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Abstract

This paper aims at experimentally investigating the dynamical behaviors when
a system of rigid bodies undergoes so-called paradoxical situations. An experimen-
tal setup corresponding to the analytical model presented in our prior work [28] is
developed, in which a two-link robotic system comes into contact with a moving
rail. The experimental results clearly show that a tangential impact does exist at
the contact point and takes a peculiar property well coinciding with the maximum
dissipation principle stated in [11] by Moreau; the relative tangential velocity of the

contact point must immediately approach zero once a Painlevé paradox occurs. After
the tangential impact, a bouncing motion may be excited and is influenced by the
speed of the moving rail. We adopt the tangential impact rule presented in [28] to
determine the post-impact velocities of the system, and use an event-driven algo-
rithm to perform numerical simulations. The qualitative comparisons between the
numerical and experimental results are carried out and show good agreements. This
study not only presents an experimental support for the shock assumption related
to the problem of the Painlevé paradox, but can also find its applications in better
understanding the instability phenomena appearing in robotic systems.

Keyworsds: Painlevé paradox; robotic system; instability phenomenon; impulsive

dynamics;

1 Introduction

It is well-known that the rigid body model for mechanical systems with unilateral
constraints and friction may possess some singularities at which the dynamical equations
will have multiple solutions or even no solution at all. The classical Painlevé example,
where a planar slender rod slides on a rough surface, represents the simplest system
with such singularities. Recently the interest in understanding the physical phenomena
corresponding to the singular situations has witnessed a substantial increase [1-30]. Rich
information and a good overview on the subject can be found in the excellent book
written by Brogliato [5], which contains a wide variety of the problem-of-interest and a
long list of references.
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When Coulomb friction is coupled to unilateral constraints, rigid body models may
have no solution for certain configurations. An important viewpoint adopted by many
authors is that a shock should then exist at the contact point. Since the shock occurs in a
special situation without normal velocity and friction is considered to be the main cause
for its occurrence, different nomenclatures can be found in the literature, such as the
impact without collision (IW/OC), frictional catastrophe, or tangential impact [11, 12,
16, 19]. According to the shock assumption, some crucial results can be deduced and the
problem of the Painlevé paradox seems to be solvable. For example, recent development
related to the time-stepping numerical method indicates that the singularity of rigid
body model can be successfully avoided if the contact forces is allowed to be impulsive
[24-25,30-31], thus confirming a fact observed numerically in [11]. Obviously the shock
assumption is fundamental for the problem of Painlevé paradox, and the validation from
experiments should be introduced. One aim of this paper is to develop an experimental
method to support the shock assumption.

The Painlevé phenomenon was firstly discovered in the classical Painlevé’s example (a
slender rod that slides on a rough plane), and many excellent theoretical results are mo-
tivated from the simple system. However, using the example to serve as the experimental
model creates a lot of difficulties. For instance, the coefficient of friction in the system
has to be greater than 4/3 for the occurrence of the Painlevé paradox, a large value
rarely found in practical materials [16]. Meanwhile, the sliding of a rod under gravity is
also difficult to be implemented in practice. Therefore, it is crucial to search for a new
example that can involve the paradox and can be easily implemented by experiments.
Such examples have been presented in [15, 28], where it has been shown that the Painlevé
paradoxes may occur for arbitrarily small values of the coefficient of friction.

Recent studies have indicated that the Painlevé paradox may be a common phe-
nomenon and could be found in a variety of different applications such as robotic ma-
nipulation, legged locomotion, and vehicle braking systems [15, 26, 27, 28]. Especially,
according to our recent work for a robotic system that comes into contact with a moving
belt [28], the Painlevé paradox will appear even though the coefficient of friction takes a
very small value. In this paper, we will use the analytical model presented in [28] to de-
velop an experimental setup for the demonstration of the dynamical behaviors associated
with the Painlevé paradox.

According to the theoretical analysis shown in [28], the Painlevé paradox can be found
by setting the robotic system within a paradoxical configuration, which depends on the
practical value of the coefficient of friction. By conducting the shock assumption into
the paradoxical situation of the robotic system, and using the Darboux-Keller’s method
[21, 32-37], it is also shown that the tangential impact will take a peculiar property; the

relative motion of the contact point must be immediately brought into a stick in tangential

direction. Therefore, the shock assumption can be verified by observing whether there
is a tangential stick in paradoxical situations. In our experiments, two laser-vibrameters
with precise accuracy will be used to carefully measure the changes of the contact relative
velocities of the robotic system.

