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Abstract: In this paper, we focus on the analysis and control of a simple rigid-body mechanical system with
clearance. Contrary tomost of the existingworks in the literature concerning control, we explicitly treat all the
nonlinear non-smooth characteristics of this system considered as a rigid-bodymechanical systemwith unilat-
eral constraints and impacts (dynamic backlash). The model is therefore a hybrid dynamical system, mixing
discrete events as well as continuous states. The regulation and tracking capabilities of the proportionalï
derivative (PD) scheme are investigated. In particular, a complete proof of the existence of a limit cycle for
non-collocated PD control is provided, including viability constraints. It is concluded that tracking requires
the development of specific control schemes. Consequently, we propose a hybrid control that may be used to
track some desired trajectories in conjunction with a PD input. Throughout the paper, the particular features
of unilaterally constrained mechanical systems are taken into account, such as the fundamental viability prop-
erty of closed-loop solutions and controls. This work is a new approach to be considered for application in
several areas including the control of kinematic chains with joint clearance and vibro-impact systems, as well
as liquid slosh control. Numerical results are presented to illustrate the possible performance of the proposed
control scheme and its robustness properties.
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1. INTRODUCTION

Backlash nonlinearities cause delays, oscillations, and consequently give rise to inaccuracies
in the position and velocity of the machine (Dagalakis and Myers, 1985; Podsedkowski,
1997). Backlash commonly occurs in bearings, gears and impact dampers, and methods
to automatically measure clearance evolution in kinematic chains are being developed
(Podsedkowski, 1992). It arises from unavoidable manufacturing tolerances or is often
deliberately incorporated in the system to accommodate thermal expansion (Bapat et al.,
1983). In previous investigations, Tao and Kokotovic (1995) analyzed the problem and
proposed to model backlash as a hysteresis function between the output and input positions of
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the system. This is a kinematic model since the dynamic effects of the collisions are not taken
into account. Such a model is based on the assumption that the shocks are purely inelastic
and that the ratio of the inertias of the two interacting masses is zero. This is met in some
practical applications to which such control schemes may be applied successfully.

Using a similar model, Tang et al. (1997) have proposed a simple switching control
strategy, which consists of accelerating the motion in the backlash phase. The impact effects
have not been analyzed and no details are given on the properties of the material which
collide. Experimental results on a CNC machining center performing a circular motion
(radius 150 mm) are provided. The linear table speed is ;=66 � 43�6 m/s, which is a
low impacting relative velocity. The backlash size is found after identification to be around
0.5 mm, and the tracking error is about the same size. They have shown that the backlash
compensation significantly improves the tracking properties compared to a linear controller.
The introduction of a dither into systemswith backlash has been extensively studied for years;
see Hsiao and Hwang (1997) and references therein. For this approach, the kinematic model
is used. The goal of this technique is to eliminate the memory of the static nonlinearity
by injecting a high-frequency signal. In this method an approximated smoothed system is
obtained. Azenha and Tenreiro Machado (1996) have investigated the control of a system
with dynamic backlash, i.e. the impacts and inertial effects are incorporated in the model. In
order to explore the limit cycle behavior of the system, they have based their analysis on the
describing function techniques. Their study is carried out by means of numerical simulations.
The dynamic equations of motion for an impact pair including compliance at the contact have
been formulated by Nordin (1993) and Nordin et al. (1997). It is assumed that the system is
an inertia-free elastic shaft system with backlash. The proposed linear control input uses a
low gain when the system evolves inside the clearance. They have justified the choice of the
compliant contact/impact model by citing laboratory experimental results. In a recent paper,
Indri and TornambÍ (1997) have dealt with mechanical gears with backlash and elasticity
in the joints. In order to control the system, they have proposed a collocated proportionalï
derivative (PD) controller for regulation. The properties of the closed-loop solutions are
obtained and the stability of this strategy is proven. A system with purely inelastic impacts
has been studied in Chalhoub and Zhang (1996). The regulation control technique consists
in accelerating the controlled gear to shorten the disengagement period when the second gear
is uncontrolled. There is no stability proof. Experimental validation on a flexible beam
controlled by an axis with gear play is presented. The instant of disengagement of the gears
is detected in order to switch the control. Yeh et al. (1996) have proposed a compliant
model to describe the backlash phenomenon and, exploiting this model, a nonlinear adaptive
control has been designed. They have demonstrated the semi-global stability of the scheme
for tracking purposes. A system that is used in industrial applications has been described in
Fanuc (1994). It consists of a tandem control (two actuators) for positioning manufacturing
pieces and controlling machine-tool tables. This industrial application shows that somewhat
sophisticated controllers, with switching conditions and detection of the backlash phases,
can be implemented. Several other backlash models have been proposed and studied in
the mechanical engineering literature (Stepanenko and Sankar, 1986) and, in particular, in
relation to the so-called impact damper. Bapat et al. (1983), Li et al. (1990) and Shaw
and Rand (1989) have studied the dynamic response of simplified rigid-body impacting
systems. They have shown the existence of complex dynamics including different types
of periodic trajectories, bifurcations, and chaotic motion. In Pfeiffer and Glocker (1996)
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a detailed analysis of the rigid-body model has been proposed, together with experimental
results that corroborate the theoretical investigations (Reithmeier, 1991; Pfeiffer and Kunert,
1990; Kunert and Pfeiffer, 1991).

In this work, the impact damper (see Figure 1) is used as a simplified model of backlash
for feedback control purposes incorporating the dynamical effects of impacts. We use a rigid-
body model which is justified by typical numerical values of 4343 N/m for the contact/impact
stiffness and a contact damping of 10 Ns/m between metals that have been reported in the
literature (Deck and Dubowsky, 1994; Smith, 1983). For instance, consider a simple system
that consists of a mass striking a rigid wall. If the contact/impact process is modeled by a
spring with stiffness n @ 43: N/m, simple calculations (Brogliato, 1999) yield an impact
duration of 43�6 s for p @ 4 kg. Then the impact can be considered instantaneous. In
our opinion, the rigid-body approach, which incorporates dynamical effects of impacts and
unilaterality of the constraints, may be quite a useful model for control design for several
reasons. Firstly, it is a model which is simple enough (therefore allows us to derive and
study controllers), yet which incorporates some highly nonlinear effects, namely impacts and
unilaterality. Secondly, such models have been validated experimentally elsewhere for much
more complex systems (Abadie, 2000; Pfeiffer and Glocker, 1996). In particular, it is clear
that high values of the contact stiffness preclude the use of control inputs which directly
incorporate n, since this would yield high gains in the control loop and unacceptable control
input magnitude. Such control schemes (see, for example, Tao et al. (2001)) are therefore
limited to small contact stiffness values, which often lack practical realism.

