant matrix, G(s) and F(s) are tran
functions of degree 2, and S is the selection matrix, which is diagonal with elements beil
or 0: the axis motion-controlled correspond to the ‘I’, the others are force-controlled.
Then if v€ L3, one can show that each component of v = (vy, vz, ..., Us) is L, as well, so

lemma (Reference 16; p. 59) holds for each axis.
We are able to conclude

Stand (J- SYR™'FeLINLL
Stand (/- S)R™'Fe L
Therefore
St and (7 - S)R™'F are continuous and tend towards zero as 7 — «

(3} Scheme proposed in Reference 6. In this case

H(v,§)=Kpv; Kp>0
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so there exists 8 > 0 such thart:

ﬂ
(v, Kpvyr= m VKo dt 284 ulds
0

System equivalent representation of schemes proposed in References 9 and 10

In References 9 and 10 the authors have proposed a ’composite’ adaptive law, with an
update law utilizing both tracking and prediction errors. The control law is given as in (6) for
H(v, §) = Kpv. Replacing it in the robot dynamics (1), one obtains (7). The update law is given
byv:

o) = - POIY v+ a(t)WTe) (10)
where e is the prediction error: e = 7 — 7 with 77 the filtered torque obtained by
w=W(q,4) 0

where W(g,q)=w(t)*Y{(q,4,§) and w(r) is :ﬁ.::vc_mo response of an exponentially stable,
strictly proper filter.

Block Bl is identical to the previous case where H(v, §) = Kpv, and therefore is strictly
passive. So we have only to prove that the update law defines a passive subsystem: choosing
the most mo:o;_xmﬂoqzsa (called, in Reference 9, inherently-bounded-gain method) we get:

L P = AOP O K5 ) + )W W (I

with \(r) and a(t) positive time-varying scalars; Ky > 0.

ﬂ ﬂ u,
Tﬁ&?; m ;%:LE:u % ;ﬂh;w-sxax\qm_&
Jo 0

N. h h l
A EJT-_T% :u-_x_ +§4%L;5._§9
v
But

Pl = :u-;mu%:u-_&

It follows that the first term in the integral can be written as:

d i du 1d 1 dpP
7Y p-1 -1 wyTp¥_* 4 T b df”
8P wﬂﬁu [D)] :wﬁ: NE? Pu) N= ﬁ:x
with u = P~1§ ,
Now using (I1) and the following relation:
dpP dp!
= _p- P
dr dr
it follows that
u’ ﬁ_mwx = P[P} - K51 Pu ~ au PW WPy
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We finally get
- T1d, . A sy 3
~v > -2 A -1 _ -t
(-0, Y)r= wo Mwﬁ:? wSJer P K; _mv dt

as P~ -~ K§' > 0 we obtain
(=2, Y07 > =1 TP (0)F(0) (

Remark. In Reference 9, the authors have considered separately several algorithms, from
simple gradient method to the inherently-bounded-gain method. It is straightforward to
that the IBG method is in fact the most general one, and that the other methods presented
particular cases of the IBG. For instance, by choosing A1) =0and o(T) = |, one obtains
standard-least-squares method; K5'=0 and \(t)= No(l - l/ke} P}) leads to the g
adjusted-forgetting method (GAF).

System equivalent representation of the scheme proposed in Reference 11

In Reference 11, the authors have proposed a so-called ‘desired compensation adaptive [:
(DCAL), which is based on the fact that the regressor is no longer a function of measu
signals, but of desired trajectories, i.e.

8= -TY'(ge,du,da)v= -TYw (

(For simplicity we will denote Y(gaq, Ga,da) by Y4). It presents the advantage of being mr
computationally efficient, but leads to a more complex analysis.
The control law is given by

1= Ya &~ Fv- Fog - f(v,§) (
v, Tq, Nuv and Fe>0

with f(v,§) = ou || G

where f(v, ) is an auxiliary nonlinear feedback term introduced to compensate the kinem;
error due to Yy in the update law. Replacing it in the robot dynamics leads to (7) with
H(, @)= - Fpod ~ Fov~ f(£,§) - AY(v,§) (

where AY(v,§) = [Y(g,4, 4, a) - Y4 O.
The update law is a gradient, and therefore is passive.

Strict passivity of the block BIl. One can show that, choosing Fy, Fy, 0a, and \ Iz
enough, one can obtain a strictly passive operator (see Appendix A for details).