Using numerical methods to reproduce the dynamical behaviors is significant for the
analysis of mechanical systems. It is obvious that a jump rule related to the tangen-
tial impact should be provided for systems involving paradoxical situations. Since the
tangential impact will excite a bouncing motion that can make the system contain differ-
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ent modes of motion such as slipping phases, collisions with friction, and flying without
contact, an event-driven algorithm will be used to perform the numerical simulations.
Qualitative comparisons between the numerical and experimental results are carried out.

Based on the numerical analysis and the experimental observation, two instability
phenomena exhibited in robotic systems are discovered: one that is the bouncing motion
induced by a tangential impact, the other that is related to a slip-stick motion that
appears in the robotic system without the occurrence of the Painlevé paradox. The
first case indicates that the problem of the Painlevé paradox will extremely influence the
controllability of the robotic system, as pointed out by Brogliato [4]. The second case
shows that the stick-slip motion is periodic when the rail moves with a constant velocity.

The organization of the study is as follows. Section 2 presents the description of the
model for a two-link manipulator. The key theoretical results developed in [28] for the
paradoxical situation will be reviewed in section 3. The experimental setup and the
phenomena associated with the paradoxical situations will be exhibited in section 4.
Section 5 provides the comparison between the numerical and experimental results. We
conclude in section 6 with a summary and the potential application of our study.

2 A two-link manipulator with unilateral constraint

This section will first conduct the model of a two-link robotic system, and then find the
condition for the occurrence of the Painlevé paradox by using an LCP (Linear Comple-
mentarity Problem) method, a theory for non-smooth dynamics established by Moreau
[38,39] and then extended into the multibody systems by Pfeiffer and Glocker [2].

The manipulator is shown in figure.1, which consists of two identical rods with length

Figure 1: Two-link manipulator contacting with a constantly moving belt

l and mass m and comes into contact with a moving belt with velocity vt. The external
torques τ1 and τ2 are applied on the joints O and A. H is the height from the fixed
point O to the rough surface. The joint angles θ1 and θ2 are selected as the generalized
coordinates of the system when unconstrained by contact, and their positive values are
assigned along the counter-clockwise direction.

We set an inertial coordinate frame Oxy attached at the joint O, and suppose that a
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local inertial coordinate frame (B, t, n) with origin located at contact point B, is defined
such that n is normal to the contact surface and (t, n) forms a right-handed coordinate
system. (Ft, Fn) represent the contact forces in the tangential and normal direction.
The components in Oxy for the contact point B can be expressed by the generalized
coordinates.

x =

[

xt

xn

]

=

[

l(sin θ1 + sin θ2)
−l(cos θ1 + cosθ2)

]

(1)

These kinematics can yield the contact Jacobian matrix K that relates velocities and
accelerations of the contact point B to the generalized coordinates through the relations

ẋ = KTq̇ (2)

ẍ = KTq̈ + S (3)

Where

K =

[

K1

K2

]

=

[

l cos θ1 l sin θ1

l cos θ2 l sin θ2

]

, S =

[

S1

S2

]

=

[

−l(θ̇2
1 sin θ1 + θ̇2

2 sin θ2)
l(θ̇2

1 cos θ1 + θ̇2
2 cos θ2)

]

The governing equations for the system with persistent contact can be written as

q̈ = M−1KF + M−1(−R + W) (4)

Where

M =

[

4ml2/3 ml2 cos(θ1 − θ2)/2
ml2 cos(θ1 − θ2)/2 ml2/3

]

F =

[

Ft

Fn

]

q̈ =

[

θ̈1

θ̈2

]

W =

[

τ1 − τ2 − 3mgl sin θ1/2
τ2 − mgl sin θ2/2

]

R =

[

ml2θ̇2
2 sin(θ1 − θ2)/2

ml2θ̇2
1 sin(θ1 − θ2)/2

]

The substitution of Equation (3) into Equation (4) leads to

ẍ = QF + KTM−1(−R + W) + S (5)

where

Q = KTM−1K =

[

Q11 Q12

Q21 Q22

]

(6)

is a matrix that depends only on the configuration of the system.

Fact 1. Q is a symmetric and positive definite matrix, since M is a symmetric pos-

itive matrix and K is full-rank in most cases (iE; K may have singularities only in some

extreme configurations).

The relative velocity between the contact point and the belt is

ẋr = xt − vt = l(θ̇1 cos θ1 + θ̇2 cos θ2) − vt (7)

If ẋr 6= 0, the manipulator will slip on the moving belt, otherwise the tip sticks on the
belt. Defining a velocity-dependent coefficient of friction µ, in which µ = µ0 for ẋr < 0
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and µ = −µ0 for ẋr > 0, the relationship between the tangential and the normal contact
force by the Coulomb’s frictional law can be expressed as

Ft = µ · Fn (8)

During the slip mode, the dynamical equations in tangential and normal directions
take the following form.