The goal of this paper is first to study the limitations of PD controllers. The regulation
problem is examined, extending in a logical way the work of Indri and TornambÍ (1997)
towards the rigid-body model for the collocated case. The existence and stability of limit
cycles in the non-collocated case are also carefully studied and a completely analytical
proof is given, which apparently has never been proposed in the literature for such a four-
dimensional non-smooth mechanical system. Then we focus on the tracking problem. When
considering a PD controller, the first problem we have to face when we want to track a path
{E+w, is: are there a couple of gains +nQ > nW , such that, under ideal conditions, the trajectory
{4+w, @ {E+w, exists? Although the answer to this questionwhen the clearance is zero is trivial
if {E 5 F 5^ LU. `, it becomesmore cumbersomewhen the clearance is strictly positive. In the
present work, we choose to examine particular trajectories (periodic, one impact per period,
symmetric) for which existence results can be proven. A major conclusion is that the set of
trajectories that we can identify analytically, so that a PD controller can be used for tracking
purposes, is rather small, and lacks practical usefulness in general. It is however not a priori
excluded that other types of orbits may exist and may be tracked with a PD input, but the
analytical proof of their existence is an open problem. Now, another point of view is that of
considering a desired orbit and finding a tracking controller (not necessarily linear). To this
aim, we propose a hybrid control strategy. The first motivation is to provide a complementary
control that can be considered as a safety net around the (possibly small) region of attraction
of the linear controller orbit (Guckenheimer, 1995). In contrast to other types of existing
hybrid control strategies for the full system based on the use of chaotic motion to bring the
system into the basin of the desired motion (Ott et al., 1990), the proposed strategy guarantees
transient properties. Two controllers are proposed: a constant and impulsive controller and
another piecewise constant controller. Most importantly, these controllers are also shown
to have a possible application in the (approximate) tracking control problem of certain time
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varying trajectories, in conjunction with a PD input, hence improving the (generally poor)
tracking capabilities of PD controllers. Throughout the paper, we pay particular attention to
the so-called viability conditions (a definition is given later), which play an essential role
in the analysis and control of systems with unilateral constraints (Babitsky, 1998). The
main difference between the proposed hybrid controller (here called PD.) and some of
the aforementioned controllers is that it does not aim at minimizing the velocity during the
backlash phases (to decrease collision effects), nor at establishing a direct transfer from one
constraint to the other. Rather, it uses impacts to drive the system between two points of its
state space through a sequence of suitable collisions.

2. CONTROLLED IMPACT DAMPER MODEL

The consideration of an impact damper, composed of a free object constrained to move in a
slot inside a controlled mechanism, allows us to clearly highlight the features due to unilateral
constraints and collisions while keeping the rest of the dynamics quite simple. This is a
system that can be considered as a particular case of nonlinear non-smooth hybrid systems
with complementarity conditions (for frictionless constraints) given by (Brogliato, 1999;
LÛtstedt, 1982)

P +t,�t. I +t> bt, @ H +t,X.uk � �
k+t, � 3> � 5 k+t, @ 3> � � 3

Collision rule

(1)

where X is the control input, � is the vector of Lagrange multipliers, k+t, is the unilateral
constraint vector and a restitution law is needed to complete the model. Notice that
equation (1) can represent several different control systems including juggling systems (see
Brogliato and Zavala Rio (2000) and Zavala RÒo and Brogliato (1999)) and manipulators
performing complete robotic tasks (Brogliato, 1999; Brogliato et al., 2000). However, the
analysis and control of such complementarity systems still need to be investigated.

A schematic diagram of the mechanical system under consideration is shown in Figure 1.
It consists of a primary massp4 that is constrained to move in a slot inside a secondary mass
p5, which is subject to an external control input X. The supposed frictionless motion of
p4 is instigated by collisions with p5, which occur intermittently because of the clearance
5O. This idealized model is called an impact pair. Because of its simplicity, it has been used
frequently as a basic model for the study of mechanical systems with clearance; see Bapat
et al. (1983), Brogliato (1999), Shaw and Rand (1989) and Stepanenko and Sankar (1986)
and references therein. Although it is an approximate model, it exhibits the typical behavior
found in such systems and has an extremely rich dynamics. It is also used in aeronautics to
control or damp vibrations of structures (such as helicopter blades and rotors), as well as to
model the dynamics of fuel tanks (known as the liquid slosh phenomenon) (Hung and Pan,
1996; Ibrahim and Sayad, 1998; Pilipchuk and Ibrahim, 1997).

The motion of the system can be decomposed in three phases: the backlash phase ,
during which the primarymass flies freely between the constraints without reaching them; the
impact phase L, when the contact of the masses is established with non-zero relative velocity,
i.e. the primary mass impacts one constraint; the third phase, the contact phase F, is obtained
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when the relative velocity of the system is zero at the contact instant or after the collision. In
this phase, the two masses remain engaged. Using Newtonòs law for collisions, the equations
governing the motion are given by (the analogy with equation (1) is clear)

p4�{4 @ �4 � �5

p5�{5 @ X� �4 . �5

k4+{4> {5, @ O. {4 � {5 � 3

k5+{4> {5, @ O� {4 . {5 � 3

b{4+w
.
L ,� b{5+w

.
L , @ �h+b{4+w�L ,� b{5+w

�
L ,,

(2)

where {4 and {5 represent the displacements of the primary and secondary masses
respectively, and h is a restitution coefficient (Brogliato, 1999).4 The backlash phases
dynamics is obtained by setting �4 @ �5 @ 3, whereas the contact phases dynamics
corresponds to either (�4 A 3 and �5 @ 3) or (�4 @ 3 and �5 A 3). Notice that in the
backlash phases the system is underactuated in the sense that there is only one control input
and two degrees of freedom; the primary mass is unaffected by the action of the input. In
the impact phase, the behavior of the system at the collision time wL is given by (with the
percussion sJ A 3, l @ 4> 5)

p4+b{4+w
.
L ,� b{4+w

�
L ,, @ s4 +or� s5,

p5+b{5+w
.
L ,� b{5+w

�
L ,, @ �s4 +or s5,

(3)

where i +w.L , and i +w�L , denote the left and right limits of a function i +�, at the nth impact.
From equations (2) and (3), and since the positions of the masses are not changed during the