Systern equivalent representation of schemes proposed in References 12 and 13

First, let us introduce a slight modification in the passivity theorem presented in Sectio:
Assume that one is able to demonstrate passivity (or strict passivity), of any of the three bic
B1, B2, B3 only for a given set of instants § = (T;);e ~, and not for all 7> 0. Then the res
of Section 3 will still hold. Indeed, it is straightforward to conclude that

vy, <o forall Ti€S
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Given any T > 0, there always exists a couple (T, T;.1) such that T; £ T < Ti.1. Then
T T

hy i< [ o2 dr<
0

T
w oy |2 de < M
0 v 0
Then
fo) lr< = forall T>0=vel?
and the rest of the analysis follows.
In Reference 12, the authors considered a ‘repetitive control law’, designed for robots which
are required to execute the same motion with a fixed period ¢/, i.e.
qalt +1') = qa(t)
qa(t + 1) =qa(r)
Ga(t +1') =g (1)
The robot is expected to ‘learn’ the trajectory after consecutive iterations from a period to
another. The repetitive control law is given by

7=Ww (1) - Fov— Fpg - fig,v) (16)
Where the last terms are identical to those of Reference 11 in the ‘DCAL’ algorithm, and
wi(t) = Y(qa,ga. §a ¥ = Yo amn
Replacing it intd 1fle robot dynamics leads to
M(g)v+ Clg,q)v= - Fov— F§ — AY (G, v) - f(g,v) + W (1) (18)

where the blocks Bl, B2, B3 clearly appear. Note that the Bl block is identical to the one in
Reference 11 and can be made strictly passive by appropriate choice of the gains in (16).

Passivity of block B3. In Reference 12, the authors introduced a projection operation to
keep the estimates between lower and upper bounds, which are assumed to be known a priori,
thus ensuring boundedness of the estimated W, (¢).

During phases of adaptation, the estimation algorithm is given by

we(t) = we(t — t') — Kro(t) KL>0

Assuming that there is no finite escape time and not taking into account the projection
operation, one can show the passivitv of the B3 block in this case 100 (see Appendix B for
details).
Remark. The authors have also introduced** a modification in their adaptation algorithm:
wel(t)=w(t—t'Y—Kre(t—t')

to allow sufficient time for computation. It cAn be shown that, adding a signal — Fu2v to the
B3 block (separating the gain F, into two parts as done in Reference 13, this algorithm is also
passive.

System equivalent representation of schemes proposed in References 14a and 14b

A new adaptation learning rule has been studied in Reference 14a. It presents the advantage
that no projection operation is needed to keep the internal signals bounded. It is mainly based

CONTROL OF ROBOT MANIPULATORS
on the fact that the unknown term w,(¢) can be written as
-
Wo(r) = % K(t, D, 1) dr
0

where c(f,7) is an influence function, and K(7,7) is a positive non-degenerate kernel
Reference 14 for details). The update law is given by

2 e = - KK, Du,  Ki=KT>0

1t is then possible to show that this learning rule is also passive (sce Appendix C).
In order to reduce the on-line computations, the authors have also introduced a so-cs

delayed repetitive learning rule.'*® The influence function is now given by

kit

Crr1=Cc+ % KiK (o, T)v(0) do

=

and the update law: |
o

W) = r K(t, 1) () dr

for kt' <t < (k+ 10", k=1,2,3,....
Assuming this time again there is no finite escape time (at least during the first pe
0 <7< t'), then one can show that this delayed algorithm is passive (see Appendix D).

5. STABILITY ANALYSIS

The foregoing studies have shown the global asymptotic convergence of the tracking erro
the schemes considered. In order to complete the stability result, it only remains to state

all the signals in the equivalent feedback representation, including the estimates, are bounc
Similarly to what has been done in Reference 17, let us consider the following function:

VT =v+ (-0, D7+ B+ { -0, YD r+pu+ (v, HW, §)r

Note that choosing v, 3 and p adeguately ensures that V is a positive function, as we t
shown previously that there exist ¥ > 0,3 > 0,u > 0 and & > 0 such that for all T> 0

(-uDr2 -1 (-0, YHr> -8 and (0, HO,dr2élvldr-p> —n

Choosing vy = _\Nc:o;\:ﬁo:iov, V(T) can be rewritten as

T
m vTH(v, §) dt

T
V(T) =3 oM@+ B+ [ comdace s
0 0

Differentiating ¥ along the trajectories of the system leads to
V(T)=0 forall T>0

Hence one gets V(T) = V(0) so V€ Lo and then V¢ LZ. Applying a similar result to the len
in Section 3 (see Reference 17, p. 59) we get

GelLn

and then q,4, a= a(q, 4, qq,44,da), a=¢— v and Y(gq,4q, a, @) remain L.-bounded.
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(1) Schemes proposed in References 6—-8 and 11. In these cases
B4 (=0, Y02 10(T(T) sofelland YfeLl