ẍn = A(q, µ) · Fn + B(q, q̇) (9)

ẍt = C(q, µ) · Fn + D(q, q̇) (10)

where
A(q, µ) = µQ21 + Q22, B(q, q̇) = KT

2 M−1(−R + W) + S2

C(q, µ) = µQ11 + Q12, D(q, q̇) = KT
1 M−1(−R + W) + S1

Combining the Signorini complementarity condition ( ẍn ≥ 0, Fn ≥ 0 and ẍn ·Fn = 0)
with equation (9) gives the standard formulation of an LCP whose unknown is Fn and
whose matrices (here a scalar) are A(q, µ) and B(q, q̇). Obviously, negative values of
A will make this LCP possess multiple solutions or no solution at all. As illustrated by
many authors a so-called impact without collision occurs because of the configurations
in which A < 0 and B < 0.

More interestingly, by observing the ingredients of the coefficient A, we can find that
the paradoxical situation just depends on the configuration of the system and the velocity-
dependent coefficient of friction. Therefore, for a given coefficient of friction, the Painlevé
paradox is allowed to occur only when the system takes the paradoxical configurations,
for which A < 0. In other words, we can rely on the practical value of the coefficient
of friction to determine the initial configuration that can make the Painlevé paradox
appear.

3 The properties of the tangential impact and the impact

rule

By conducting the shock assumption into the paradoxical situations, the theoretical
description related to the properties of the tangential impact and the impact rule for
the robotic system have been presented in [28]. In this section some key results will be
introduced.

3.1 The properties of the tangential impact

In order to consider the coupling between normal and tangential motion, the experi-
ence of an impact with friction must be carefully investigated. By assigning to the impact
duration a very short but not infinitesimal time, Darboux [37] and Keller [34] developed
a method that yields a set of differential equations with respect to the normal impulse,
a ’time-like’ independent variable. These nonlinear differential equations describe the
impulsive behaviors (the impact dynamics), such that the singularities of impacts due
to friction can be successfully avoided [35, 36]. This method has been extended for the
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investigation of the properties of the tangential impact [28].
Let us set the impact duration as [t0, tf ] and divide this short time into much smaller

intervals [ti, ti+1]. Integrating equation (5) and ignoring the contribution of the finite
forces on [ti, ti+1], yields the following differential equations of motion:











dẋt = Q11dPt + Q12dPn

dẋn = Q21dPt + Q22dPn

(11)

where

dPt =

∫ ti+1

ti

Ftdt, dPn =

∫ ti+1

ti

Fndt

are the changes of tangential and normal impulses on [ti, ti+1], respectively.
Now applying the relationship dPt/dPn = µ defined by the Coulomb’s frictional law

into equation (11) directly leads to










dẋt = (µQ11 + Q12)dPn

dẋn = (µQ21 + Q22)dPn

(12)

where

dẋt =

∫ ti+1

ti

ẍtdt, dẋn =

∫ ti+1

ti

ẍndt

are the changes of the tangential and normal velocities, respectively.
During the interval [ti, ti+1], the normal impulse is a strictly monotone function of

time. This permits to think of it as a ’time-like’ independent variable, and to perform
a time-scale of the shock dynamics. Thus, equation (12) is a set of first order ordinary
differential equations with respect to dPn, which varies like a time variable. Combining
equation (12) with the condition for the occurrence of the Painlevé paradox, we can de-
duce the property of the tangential impacts, which is elucidated by the following theorem.

Theorem.1 The impulsive process induced by the Painlevé paradox will first result in

a normal compressional process, and then immediately bring the relative tangential veloc-

ity of the contact point to zero. After that the tangential motion of the contact point will

stick on the contact surface, while the normal motion of the contact point will continue

to be compressional until the normal velocity equals zero. Then an expansion phase in

the normal direction is carried out to make the impact finish.

Proof:

We will use fact 1 for the properties of matrix Q, the condition for the occurrence of
Painlevé paradox, and the Coulomb’s frictional law to prove the property of the tangential
impact.

Matrix Q can be thought of as a constant matrix due to the little change of the config-
uration in an impulsive process. So the elements in Q satisfy the following relationships
based on fact 1:

Q22 > 0, Q11 > 0, Q11Q22 > Q2
21
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During the slip mode, the condition for the occurrence of Painlevé paradox permits to
write that

A = µQ21 + Q22 < 0,−µQ21 > Q22

In the case ẋt < 0, we have µ = µ0 > 0, so Q21 < 0. Therefore,

−µQ21Q11 > Q22Q11 > Q2
21

and
(µQ11 + Q12) > 0

Similarly, if ẋt > 0, we can obtain the following inequality

(µQ11 + Q12) < 0

Thus, these two cases (ẋt > 0 and ẋt < 0) can be expressed by using a uniform inequality:

ẋt(µQ11 + Q12) < 0

The above inequality indicates that the magnitude of the tangential velocity always
decreases when the sliding friction is sustained. Since the condition A < 0 cannot be
removed if the tangential velocity is not set to zero, the tangential motion of the contact
point must reach the point of slip stopping.