6 M. T. MATA-JIM®NEZ and B. BROGLIATO

impact (Brogliato, 1999), the following relations can be obtained3
EEEC

{4+w
.
L ,

{5+w
.
L ,

b{4+w
.
L ,

b{5+w
.
L ,

4
FFFD @

3
EEEC

4 3 3 3

3 4 3 3

3 3 v�F
4.v

4.F
4.v

3 3 +4.F,v
4.v

4�v F
4.v

4
FFFD
3
EEEC

{4+w
�
L ,

{5+w
�
L ,

b{4+w
�
L ,

b{5+w
�
L ,

4
FFFD

[+w.L , @ H+�> h, [+w�L , (4)

where � @ p4@p5 is the mass ratio, [ is the system state and H is a constant matrix
depending on the physical parameters. The motion of the system during the contact phase can
be divided into two cases depending on the contact constraint. Using the complementarity
conditions, it is a simple matter to prove that a sufficient condition for detachment is given
by Xvjq+{4 � {5, A 3. From equations (2) and (4), we can obtain a global representation
of the system including the collision effects. It is important to notice that the behavior of
the system is very complex because the equations representing the global system are a set of
differential and algebraic equations. If we select a linear control input X, the system will be
linear between collisions but globally nonlinear, due to the complementarity conditions and
impacts.

3. PD CONTROL

For the ideal case +O @ 3,, the second-order system describing the system may be controlled
via a PD controller of the form

X @ p5�{E � nW
�

�{ �nQ�{> nQ A 3> nW A 3 (5)

where �{ @ {� {E and {E is a desired trajectory. This control is applied only on p5. For the
system with O 9@ 3, the control problem becomes much more difficult since the dynamics are
as in equation (2). For feedback purposes, { can be chosen to be {5 or {4. The first case is the
collocated control and the second case is called the non-collocated control. The closed-loop
behavior of the controlled system can be obtained by inserting equation (5) into equation (2),
where in equation (5) +{> b{, @ +{4> b{4, for the non-collocated case and +{> b{, @ +{5> b{5, for
the collocated case. In the following, we study the regulation and tracking cases separately.

3.1. Collocated regulation: global stability

If we choose a collocated control, the equations describing the system during the various
phases are given by

 =

�
p4�{4 @ 3
p5�{5 @ �nQ �{5 � nW b{5

F = P�{ @ �nQ �{� nW b{

L = [+w.L , @ H+�> h, [+w�L ,
(6)
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where P ] p4 . p5. For this control, the invariant set for the closed-loop system is given
by

H @ i+{4> {5> b{4> b{5,m m{4 � {5m � O> {5 @ {5E > b{4 @ 3> b{5 @ 3j � LU7 (7)

which can also be characterized from a generalized equation, relying on the representation of
the dynamics in equation (6) with convex analysis tools; see Brogliato (2001) and references
therein. The stability analysis is based on the choice of a suitable unique positive definite
function Y of the partial system state +�{5> b{4> b{5,, as in Indri and TornambÍ (1997):

Y+�{5> b{4> b{5, @
nQ
5
�{55 .

4

5

�
p4 b{

5
4 .p5 b{

5
5

�
= (8)

To analyze the stability of the whole system, we first investigate the stability of each phase
independently. It is a simple matter to show that along the backlash and contact phases orbits,
we obtain

bY+w, @ �nW b{55+w, (9)

which is negative semi-definite. Considering that the positions remain unchanged at the
impact, we can calculate the jump at the collision times

�7 iwJn j @ � p4p5

5+p4 . p5,
+4� h5,+b{4+w

�
Jn
,� b{5+w

�
Jn
,,5 � 3 (10)

for all h 5 ^3> 4` and where �7 iwJn j @ Y+w.Jn ,� Y+w�Jn ,. Because ^{5 ? .4 , {4 ? .4`
we can conclude that the system is globally stable in the sense that the state remains bounded
for all w � 3 and for all bounded initial conditions. It is interesting to notice that the
collocated closed-loop system has a simple interpretation in terms of passive systems; the
two subsystems in equations (2) and (6) with respective states +{4> b{4, and +�{5> b{5, are clearly
dissipative during the backlash phases with input +�4 � �5>��4 . �5, and output +b{4> b{5,,
and the total system is dissipative at the collision times. The first property is lost in the
non-collocated case. In Mata-JimÎnez (1998) and Mata-JimÎnez and Brogliato (1999), an
analysis to demonstrate the asymptotic stability of the invariant set H for the collocated
system has been proposed. Notice that, although the KrasovskiiïLaSalle invariance principle
may apply directly to such autonomous hybrid non-smooth systems, it is not available as
such in the literature. Consequently, we have to prove asymptotic stability with a specific
analysis. However, our goal in this paper is not to present a detailed analysis of the PD
controller but rather to survey its capabilities and to propose a specific hybrid controller,
see Section 4. Moreover, the asymptotic stability result is logical since the closed-loop
system is autonomous and satisfies the conditions for existence and uniqueness of trajectories
(Schatzman, 1998) as well as continuous dependence on initial conditions which are at the
core of the invariance lemma (Vidyasagar, 1993). The proof of asymptotic convergence of
closed-loop trajectories to the set +H, is therefore not presented.

Remark 1. Assume that {E is time-varying but such that �{E @ 3. For this particular case,

we modify Y in equation (8) as Y+�{5> b{4> b{5, @
Ls
5
�{55.

4
5

�
p4

�

�{
5

4 .p5

�

�{
5

5

�
where �{4 @ {4�{E .