(where we have chosen 8 =1 67 (0)['6(0)).
(2) Schemes proposed in References 9 and 10. In this case one gets

5 T{1d 1 Aaripei Sy g
B+ {~-v,Y0)r= mo mww? w5+m¢ (P™' - Ky 16} df

>3FMPITEI 20 @s P K >0)

(where we have chosen 8 =1 ﬁ@hlaﬁo:. Hence
felland Yfe LD

Remark. We have shown that the closed-loop error equation can in each case be written as
follows: . - _
M@)o+ C(g.q)v+ H(v,§)= Y8
Then
o= [M(q)] ~ [YO- H(v, )~ Clg.4)v]
-
As the right-harfd side of the expression above is bounded, one gets
velLl
Now, an H(s)t; applying lemma (Reference 17, p. 59) one concludes:
GeLinL:
gelLl:
§ is continuous and QhL Oas?{— +c

(3) Scheme proposed in Reference 12. Utilizing the same technique, we here replace Y8 by
w;(1). Taking
”
B= % @ ks de +

0

we obtain

ni
B4 (—v, W 2 %A IRk a0 for all n > 2, with 7= e
n=1y
It shows that w;, is Lp[(n—1)¢',nt'} bounded. Hence, under the assumption that the
algorithm does not diverge during the first period 0 < 7 < ¢/, there is no finite escape time
in the system. Unfortunately, Le-boundedmess cannot be ensured without a projection
operation as done in Reference 12.
Moreover, boundedness of the several signals previously stated can no longer be ensured for
all 1 2 0, as V(T) is a positive definite function ounly for T= T,, n€ N*. Note that as lemma
in Section 3 still holds, one still gets

gelzw

Nevertheless, boundedness of the other signals for all 7 > 0 can be shown through a Lyapunov-
type approach, as done in Reference 12.
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(4) Scheme proposed in Reference I4a. We now choose

7 .
s=1 1" ¢,y Ki160, ) dr
NZ

Hence

_‘
m m“mﬁ.:__m&mhamo;_:vO
O

Following what has been done in Reference 14, this allows us to conclude on the boundec
of the estimated signals w;(¢). Note also that, contrary to Reference 12, the analysis is »
for all 7> 0, and is not restricted to a set of discrete instants T,,. So the foregoing conclu:
on the schemes of References 611 are available.

(5) Scheme proposed in Reference 14b. As for Reference 12, the passivity analysis o
update law has been done for a set of discrete instants T, and not for all 7> 0. S
conclusions are equivalent. However, because of the particular form of the update law (21
(22), and using the fact that v € L;, the estimates are bounded.

Remark. Concerning adaptation algorithms, one can note that the gradient method is
spread in robot adaptive control, as can easily be seen as a passive map between its inpul
output. In Reference 15, the authors have exhibited a class of passive adaptation algorit
known as the ‘integral + proportional PAA’, which had been first proposed in Referenc
but never applied in the field of robot control.

In fact, though least-squares algorithms are recognized as ensuring better performances
the gradient method, one is only able to establish the passivity of the latter. In Referenc
the authors have recently introduced a modified least-squares estimation algorithm base
passivity properties: Their control law is given by

r=M(@)a+ C(q.9)a+£(q) - Kv

a resulting from an outloop control law as in Section 4 of this paper (see References 24
19 for further details). Replacing it in the robot dynamics leads to

M@)o+ Clq, §)v=Y(q. 4. a,a)f ~ Kv

The modified least-squares algorithm is given by

f=08 +sand f = - PYTy
with
Tl{ﬁ T (@LABL + M(1 + Mmax(R)))
T1ru(YT) 1+ 0T BT AR e

. YTy
P=a() 7 vmgqﬂﬂ E%f i

0 = vTYYTy
) T T (YT )]

aoYY
1+t(Y'Y)
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with X > 0 and R > 0; Amin(R) € P7H0) € Amax(R) + 1/x, where s is the modification to the
least squares estimate that renders the mapping — v — Y8 passive (see References 19 and 24 for
details).

6. CONCLUSION

In this paper, we have shown that most of the direct continuous adaptive control laws proposes
to date for rigid manipulators can be analysed through a passivity approach, and that the
simple framework proposed enables simplifications to be made of certain analyses and
provides a clear understanding of such algorithms.