Before slip stops, we can find from the second equation of (12) that the contact point
will take a normal velocity penetrating into the contact surface, with an increment for
its magnitude (A < 0 and the initial value equal to zero). Due to the coupling between
the normal and tangential impulses, a compressional process in the normal direction is
generated once the paradox appears. Before slip stopping, A < 0 is always satisfied, so
that the magnitude of the normal velocity will continue to increase. So the tangential
slip at the contact point stops in the compressional process where the normal velocity is
not equal to zero.

Once the tangential speed vanishes, the tangential motion might stick on the contact
surface or continue to slip, depending on the property of dry friction. Setting dẋt = 0 in
equation (11), one can obtain the following inequality

|dPt/dPn| = |Q12/Q11| < µ0

Usually the static coefficient of friction, µs is larger than the sliding coefficient µ0.
The above inequality indicates that contact forces must enter into the interior of the
friction cone once the tangential velocity disappears. So stick should occur at the instant
when the tangential velocity vanishes. During the tangential impact, no other additional
impulses are applied on the system. The stick mode can be preserved until the impulsive
process finishes. Therefore, we can conclude that the relative tangential speed after
tangential impact must equal zero. This well coincides with the maximum dissipation
principle stated in [11] by Moreau.

Once stick occurs, dPn and dPt cannot be connected linearly by the coefficient of fric-
tion µ, and must satisfy the relationship defined by the first equation in (11) by setting
dẋt = 0. This relationship can make the normal velocity of the contact point decrease
and reach zero. After that an expansion phase will occur in order to release the energy
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accumulated in the compressional phase. The expansion phase can be governed by an
impact law such as the Poisson’s or Stronge’s laws [33]. 2

We can summarize the process of the tangential impact as follows: the friction will
first result in a compressional motion in the normal direction and then bring the relative
tangential motion from slip to stick. Then, sticking motion will persist until the con-
tact constraint is released. The normal motion at the contact point will continue to be
compressional from the instant of stick appearance to the time when the normal velocity
vanishes. After that an expansion phase is carried out to make the impact terminate.

3.2 The impact rule for the tangential impact

Assigning a duration [t0, tf ] to the tangential impact, we can split such an impulsive
process into three periods. The first one is a sliding compressional period denoted as
[t0, t1], where t1 is related to the instant of stick appearing. The second one is a sticking

compressional period denoted as [t1, t2], where t2 corresponds to the instant when the
normal velocity vanishes. The third one is a sticking restitution period denoted as [t2, tf ],
which describes the expansion process of the normal motion, defined by using the Pois-
son’s law for normal impact.

Sliding compressional period, [t0, t1]
Let us set ẋ0

t as the initial speed of slip at t0. At t = t1, the tangential velocity ẋ1
t will

be equal to zero. Thus, the change of the normal impulse can be obtained by integrating
the first equation of (12)

P 1
n = −

ẋ0
t

µQ11 + Q12

(13)

By considering the initial value of the normal velocity ẋ0
n = 0, we can obtain the normal

velocity ẋ1
n at t1 by integrating the second equation in (12) and by using expression (13):

ẋ1
n = (µQ21 + Q22)P

1
n = −

µQ11 + Q12

µQ21 + Q22

ẋ0
t (14)

Sticking compressional period, [t1, t2]
The stick at the contact point implies the following relationship:

dẋt = 0, dPt/dPn = −(Q12/Q11) (15)

Combining (15) with the second equation of (11), one can deduce the differential equation
for the normal motion in the stick mode:

dẋn = (−
Q2

12

Q11

+ Q22)dPn (16)

Due to ẋ2
n = 0 at the end of this period, we can easily obtain the change of the normal

impulse P 2
n at t2:

P 2
n =

Q11ẋ
1
n

Q2
12 − Q11Q22

= −
Q11(µQ11 + Q12)

(Q2
12 − Q11Q22)(µQ21 + Q22)

ẋ0
t (17)
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Sticking restitutional period, [t2, tf ]
This period represents an expansion process of the normal motion. The expansion

impulse P r
n can be obtained by using the Poisson’s coefficient ep

ep =
P r

n

P c
n

where P c
n = P 1

n + P 2
n is the compressional impulse in the normal direction. So we have

P r
n = epP

c
n = ep(P

1
n + P 2

n)