Using the same analysis as above we can obtain similar results as for the regulation.
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3.2. Non-collocated regulation: limit cycles

The existence of clearance in this system breaks the kinematic chain and induces the creation
of limit cycles (Choi and Noa, 1989). Its presence induced by the control law has been
reported from numerical investigations in Azenha and Tenreiro Machado (1996). In this
paper, we propose an analytical reasoning to prove the existence and stability of such limit
cycles. The proposed technique is based on Kobrinskiiòs study of vibro-impact (Babitsky,
1998). This approach to finding the steady-state response for this forced piecewise linear
system (Bapat et al., 1983; Masri andCaughey, 1966) reduces the problem to a set of nonlinear
equations with boundary conditions. It consists of building the trajectories in the steady
state using the knowledge of the solutions between collisions (the system is linear between
impacts) and the impact law. We concatenate the solutions at the collision instants in order to
obtain a complete solution. This formulation allows an implicit form of a three-dimensional
PoincarÎ map and from this map we can obtain results about the stability of certain periodic
motion. The PoincarÎ map used here is a map extensively used in the mechanical engineering
literature for similar systems. Its formulation is based on the basic behavior of the system (the
repetition of the collisions). For the analysis we consider only a special type ofmotion in order
to simplify the calculations. The considered motion satisfies the following hypotheses: the
limit cycle is symmetric, the periodic trajectory at steady state is only composed by backlash
and collision phases (we exclude the trajectories considering contact phases) and there are
only two collisions (one collision with each constraint) per period of the cycle. With the
previous assumptions, we can build the solutions. Due to the supposed symmetry, only half
of the trajectory needs to be considered. In considering only two collisions per period, the
boundary conditions can be summarized by

{43 ] {4+w
�
3 , @ {44 ] {4+w

.
3 , @ �{4+w�4 ,

{53 ] {5+w
�
3 , @ {54 ] {5+w

.
3 , @ �{5+w�4 ,

|43 ] b{4+w
�
3 , @ �|44 ] �b{4+w

.
3 , @ �b{4+w

�
4 ,

|53 ] b{5+w
�
3 , @ �|55 ] �b{5+w

�
3 ,

(11)

where w3 is the instant of the first collision and w4 @ w3 . � is the instant of the second
collision. We denote� as the interval between two consecutive collisions. Because the cycle
is built at the impact instant, {4+w

�
3 , @ {5+w

�
3 , . O and {4+w

�
4 , @ {5+w

�
4 , � O. By resolving

the system on the interval +w3> w4, the following expressions are obtained

{4+w, @ {44 . |44+w� w3,

|4+w, @ |44

{5+w, @ DS . ES +w� w3, . FS +w� w3,
5 . GS +w� w3,

6

|5+w, @ ES . 5FS +w� w3, . 6GS +w� w3,
5

(12)

where the constants of integration are given by

DS @ {54 ES @ |54 FS @
�nQ{44 � nW |44

5p5

GS @ �nQ|44
9p5

= (13)
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If the system equations (12) are evaluated at w @ w4 and the conditions of symmetry in
equation (11) and the impact conditions are introduced, we obtain from equation (12) the time
elapsed between two consecutive collisions given by � @ �5 Y44

Z44
. Algebraic manipulations

allow us to show that the only limit cycle satisfying these hypotheses is characterized by (for
the primary mass)

{43 @
6Op5+4 . h,5n 5W

6+p4 . p5,n 5W +4 . h,5 � nQ+4� h,5+p4 . p5,5
(14)

|43 @
{43nW +4 . h,

+p4 .p5,+4� h,
(15)

where {43 is the amplitude of the oscillation and |43 is the velocity of the primary mass at
the collision instant. The position and velocity of the secondary mass are given such that the
impact condition is satisfied.

3.2.1. Existence conditions

The solutions have a physical meaning and they must satisfy certain conditions. The first
condition is that the sign of the post-impact relative velocity |S +w

.
L , @ |4+w

.
L , � |5+w

.
L ,

depends on the attained constraint. In this case, the evaluation of the velocity gives a test
which successfully eliminates the solutions without physical significance. Because of the
symmetry, only the constraint {4�{5 @ Owill be considered, for which vjq+ |S +w

.
L ,, @ �4.

After some calculations, we find |S +w
.
L , @ �5F+4.v ,

4.F
|43, which implies {43 A 3. From

equations (14) and (15) we obtain

n 5W A
nQ
6
+p4 . p5,

�
4� h

4 . h

�5

= (16)

Notice that the trajectory construction has been made at the collision instants only. Because
these solutions are obtained by only regarding discrete instants, they do not yield the complete
trajectory for arbitrary times. In particular, it is possible that certain solutions result in a
relative displacement {S @ {4+w, � {5+w, being larger than O during such time intervals. To
account for such a physically impossible situation, the existence of the limit cycle requires
the verification of the so-called viability conditions :

m{4+w,� {5+w,m � O ;w 5 +w3> w4,= (17)

For the considered system, a sufficient condition for viability can be obtained. Indeed,
viability conditions will be always satisfied if the relative velocity |S +�, maintains constant
sign on +w3> w4, (Babitsky, 1998). We have

|S +w, @ + |44 � ES ,� 5FS +w� w3,� 6GS +w� w3,
5 @ d3 . d4�L. d5�L 5= (18)

Introducing the constants of integration, we obtain (considering {43 A 3) that d3 ? 3 and
d5 ? 3. Given that �L @ w � w3 A 3 a sufficient condition for viability is d4 ? 3. This is
obtained if FS A 3, which in turn is satisfied if
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n 5W A nQ+p4.p5,

�
4� h

4 . h

�
� nQ+p4.p5,

�
4� h

4 . h

�5

� nQ
6
+p4.p5,

�
4� h

4 . h

�5

= (19)

For the existence of the limit cycle, both equations (16) and (19) have to be satisfied
simultaneously. Given that 4 � 4�F

4.F
� 3, equation (19) is a sufficient condition for the

existence.

3.2.2. Stability of the limit cycles

We study the stability of the limit cycles induced by the control law. Periodic orbits correspond
to fixed points of the PoincarÎ map. In order to obtain a section to generate the PoincarÎ map
S, we must have some knowledge of the geometrical structure of the phase space of the
problem. For the considered system, it is possible to obtain a section relying on the insight of
the system behavior. That is, the collisions take place when the two masses come in contact
and the bodies move apart from each other after an impact. If the collision is repeated many
times, the evolution of the system will be given by the system state evolution at the impact
instants. This is a natural choice of the section given the nature of the system. It is important to
observe that the discrete formulation of the PoincarÎ map enables us to eliminate the problem
of discontinuities due to impacts.