One can now legitimately expect this different point of view to result in new algorithms
designed directly from the passivity theorem. In fact, it has been shown that the passivity
approach can lead to new adaptive control laws in the case of hybrid force/position control
(see, for example, References 22 and 23 where extensions of the motion control laws in
References 6 and 8 respectively have been proposed). Note also that some adaptive schemes
recently proposed in the literature (see, for example, Reference 25) can be analysed through
a passive point of view, although their structure”slightly differs from the one presented here
(namely, no use of property (3) in Section 2 is done in Reference 25). It has also to be
emphasized that the study in this paper can be viewed as a particular (but important) case of
the more general study concerning relationships between Lyapunov functions and passivity

tools presented in Reference 26.
-»
»

APPENDIX A: Strict passivity of the Bl block

In this case, we can write

T
(=v, Hv,d)r= % TR+ Fod+onlldl|2u+ AY (@, §)) dt

0
The proof mainly hinges on the following relation (see Reference 11 for details):

T AY(0,§) 2 ~ 0T DNMUG) + bilu~ 0T [~ NEMU(@)Y + B L1G - b [ o121 G+ M) vl

with
by = bi(ga) >
bz = ba(qa, Ga)
by 20

[
>0

Then we can write:
T

AFEF@:W .w _32:+$c$+a;ﬁ,
0

2o pTDM(@) + bif]v] dt

T
- [ wteM@ s bna - bstio g+ tet 1))
0
As it has been done in Reference |1, the last term in the integral can be written:

by v + M el g’ ;1,? T+ yw_E:Nrwuf:N W»:e. M

syouzﬁN_W!:i;NJr:Jrf?:i
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Grouping similar quadratic terms together,

T b T
(o, Hv, g r > m ca_HA !?)M.v ~!y>\34cn=+ .m
vo 0

G Lo~ (14 N) ba] dt

+ ﬂ MZ:?\ b+ N M(g) g~ ymw ial
But ‘
v [(op = bV + N M@1g = N op (| G I Iv%? TMUG) - bad14g

2o, |1 411 +MMA i;;cjy RSTF:T» TDM(g) - L
Finally we obtain

2 4

vo

T
C,.Ec.@vﬂwm Q%AEIQQW»EY i&@TlRS%&

b3

1 A\i |>\2$T%

12161 [on~ (1 + N)bal &uwi@ 12

We are now able to claim that, provided F,, Fy, o, and X are chosen so that the following relatior
satisfied:

A
Fo=od2 Ao_ !Wm+ MuvTr V,A_ +>v>23

s > (1 + N)bs

Then the block Bl is a passive one. Moreover, if g, is chosen large enough, there exists a § > 0 such
- . 0 -
(o, He,gWr2 8| vlidr-¢ with rnsww:ﬁo;N

and the block Bl is then strictly passive.

APPENDIX B: Passivity of the B3 block

Forall Ty=nt',n¢ 2.. one gets
n-1 {k+Dr n-1 k+ 1y’ t
C= 0@, WD Ta= 2, % —oTw () dr= Y, w —~uT, dr ~ m o, dt
k=0 Jhi' k=0 Jki' Jo
We will assume now that there is no finite escape time in this algorithm so that the last integral te'
the expression above is bounded:

there exists o > 0 such that €a<o

i
% c:f:
0

Then
~1

(k+ D’
C=v(), Wt 1, > M m ~ oW (1) df ~ &

As i1 has been done in Reference 12, the term under the integral can be rewritten

— 0T (1)We(1) nw DE KT T () = Wl (t~ KLYt ~ 1) + 2T (K e(0)
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Replacing this expression in the integral leads to

=y_ ;é:t
, , , , :
T;x.},wM m “5:;?7_{_:l;wi&»Q
k=1 Jkr
Introducing the following variable change in the second term in the integral
u=f-1 du = dr

one gets

n-1 th+1)r" &’
CunwnE m ) Wi dr ~ m
ki’ [CENTE

Noticing that all the terms under the integrals cancel but for the following ones:

ni o
w. W llk,1dr and , PR ko
Jo
we obtain

al’ s

e ke - | e ik
Jo

A>F§vﬁwv. vdu - o

o~ W0
v .

> - A 9, ) f kit de ~ o

"0

Making the same assumption on the first period as previously, one sees that the estimation algorithm is

passive for all 7.

* APPENDIX C: Passivity of the B3 block

7 r T oot a T
l\; 5::2::%%»‘ , Mm:: K{'éte, 7y dr dr

0 v DEUNEEE
which follows from the fact that

(v, whr= _.

3. 3,
g =2 s
Py cr, ) Y &t 1)
Then we obtain:
s ol
(= a,:nw m mﬂﬂ;‘m_zﬁ:aTv €0, 1)K (0, 7) dr
Bl o

_‘
> . _. &0, 7)K{'E0,7) dr
2 Jo
B !
20max (K1)

Hence, with the assumption that no finite escape occurs during the frst time period, the update law
defines a passive subsystem.