At the beginning of this period, the normal speed ẋ2
n = 0. Meanwhile, the normal motion

during this period will be governed by equation (16) since stick in tangential direction is
preserved. Thus, at the end of this period the normal speed ẋf

n can be expressed as

ẋf
n = (−

Q2
12

Q11

+ Q22)P
r
n (18)

Clearly the post-impact velocity in the normal direction, ẋf
n is not equal to zero ex-

cept for ep = 0 for the tangential impact without any initial normal velocity. In other
words, after the tangential impact the contact point will leave the contact surface with
a certain velocity in the normal direction. Nevertheless, the tangential velocity at the
contact point ẋf

t must be equal to zero when the tangential impact finishes.
By integrating equation (4) and neglecting the contribution of the finite forces, the

changes of the generalized velocities of the system due to the tangential impact can also
be calculated:

[

∆θ̇1

∆θ̇2

]

= M−1K

[

Pt

Pn

]

(19)

where ∆θ̇1 and ∆θ̇2 represent the changes of the generated velocities, respectively. Pt

and Pn are the total impulses in the tangential and normal directions.

4 The dynamical behavior related to the paradoxical situ-

ation

In this section, we will present the experimental setup for the robotic system that
corresponds to the analytical model described in above section. According to the coef-
ficient of friction estimated from experiments, we will firstly determine the paradoxical
configuration that can make the Painlevé paradox appear. By setting the system with
the paradoxical configuration and initially establishing a contact constraint, we can ob-
serve the dynamical behavior associated with the paradoxical situation. The paradoxical
phenomena will be demonstrated by showing the velocities of the contact point. The
influence of the rail’s speed on the bouncing motion generated due to the tangential im-
pact will be exhibited. In addition, how the dynamical behaviors of the robotic system
evolve into a shock from a normal configuration to the singular one will be demonstrated
experimentally, and the stick-slip phenomena appearing in the robotic system will be
investigated.
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4.1 The description of experiment

The experimental setup of the robotic system formed by using two identical aluminium
cylindrical bars (m = 0.12kg, l = 0.21m) connected with revolute joints, see figure 2.
The upper revolute joint is used to connect the system with a fixed bracket that contains
a slot to make the height of the system adjustable. A semi-spherical head made of plastic
material is installed on the contact end in order to make the contact achieve relatively
uniform conditions during the motion. The belt used in the analytical model is replaced
by a steel rail, which moves along the horizonal direction, dragging a rope by hand.

A passive torque is provided by a torsional spring mounted at the middle revolute

Figure 2: The physical model of the experimental setup

joint. To consider the effects of joint friction, we use a uniform coefficient c to represent
the damping torques acting on the two identical revolute joints. So the torques τ1 and
τ2 at the revolute joints can be approximated as

τ1 = −cθ̇1 (20)

τ2 = k(θ1 − θ2 − α0) + c(θ̇1 − θ̇2) (21)

where k is the stiffness of the torsional spring, and α0 is the initial angle of the spring.
Two laser-Doppler vibrometers (OFV-303-353) with a controller(OFV-3001) are used

to measure the rail speed and the velocity of the contact point, in which laser signals are
sent to track the movements of the sensitive papers attached in the rail and the contact
head. The experimental signals are transferred into a laptop through an A\D card with
10kHz sample rate. The sketch of the experimental system is depicted in figure 3.

By using a simple slide experiment for the homogenous contact surface, we estimate
the coefficient of friction as µ = 0.6. Meanwhile, the contact constraint will allow the
following geometric relationship to exist

l(cos θ1 + cos θ2) = H

where H is the height of the system (see figure 1), and θ1 and θ2 are the angles related
to the upper joint and the middle joint, respectively.
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Figure 3: The sketch of the experimental system

Based on the above relationship and one the condition A < 0, a function of θ1 with
respect to H and µ can be obtained for the occurrence of the Painlevé paradox. For
the given coefficient of friction µ = 0.6 with different value of H, Table 1 presents the
allowable scope of θ1 for the occurrence of the Painlevé paradox.

Table 1: The paradoxical configurations in different height
The coefficient of friction µ = 0.6

θ1(deg) none 41.5∼48.5 33∼42.5 22.7∼34.9

H(m) 0.21 0.331 0.35 0.3775

Since the paradoxical situations appear under the condition that the robotic system
should be in a paradoxical configuration with an initial condition of slip, we can release
the tip of the system with an approximately zero height on the moving rail in order
to generate the slip mode. In this case, the absolute value of the velocity of the tip is
equal to zero, such that a relative slip between the tip and the rail can be established.
According to the property of the tangential impact, the absolute tangential velocity of
the tip should immediately approach the one of the moving rail if a shock exists. In the
following, we will present the experimental results for the robotic system with different
configurations by changing the joint angles and the height of the system. In particular,
the observation of the stick phenomena associated with the paradoxical situations will
be emphasized.