To simplify the notation }4 @ {4, }5 @ |4, }6 @ {4 � {5 and }7 @ |4 � |5 are used.
The geometry of the flow defined is +}4> }5> }7, 5 LU6, }6 is restricted to L @ ^�O> O`. The
phase space defined is given by +}4> }5> }6> }7, 5 LU5 � L� LU. In systems of this type, there
are two possibilities for the hypersurface defined by the collisions, one with each constraint.
The intersections in the hypersurfaces are defined by the reduced state +}4> }5> }7, 5 LU6.
When a trajectory intersects the hypersurface it immediately jumps to another point on the
hypersurface via the impact. This leaves four possible definitions of the PoincarÎ section. In
the analysis, the pre-collision map with the constraint 4, 	�4 @ i+}4> }5> }6> }7,m}6 @ O> }7 A
3j 5 LU5 � L � LU., will be chosen arbitrarily for the calculations of stability. Because
of the discontinuities, the PoincarÎ map must be constructed by composition of four simple
mappings, defined as follows

S @ S76 � S65 � S54 � S43 (20)

where S43 and S65 correspond to the impact mappings whereas S54 and S76 correspond
to the continuous flow. Note that S is known only in implicit form. Indeed, the solution
of the time elapsed between impacts requires finding the roots of complicated polynomial
equations. However, the behavior of the system can be characterized by the local stability
of the fixed points. In order to determine the stability of a periodic solution emanating from
]3 @ +}43> }53> }73,, the Jacobian matrix of the PoincarÎ map S at ]3 must be calculated.
This derivative is obtained using implicit differentiation. The calculation of GS is carried
out by considering the dynamics of small perturbations of the periodic solutions. Given the
nature of the map, only the sensitivity matrix GS is known. The computation of GSmust be
decomposed into four parts to consider the contribution of each mapping

GS+}43> }53> }73, @
CS+}47> }57> }77,

C+}43> }53> }73, @ GS76
GS65 GS54 GS43 (21)
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where GSJK @ 1 +[4l� [5l� [7l,
+[4m � [5m � [7m,

. In equation (21) GS54 comes from the free flight between the
two constraints. The variables }45, }55 and }75 are related to }44, }54 and }74 by

j ] }65 +�> }44> }54> }74, @ }44 . }54�� DD � ED�� FD�
5 � GD�

6 @ �O
i4 ] }45 +�> }44> }54> }74, @ }44 . }54�

i5 ] }55 +�> }44> }54> }74, @ }54

i6 ] }75 +�> }44> }54> }74, @ ED . 5FD�. 6GD�
5

(22)

where� @ w4 � w3 and DD , ED , FD and GD are given by

DD @ }44 � O ED @ }54 � }74 FD @
�nQ}44 � nW }54

5p5

GD @ �nQ}54
9p5

= (23)

A calculation of implicit derivatives for the functions i4, i5, i6 and j defined in equation (22)
allows us to obtain GS54 @

1 +[45� [55� [75,
+[44� [54� [74,

. The symmetry conditions imply GS76 @ GS54.
Finally, we may compute that the characteristic polynomial of GS is given by

k6]
6 . k5]

5 . k4]. k3 (24)

where the coefficients are given by

k6 @ <

k5 @ �7J7 . ;+5 . h,J6 � 7+h5 . 7h. 43,J5 . 69+4 . h,J� <+4 . 5h5,

k4 @ 7J7 � ;+4 . 5h,J6 . 7+43h5 . 7h. 4,J5 � 69+4 . h,h5J. <h5+5 . h5,

k3 @ �<h7=

(25)

Here J ] Ls+4�F,5

L5y+4.F,
+p4 . p5, � 4 from equation (19). Using the Jury criterion,5 it is

easy to prove that the roots of the characteristic polynomial are always inside the unit circle
provided that equation (19) holds. Therefore, we have proved the following:
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Lemma 1. Assume the non-collocated PD control is applied to the impact pair. Then if the
condition in equation (19) is satisfied, a symmetric limit cycle described by equations (14) and (15)
exists and is locally stable.

Remark 2. The stability of the fixed point of the PoincarÎ map, and the stability of the
continuous-time trajectories, may in general be two different things. However, in the case of the
system we deal with in this paper, they are equivalent due to the good properties of the continuous
vector fields (which ensure that the existence, uniqueness and continuous dependence properties
studied in Schatzman (1998) are satisfied).

3.3. PD control: the tracking problem

In the previous section, we have seen that the existence and stability of limit cycles for
the non-collocated regulation problem can be given a complete analytical solution. In this
section, we choose {E+w, as a cosine function {E @ {N frv$w so that X in equation (2) can
be rewritten as

X @ �nW b{� nQ{. � frv+$w. � , (26)

with � frv+$w . � , @ p5�{E . nW b{ . nQ{E . The amplitude and the phase are given by
� @ {N

s
+nQ �p5$5,5 . +nW$,5 and wdq � @ Ly�

Ls�N5�5
.

Let us study the possible trajectories induced by the control law using the same method
as in the previous subsection. We search for determinated periodic orbits. More generally,
the same type of analysis may be performed to try to prove the existence of any periodic
orbit we desire to track exactly (in the ideal theoretical case). For instance, we may replace
the sine function by a triangle or square periodic signal and proceed with a similar analysis
to investigate whether some suitable orbits exist or not, although this problem is often
untractable analytically in most cases. In this section, we outline the stability and existence
analysis. More details can be found in Mata-JimÎnez et al. (1997). Let us note that our
analysis mainly departs from those in Babitsky (1998), Bapat et al. (1983), Heiman et al.
(1987), Peterka and Vacik (1992) and Shaw and Rand (1989), in the sense that we focus our
attention on the role played by the gains nQ and nW , and we are not concerned with providing
a zoological description (Hubbard and West, 1995, Section 7.6, p. 105) of the dynamics.