_‘
> | neonier

o

APPENDIX D:

r Ta
(v, W7, = % ~vTw, dr - ‘ —vTw, dr
0 Y ¥

with Tp=nt'.
The first term of the left-hand side is bounded. We shall now focus on the second one.

T, n i ki’
- ‘ —oTw dr= - D) A ) ,. K@, ryv(r) de dr
W k=2 J0 o k- )i

CONTROL OF ROBOT MANIPULATORS

k-2 oift'
~C-1(r)= ~¢(l) + M A Ky K(r,0)u(0) do
=1 Jdi- o

-1

Let us define

:‘

ﬁ;n % 5_\,%?3@3%
- be .

Then we obtain:

T, " n k-2
A — T dr = m > Xk ()~ K{v3% | dr
r <O k~2 i=1

Now we use the fact that:

n k-2 n *
2 XT®| 2 x- K] = D T Y x() - KV
k=2 I=1 k=1 t=1

-3 xR x k) + xtk ~ D) = xT (DO Ix() - KT
; k=2

and the following lemma.?°

Lemma

Given a sequence of real vectors x(k) and a constant vector ¢, then the following relation is tn

n *
S TR Y xy+e] 2 »wmqm
k=1 il 2
Foralln>1.
Hence we obtain
_ v L 3 [
(=0, W), 2 ~a— ‘ Tk _s+m.«:::: dr ~ m 25 IxTR)x (k) + xT(k)x(k ~ D d-
v o 0 k=2

The second term of the right-hand side is bounded. Recalling the definition of x(k), the third terr
be written as:

" n n X
- m 2 XTRXK) + xXTR)xk - D) dr > -2 ) ‘
k=1 <

_‘
vT () xKyv(r) dr
0 k=2 &~ O

where
i
= m 1KG o) | dr
o

(see References 13 and 14 for further details). Then we get

n Kt
(=0, W)T, 2 ~a~y~2 D, m vT(NxKLu(r) dr
k=1 J (k-1
where « and v stand for the upper bounds of the initial terms. One can easily see that it is sufficient
to add an auxiliary signal — Fy2v to W, in order to obtain a passive subsystem, provided the follo
condition is fulfilled: F,2 ~ 2xK1 > 0.
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ROBUST CONTROL OF ROBOTIC MANIPULATORS
WITHOUT VELOCITY FEEDBACK

JING YUAN AND YURY STEPANENKO
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2¥2, Canada

SUMMARY

This study concerns the problem of robust control of robotic manipulators without joint ve
feedback. A robust lead + bias controller is studied. The bias signal is intended 10 compensai
nonlinear dynamics of the robot. The focus of this study is robustness when the nonlinear compen:
is not perfect and the external disturbances are not negligible.

A conservative polynomial bound is introduced to describe the worst feedback effect o
compensation error and the external disturbances. The polynomial bound covers a class of possibl
signals, synthesized according to the available knowledge about the robot dynamics. Based o
polynomial bound, the tracking errors of a lead + bias controller are proved to be uniformly bou
They can be minimized by a proper design of the bias signal. In the ideal case where the bias
compensates the robot dynamics perfectly, the tracking errors will converge to zero.

1. INTRODUCTION

Robust tracking control of robotic manipulators has been studied by many researchers. '

of the reported controllers require complete state feedback to provide stable tracking fc
closed-loop system, which means that both position and velocity must be measured at
joint. While the joint positions can be measured very accurately by encoders, the joint ve,
measurements are often contaminated by noise, due to the less accurate nature of tachom
To overcome this problem, some researchers proposed nonlinear observers for joint ve'
estimation, A sliding observer for general nonlinear systems was studied by Slotine

(1987);2 the first observer for robotic systems was proposed by Canudas de Wit and S|
(1989);* Nicosia er al.*~ © studied a number of nonlinear observers for nonlinear system
elastic robots; observers plus controllers were studied by Nicosia and Tomei (1990)°
Canudas de Wit ef al. (1990).% More recently, robust nonlinear smooth observers have
reported by Canudas de Wit ef al.>'® All these works have a common objective: robust cc
of robotic manipulators without direct measurement of joint velocities.

In this paper, a different approach is investigated. Instead of trying to estimate the vei
by observers, the high-pass filtered position feedback is used as a substitute for the ve!
feedback. In other words, a lead + bias controller is applied to robotic manipulators. The
compensator is synthesized by the traditional technique for linear time-invariant systems
the bias signal is synthesized by feed-forward dynamics. When the robot parameters ar
correct, the bias signal will be inaccurate. In order to cover a large class of admissiblc
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