4.2 The experimental results

Table 2: The configurations investigated in experiments
The height H = 0.3775m

θ1(deg) -15 7 15 21 25 30.5 32

Paradox N N N N Y Y Y
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Let us set the robotic system with a fixed height H = 0.3775m, then repeat experi-
ments for the system with joint angle θ1 that takes different values among the scope of
θ1 ∈ (−37◦, 37◦) (the possible values that can make the tip of the robotic system touch
on the moving rail). The negative value of θ1 corresponds to the situation where rod 1
slopes to the left side against the vertical line passing through the fixed revolute joint.
Table 2 presents the configurations of the system that are investigated in experiments,
in which ”Y” represents the paradoxical configurations, while ”N” represents the ones of
non paradox appearing.

4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Tangential impact

Rail's velocity
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m
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Figure 4: The relative velocity of the contact point in tangential direction ( H = 0.3775m,
θ1 = 32◦,vt = −0.16m/s)

Figure 4 shows the experimental curves for the rail’s speed and the tangential velocity
of the contact point for the system with a paradoxical configuration of θ1 = 32◦. When
the tip touches the moving rail with zero velocity at t = 4.84s, the first vertical line shown
in figure 4 indicates that the tip immediately approaches the value of the rail speed. This
is related to a sticking phenomenon corresponding to a tangential impact appearing in
the paradoxical configuration. After this event the tip bounces on the moving rail and
sequential collisions appear at t = 4.92s, 5.02s, 5.10s, etc.

We also found from experiments that the magnitude of the bouncing motion will be
significantly influenced by the rail’s speed. Figure 5 presents the experimental results
by setting the robotic system in the same configuration as in the previous experiments,
while the rail’s speed is changed to vt = −0.5m/s. A tangential impact appears at the
measure time t = 2.12s when the tip touches the rail, and then the subsequent impacts
occur at the instant t = 2.21, 2.29, .... The comparison between figures 4 and 5 clearly
shows that the magnitude of the tangential velocity is enlarged due to the increase of the
rail’s speed.

If the rail moves slowly, the bouncing motion induced by the tangential impact will
be of low magnitude and even disappear when the velocity of the rail is lower than a
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Figure 5: The normal and tangential velocity of the contact point (H = 0.3775m, θ1 =
32◦, vt = −0.5m/s)

certain threshold. Figure 6 shows the experimental results for the robotic system with
the same configurations as the previous two experiments, while setting the rail moving
with vt = −0.075m/s. Clearly after the tangential impact the tip of the robotic system
will stick on the moving rail, even though there is a peak in the curve of the tangential
velocity because of the tangential impact.

This phenomenon can be elucidated from the viewpoint of the system’s energy. Ac-
cording to equations (18) and (19), the normal and tangential impulses are proportional
to the rail’s speed. So the robotic system can gain more energy from the tangential
impact in the situation of the rail moving fast. Thus the sequential collisions can be
enlarged to make the magnitude of the bouncing motion increase. If the rail moves much
more slowly, the robotic system cannot gain enough energy to overcome the contact force
generated by the gravity and the torsional spring. In this case, the bouncing motion
cannot be observed experimentally.

For the system with the configuration of θ1 = 30.5◦, the bouncing motion due to the
tangential impact can also be observed by experiments when the rail takes a relatively
high speed (as shown in figure 17). The experimental results related to the two cases of
the system with θ1 = 30.5, 32◦ will be used in the following section to verify the numerical
simulations.

When θ1 < 29◦, the joint angle θ2 will be greater than θ1 if the tip can touch on the rail
for the system with height H = 0.3775m, so that the initial torque of the torsional spring
applied at the middle joint will change its direction and then influences the dynamical
behavior of the system. Figure 7 presents the experimental results for the system with a
paradoxical configuration by setting joint angle θ1 = 25◦. When contact is established, a
tangential impact appears at the contact point (the tangential velocity of the tip imme-
diately approaches the one of the rail), and then an oscillation for the tangential motion
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Figure 6: The tangential velocity of the contact point (H = 0.3775m, θ1 = 32◦, vt =
−0.075m/s)

is induced. However, the contact point doesn’t leave away from the rail surface after
the tangential impact and no bouncing motion can be observed. The reason for that is
because the system with the configurations of θ2 > θ1 can only obtain very little energy
from the tangential impact that is not enough to overcome the effects of the gravity and
the torsional spring. Therefore, the contact point will stick on the moving rail.