Let us denote the velocities of the primary and secondary masses as |4 and |5,
respectively. A periodic solution of order q will mean a solution which has a period q times
the period of the control input W @ 5y

�
(where q is an integer). In the system there are

many different types of periodic solutions of order q. However, in order to simplify the
algebraic calculations only those periodic solutions that have a single impact with each of
the boundaries during a single cycle will be taken into account (this is the simplest solution
possible), referred to as simple periodic solutions. Finding the general solution is at best
extremely difficult and Bapat et al. (1983) have demonstrated that the exact closed-form
solutions are possible only when the number of collisions per period is equal to two. In
this technique to find a simple periodic solution, it is assumed that the oscillator starts at the
boundary {5 @ {53 with initial velocity |53. Only the symmetric periodic trajectories will
be considered, and only the collocated control is analyzed for the sake of brevity. But some
figures concerning the non-collocated case are presented for the sake of comparison and to
enable us to draw some conclusions on the PD controller. Using Kobrinskiiòs method, we are
able to prove the following (Mata-JimÎnez et al., 1997):
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Lemma 2. Symmetric periodic orbits of order q exist only if the nonlinear equation�
N 5
3 . $5O53

�
|553 � 5

�
O3M3$

5{53
�
|53 . $5M 53

�
{553 � {5N

�
@ 3 (27)

possesses a set of feasible solutions +{53> |53, where

{N @

v
+N 5

3 . $5O53,

$5M 53
|553 � 5

O3
M3
{53|53 . {553 (28)

M3 @ frvk
�
O5
5

�
. frvk

�
O5z
5

�
 @

t
�5 � Ls

N5

O3 @
4�3
5

vlqk
�
O5
5

�
� @ Ly

5N5

N3 @
4.3
5
M3 .

�
4�3
5

� �
z

vlqk

�
O5
5

�
. vlqk

�
O5z
5

��
U @ F.5v�4

F�5v�4 =

The orbits analyzed here correspond to q @ 5. It is worth noting that, contrary to what is
stated in Li et al. (1990) and Shaw and Rand (1989), the condition in equation (27) is not
sufficient to guarantee the existence of a periodic trajectory. Indeed, the existence condition
of the impact motion excludes the possibility of the occurrence of an additional impact during
the time interval between the periodic impacts (Babitsky, 1998; Heiman et al., 1987; Peterka
and Vacik, 1992). This can be expressed via the viability conditions as

m{4 � {5m ? O for w3 ? w ? w3 .
qW

5
= (29)

In contraat to the non-collocated regulation case, the values of nQ and nW satisfying the
existence conditions can be obtained only numerically, as the process of obtaining them
requires finding the roots of transcendental equations. The stability of the existing solutions
can be analyzed similarly as for the non-collocated PD regulation case. This time, the
geometry of the flow is given by +}4> }5> }7, 5 LU6, * is restricted to a circular phase
V 5 (the circle of period W ) and }6 is restricted to ^�O> O`. The phase space is given by
+}4> }5> }6> }7> *, 5 LU5 � L� LU� V 5 .

As an illustration of the numerical results we may obtain, Figures 3(a) and 4(a) depict the
domain in which there is at least one couple +nQ > nW , such that for given +�> z, (with � @ -

Y43
where {43 is the magnitude of the orbit, so that the form of the primary mass trajectory in
the phase plane is fixed) the corresponding periodic solution exists. The existence regions
correspond to the area above the depicted curves. Each curve corresponds to a particular
couple +h> �,. Figures 3(b) and 4(b) are constructed as follows. Given a point +�> $, on
Figures 3(a) and 4(a) inside the existence region, we calculate all the possible couples +nQ > nW ,
that give rise to a stable periodic trajectory. The couples +h> �, in Figures 3(a) and 4(a) are
the same.

Notice that:

� for a couple of physical parameters +h> �, the desired trajectory may not exist;
� a different secondary mass trajectory corresponds to each couple +nQ > nW ,.
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3.4. PD control: preliminary conclusions

From Mata-JimÎnez et al. (1997) and the preceding analysis, it is possible to make the
following conclusions about the performance we may expect from a PD controller:

� Regulation:

ï The collocated PD regulation guarantees global asymptotic stability properties.

ï In the non-collocated regulation case, we have proven analytically the existence
of stable limit cycles.

� Tracking:

ï Some locally stable periodic orbits exist in a closed loop. The existence and sta-
bility regions are much smaller for the non-collocated case than for the collocated
case, as expected.

ï For the non-collocated case, the region of existence and stability decreases with
increasing h. It is the inverse for the collocated case.

ï The region of admissible gains is limited principally by the variation on � @ -
Y43

.

ï The range of admissible gains corresponding to the chosen stable periodic trajec-
tory is large for the collocated case. However, the desired trajectory of the primary
mass may not exist.

ï Although the existence and stability regions for the non-collocated case are much
smaller than for the collocated case, the basins of attraction have a similar size in
both cases (Mata-JimÎnez, 1998; Mata-JimÎnez et al., 1997). However, in prac-
tice, the uncertainties on the physical parameters will be an obstacle to tracking,
due to the high sensitivity of the basin of attraction size with respect to physical
parameter uncertainties as shown in Mata-JimÎnez (1998). This sensitivity is a
classical feature of nonlinear systems (Grebogi et al., 1994).

ï It is clear that the PD control generally provides only local stability of the existing
time-varying orbits. Moreover, the existing symmetric orbits constitute a very
narrow class of trajectories, which may often lack of practical usefulness (because
the magnitude is proportional to the clearance size in most of the cases). The proof
of existence of other types of orbits (there may exist trajectories much closer to
{E+w, than those we have investigated) always relies on heavy manipulations of
nonlinear equations that have to be solved numerically.

ï Other types of desired signals {E+�, can be considered in equation (5). However,
the tracking performance is generally quite poor, as shown in numerical simula-
tions at the end of the paper. In a general setting, even chaotic motions may be
created (Shaw and Rand, 1989).

ï In practice, PD control strategies are stable for most desired motions; that is,
closed-loop signals remain bounded. It can indeed be shown, using a reason-
ing inspired by AnglÎs (1996) and based on induction, that PD guarantees global
boundedness of solutions when {E @ vlq+�,. But again performance may be quite
poor.
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4. HYBRID CONTROL STRATEGY

Due to the limitations of a PD controller and the difficulties in obtaining analytical results
concerning the existence of closed-loop stable time-varying trajectories, it is of interest to
study other types of feedback controllers for the impact damper. This is the object of this
section.