Although the above experimental investigations indicate that the dynamical behavior
of the system with paradoxical situations seems to be well modeled as a tangential impact
as the relative tangential velocity could immediately approach zero, it is clear in physical
meaning that the tangential motion with a normal configuration evolves into a shock for
the paradoxical configurations should correspond to a process with gradual change in
tangential velocity. Figure 8 to 11 present the experimental results obtained by setting
the system with θ1 = −15, 7, 15, 21◦ , respectively. This corresponds to the situation
where the initial configuration of the system gradually approaches the boundary of the
singular region. From the experimental curves (except for the case of θ1 = −15◦), we
can find that friction will decrease the slip velocity and finally bring the contact point
to stick on the moving rail. In particular, the duration from the beginning of slip to the
occurrence of sticking becomes shorter when the configuration of the system is near to the
paradoxical situation. If the configuration is very close to the boundary of the paradoxical
region (the case of θ1 = 21◦), the duration for the stop of the relative tangential motion is
about t = 0.13s. Once the configuration of the system enters into the paradoxical region,
the duration for the tangential motion of the contact point changing from slip to stick
will be less than 0.01s (as shown for the case of θ1 = 25◦), a short timescale that can be
connected with an impact process. The above experimental phenomena well agree with
the mechanism of the Painlevé paradox generated due to the coupling between friction
and the configuration of the system, and further confirm that the dynamical behavior of
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Figure 7: The tangential velocity of the tip with H = 0.3775m and θ1 = 25◦

the system in the Painlevé paradox could be described by a shock.
If the initial configuration is far away the singular region, as shown in figure 8 for the

system with a configuration of taking θ1 with a negative value and in figure 12 for the
robotic system with the initial configuration of H = 0.25m, neither sticking phenomena
nor the bouncing motion can be found in the robotic system.

In some cases, the stick-slip phenomenon is also found in our experiments for the
robotic system. By setting the initial configuration of the system to H = 0.314m and
θ1 = 50◦, figure 13 shows that the friction will bring the tip into a stick, and then make
the slip resume. Such a process can be repeated to render the robotic system unstable
on the contact surface.

5 The comparison between experimental and numerical re-

sults

The experimental results presented in the above section have confirmed that the
Painlevé paradox does induce a tangential impact at the contact point, and then makes
the robotic system behave in a more complex way, with slip phases, stick phases, flight
without contact phases, as well as tangential and normal impacts with friction. In this
section, we will use an event-driven algorithm to perform the numerical simulations.

Firstly, we will carefully estimate the parameters used for the simulations. According
to property of the collision between plastic and steel materials, the coefficient of the
restitution can be set as ep = 0.1. A single pendulum system (shown in figure 14 is
established to obtain its frequency f , and the value of the stiffness of the torsional spring
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Figure 8: The tangential velocity of the tip with H = 0.3775m and θ1 = −15◦
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Figure 9: The tangential velocity of the tip with H = 0.3775m and θ1 = 7◦

16



0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Rail Velocity

Sticking

End Sliding

Tangential Velocity of Contact Point

Start Sliding

V
e
lo

c
it
ie

s
 (

m
/s

)

Time (s)

Figure 10: The tangential velocity of the tip with H = 0.3775m and θ1 = 15◦
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Figure 11: The tangential velocity of the tip with H = 0.3775m and θ1 = 21◦
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Figure 12: The tangential velocity of the tip without the Painlevé paradox (H = 0.25m,
θ1 = 69.4◦)

3.6
 3.8
 4.0
 4.2
 4.4
 4.6
 4.8
 5.0
 5.2
 5.4
 5.6


-0.3


-0.2


-0.1


0.0


0.1


0.2


0.3


Rail velocity


Tangential velocity of contact point


V
el

oc
ity

 (
m

/s
)


Time (s)


Figure 13: The stick-slip phenomenon in the configuration (H = 0.314m, θ1 = 50◦)
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Figure 14: A single pendulum composed by a link and a torsional spring

k can be calculated by using the following expression:

k =
1

3
ml2(2πf)2 −

l

2
mg (22)

Based on f = 4.6Hz measured from experiments, we have k = 1.3N · m/rad.
Since the damping coefficient c is difficult to obtain from the experiments, a fitting

method is used for its estimation. By setting c with different values to perform the simu-
lations, we choose the best one among the different values of c as the damping coefficient
that can make the corresponding numerical simulation better coincide with the exper-
imental results. According to the numerical experiments, we find that the change of c
limited in the range of [0.003, 0.007], has little influence on the numerical results. So the
damping coefficient is chosen as c = 0.005Nms/rad for the following simulations.

Roughly speaking, the dynamical behaviors of the system are governed by equations
(4) and (5) with the variations of the contact forces, which depend on the mode of motion
at the contact point. For instance, the contact forces can be set to zero for the flying
mode, while in the case of preserved contact, the contact forces should be determined
by using LCP’s equations and the Coulomb’s friction law. If the paradoxical situations
appear in the rigid body model, the simulation can be continued by setting equation
(4) with new initial conditions that can be obtained from the tangential impact rule ex-
pressed in (18) and (19). Similar process is also carried out for the collisions with friction
[21], in which the changes of the velocities of the system are obtained by integrating the
impulsive differential equations expressed in (12). Since there are no accumulations of
events, event-driven schemes are well-suited to the numerical integration of this nons-
mooth system, see e.g. [40].

Figure 15 presents the comparisons between the experimental and numerical results
by setting the system to the initial configuration of H = 0.3775m and θ1 = 32◦. It is
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clear that the model used in simulation can well reproduce the qualitative behaviors of
the system. The discrepancies appearing in figure 10 are partly due to the unmodeled
effects existing in the experimental setup, such as the vibration of the sensitive papers,
the clearances in the revolute joints, and the errors of the physical parameters. Other
sources of discrepancies are the non-uniformity of the rail’s speed in experiments, since
it is assumed to be a constant in the numerical simulations.
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Figure 15: Experimental and numerical results for the tangential speed (H = 0.3775m,
θ1 = 32◦, vt = −0.2m/s)

Figure 16 shows the comparisons of the normal velocities between the experimental
and numerical results. The vibration of the sensitive paper induced by the bouncing mo-
tion will much influence the accuracy of the measurements. Nevertheless, the qualitative
behavior of the system can still be captured through the numerical simulations.
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Figure 16: Experimental and numerical results for the normal velocity (H = 0.3775m,
θ1 = 32◦, vt = −0.24m/s)

Keeping the system with the same height H = 0.3775m as in the previous case, we
can change the initial configuration by adjusting the joint angle from θ1 = 32◦ to 30.5◦.
The results obtained from the simulation also agree well with the experimental results
(shown in figure 17).

As mentioned in the above subsection, the phenomenon of stick-slip motion can be
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Figure 17: The comparison of the tangential speed between experimental and numerical
results(H = 0.3775m, θ1 = 30.5◦, vt = −0.2m/s)

found in experiments even though there is no paradox appearing. By setting the initial
configuration of the system with H = 0.314m and θ1 = 55◦, figure 18 presents the curves
corresponding to the tangential velocities of the contact point obtained from simulations
and experiments, respectively. The numerical results indicate that the stick-slip is a pure
periodic motion when the rail speed takes a constant value, but this characteristic will
be slightly destroyed due to the non-uniformity of the rail’s motion.
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Figure 18: Comparison between the experimental and numerical results for the Stick-Slip
Phenomena under the configuration taken as H = 0.314m and θ1 = 55◦

Summarizing the comparisons between the numerical and experimental results pre-
sented in above, we can conclude that the dynamical behaviors of the system can be well
captured qualitatively by using the rigid body model. Even in the paradoxical situation,
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the simulations can be led by using the tangential impact rule to reinitialize the dynam-
ical equations. The numerical results show that such a tangential impact induced by the
Painlevé paradox can be well governed by the impact rule presented in [28].

6 Summary and conclusion

This study mainly developed an experimental setup to demonstrate the phenomenon
of the Painlevé paradox that appears in a robotic system coming into contact with a
moving rail. According to the experimental results, we have verified that a shock is truly
related to the problem of the Painlevé paradox, and takes a particular property that a
tangential stick appears at the contact point.

Two kinds of instability phenomena for the robotic system are observed from the ex-
periments. The first one is induced by the tangential impact, in which the robotic system
will bounce or stick on the moving rail, depending on the value of the rail’s speed. The
other form of the instability is the stick-slip motion, which appears in the system does
not involve the Painlevé paradox.

Based on the careful estimation of the physical parameters, an event-driven algorithm
is used to perform numerical simulations. By setting the robotic system with paradoxical
situations, comparisons between the numerical and experimental results are carried out
and show good agreement. This illustrates that the rigid body model can well repro-
duce the complexly dynamical behaviors, and the Painlevé paradox can be overcome by
using the tangential impact rule obtained from the Darboux-Keller’s shock dynamics.
The present work not only provides a basis for the theoretical results associated with
the problem of the Painlevé paradox, but also may be useful for the design of feedback
controllers in robotic systems.
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