4.1. A general targeting control approach

Wenowpresent a general approach to targeting a desired point of the state space of the primary
mass. Defining the elapsed time between two consecutive collisions as�L @ wL.4 � wL we
can obtain the system state just before the next collision for any control input X 5 LU. If
we assign #4 as the change of the position, and #5 as the change of the velocity due to the
control, i.e. #4+wL , @

U |

Un

U Un.4

|
Xg�g� and #5+wL , @

U Un.4

Un
Xg�, then from equations (2) and

(4) we can write the system as

{4+wL.4 , @ {4+wL , . |4+w
.
L ,�L

{5+wL.4 , @ {5+wL , . |5+w
.
L ,�L . #4+wL ,

|4+w
.
L.4 , @ p44 |4+w

.
L , .p45 |5+w

.
L , . p45#5+wL ,

|5+w
.
L.4 , @ p54 |4+w

.
L , .p55 |5+w

.
L , . p55#5+wL ,

(30)

where pJK are the non-trivial entries of the matrix H+�> h, in equation (4) l> m @ 4> 5
(i.e. p44 @ v�F

4.v
and so on). Note that we consider #4+wL , and #5+wL , independent and a

priori arbitrary. If the system in equation (30) is not controllable a real system with a fixed
structure #5 @ i +#4, cannot be. In addition, the viability conditions are not yet included at
this stage of the study. They are investigated in detail in the next section. Therefore, the result
in this subsection has to be considered necessary but not sufficient (in terms of impacts needed
to attain the target). We note that equation (30) is not a simple discrete-time system due to
the flight-time�L in the first two equations. If we want to bring the trajectory from [+w.L , to
a desired state [+w.L.4 , @ [ �+w.L.4 ,, it is necessary to alculate the variation on the position,
#4, and on the velocity, #5, to attain the target +{4+wL.4 ,> {5+wL.4 ,> |4+w

.
L.4 ,> |5+w

.
L.4 ,, @

+{�4+wL.4 ,> {
�
5+wL.4 ,> |

�
4+w

.
L.4 ,> |

�
5+w

.
L.4 ,,. Note, from equation (30), that we can reach the

desired {4 only indirectly using the flight time because the control input has no direct effect
on its behavior. Then we select the interval between two consecutive collisions as

��
L @

{�4+wL.4 ,� {4+wL ,

|4+w
.
L ,

= (31)

Introducing equation (31) into equation (30) we obtain the system:

{�4+wL.4 , @ {�4+wL.4 ,

{�5+wL.4 , @ {5+wL , . |5+w
.
L ,�

�
L . #4+wL ,

|�4+w
.
L.4 , @ p44 |4+w

.
L , . p45 |5+w

.
L , .p45#5+wL ,

|�5+w
.
L.4 , @ p54 |4+w

.
L , . p55 |5+w

.
L , .p55#5+wL ,=

(32)
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From the above equations we deduce the following:

3
EC

4 3

3 p45

3 p55

4
FD
#

#4+wL ,

#5+wL ,

$
@

3
EC

{�5+wL.4 ,� {5+wL ,� |5+w
.
L ,�

�
L

|�4+w
.
L.4 ,� p44 |4+w

.
L ,� p45 |5+w

.
L ,

|�5+w
.
L.4 ,� p54 |4+w

.
L ,� p55 |5+w

.
L ,

4
FD = (33)

In a compact form this system can be written as

P�L @ J+[ �+w.L.4 ,> [+w
.
L ,,= (34)

To solve equation (34) it is necessary that the desired state satisfies

J+[ �+w.L.4 ,> [+w
.
L ,, 5 LpiPj= (35)

If h 5 +3> 4` (h @ 3 is a trivial case (Mata-JimÎnez, 1998)) then equation (35) implies that
the following condition is satisfied:

|�5+w
.
L.4 , @

p55

p45

|�4+w
.
L.4 , .

p54p45 � p44p55

p45

|4+w
.
L ,= (36)

If the condition in equation (36) is satisfied, we can rewrite the equation (33) as a reduced
order mapping as�

4 3
3 p45

��
#4+wL ,
#5+wL ,

�
@

�
{�5+wL.4 ,� {5+wL ,� |5+w

.
L ,�

�
L

|�4+w
.
L.4 ,� p44 |4+w

.
L ,�p45 |5+w

.
L ,

�
(37)

which can be expressed in compact form as

�P�L @ �J+[ �+w.L.4 ,> [+w
.
L ,, (38)

where �P 5 LU5�5 is full rank. The system is invertible and has a solution depending on the
desired state and the initial state:

��
L @ �L +[

�+w.L.4 ,> [+w
.
L ,,= (39)

Hence, in the closed loop, we obtain

J+[+w.L.4 ,> [+w
.
L ,, @ P��

L @ J+[ �+w.L.4 ,> [+w
.
L ,, (40)

which implies

[+w.L.4 , @ [ �+w.L.4 ,= (41)

Suppose wewant to attain the target using only one collision, i.e.[ D @ [ �+w.L.4 ,. Then, from
equation (36) we can observe that, in general, the fixed point does not satisfyJ+[ D> [+w.L ,, 5
LpiPj. This means that only one desired velocity can be obtained in one step.

To cope with this problem, we propose that an intermediate state ([.) be attained
between the initial state ([ J ) and the target ([ D). The idea is to choose an intermediate state
with an existence region that contains the initial state. Additionally, the intermediate state
must be contained in the existence region of the target. The scheme consists of two steps:
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(i) in order to calculate[., it is necessary to obtain the conditions such that [ D is attained
in one collision, i.e.

|.4 @

�
p45 |

D
5 �p55 |

D
4

p54p45 �p44p55

�
> (42)

(ii) to bring the initial state to [., equation (36) must be satisfied in order that the exis-
tence region of [. contains [ J , i.e.

|.5 @
p55

p45

|.4 .
p54p45 �p44p55

p45

|J4= (43)

From equations (42) and (43) we obtain the intermediate state

{.4 > {.5 such that m{.4 � {.5 m @ O

|.4 @

�
p45 |

D
5 �p55 |

D
4

p54p45 �p44p55

�

|.5 @
p55

p45

|.4 .
p54p45 �p44p55

p45

|J4=

(44)

Until now, we have only examined some general features of the system assuming we have
an ideal equivalent control +#4> #5, at our disposal. In the next subsection, we propose two
control laws X, which enable us to achieve the required task.

4.2. Constantïimpulsive control

The first approach to targeting the desired fixed point consists of applying a constant control
input at the impact time, and an impulsive input between two consecutive collisions to
modify the velocity of the secondary mass. The algorithm is as follows. The primary mass
starts in a constraint and a constant input �L is applied. The system evolves until an instant
wJ 5 +wL > wL.4 ,, where an impulsive input sL is applied to correct the velocity of the secondary
mass. The procedure is applied as many times as necessary to reach the desired target (p is
the number of times). In our formulation, we choosep @ 5, see Remark 3 for more detail on
whether such a choice is relevant or not. The equations describing the system between two
consecutive impacts with the proposed control are (see equation (30))

{4+wL.4 , @ {4+wL , . |4+w
.
L ,�L

{5+wL.4 , @ {5+wL , . |5+w
.
L ,�L . �L sL�L .

�n

5
�5

L

|4+w
.
L.4 , @ p44 |4+w

.
L , . p45 |5+w

.
L , . p45�L�L . p45 sL

|5+w
.
L.4 , @ p54 |4+w

.
L , . p55 |5+w

.
L , . p55�L�L . p55 sL

(45)

where �L @ Un.4�Ul
�n

and �L @ un
N5

. We choose the intermediate state as in equation (44).
To bring the trajectory from the initial state to the intermediate state, the flight time is (see
equation (31))

��L @
{.4 � { J4

| J4
= (46)
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Introducing equations (46) and (44) into equation (45) (as indicated in equation (37)) we can
obtain a reduced controller form that brings the trajectory from the initial conditions to the
intermediate state as a function of the discrete inputs �L and sL :�

+��
n,
5

5
�L�

�
L

p45�
�
L p45

��
�L

sL

�
@

�
{.5 � { J5 � | J5�

�
L

|.4 � p44 |
J
4 � p45 |

J
5

�
= (47)

Inverting the above equation, we obtain the control law on +wL > wL.4 ,:

�
�L

sL

�
@

3
C

5+N45+Y
.
5 �Yl5���

nZ
l
5,�kn�

�
n+Z

.
4 �N44Z

l
4�N45Z

l
5,,

N45+��
n,
5+4�5kn,

5N45+Y
.
5 �Yl5���

nZ
l
5,���

n+Z
.
4 �N44Z

l
4�N45Z

l
5,

N45��
n+5kn�4,

4
D (48)

In the second step, the system is considered on +wL > wL.5 ,. From equation (31), {4+wL.5 , @ {D4
implies

��
L.4 @

{D4 � {.4
|.4

= (49)

To obtain the values for the control inputs, we proceed as in the previous step. It follows
from the above choices of intermediate target that |�4 and |

�
5 are achieved simultaneously. We

obtain

�
�L.4

sL.4

�
@

3
EC

5+N45+Y
f
5�Y.5 ���

n.4Z
.
5 ,�kn.4�

�
n.4+Z

f
4�N44Z

.
4 �N45Z

.
5 ,,

N45+��
n.4,

5+4�5kn.4,

5N45+Y
f
5�Y.5 ���

n.4Z
.
5 ,���

n+Z
f
4�N44Z

.
4 �N45Z

.
5 ,

N45��
n.4+5kn.4�4,

4
FD = (50)

The above developments lead us to assume that there is no impact on the intervals +wL > wL.4 ,
and +wL.4 > wL.5 ,. Conditions on wJ , i.e. on �L , are given next that guarantee the viability of
the controller, so that the target can effectively be attained in two steps. A controller will be
called viable if the corresponding closed-loop solution is viable as defined in the previous
section (in other words there are no ññaccidentalòò or unwanted impacts).

4.2.1. Calculation of suitable impulse instants w� (viability conditions)

The conditions given by equation (60) in the Appendix can be translated as the election of the
switching instant �L . The flight between the two constraints can be divided into two phases.
The two phases will be considered independently. On +wL > wJ ,, the flight time between two
collisions is given by

�5
QI4

�L

5
. + |5+w

.
L ,� |4+w

.
L ,,�QI4 . +{5+wL ,� {4+wL ,, @ {5+wQ,� {4+wQ, (51)

where�QI4 @ wQ � wL , wQ is the possible impact time (undesired) and +{5+wQ,� {4+wQ,, is the
constraint of the unwanted collision. If wQ A wJ (which will be satisfied if �L and the inputs
are suitably chosen, as shown later), the flight time between the constraints is given by

�5
L

�L

5
. +�L sL . |5+w

.
L ,� |4+w

.
L ,,�L . +{5+wL ,� {4+wL ,, @ {5+wL.4 ,� {4+wL.4 ,= (52)
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Equations (51) and (52) are quadratic. With the two constraints, each provides four different
solutions depending on the impact constraints. It is notable that the form of the solution
is given by the value of the inputs �L and sL . If we use the criterion of the flight time,
it is possible to choose the impact constraint with an adequate selection of �L and sL . In
this physical configuration, there is always a solution. With this criterion, we can state the
conditions for the non-existence of time wQ :

�QI4 A �L�L (53)

�L @ ��
L = (54)

The condition in equation (53) expresses that the solution of equation (51) is larger than the
interval +wL > wJ ,. The condition in equation (54) means that the only solution of equation (52)
(assuming that equation (53) is true) is the desired flight time. The two equations displayed
above are functions of �L . We can simply find numerically the range of �L satisfying these
conditions. This procedure must be applied to the two steps of the algorithm. In Appendix 5
we outline the way viability conditions can be analyzed.

Remark 3. (global basin of attraction) If there were no unilateralconstraints, it would
be possible to obtain the target in two steps from any initial condition, i.e. p @ 5. However,
the viability conditions imply a particular choice of the impulse instant wJ (i.e. of �L ), which
reduces the size of the closed-loop basin of attraction. It is clear that, if EN denotes the basin
of attraction for the control with p impacts, then EN.4 � EN . We have the following:

Lemma 3. Consider the dynamics in equations (2) ï(4) and a constant ïimpulsive input in
equations (48) and (50). Then, if �L $ 3, �L A 3 and if the initial velocity |4+w

.
L , A 3, the

control is viable whatever the initial and target states, and the target is (in the ideal theoretical
setting) attained after two impacts.

The proof is given in Appendix B.
This is an interesting result as it shows that, in practice, we may enlarge the basin of

attraction by modifying certain control parameters. One direction of future investigations is
to increase the number of impacts, p, necessary to attain the target in order to comply with
input magnitude or/and with viability constraints. This has been studied for a one-degree-
of-freedom juggler to decrease the input in Zavala RÒo and Brogliato (1999). In practice, we
expect that p A 5 will be needed in general to obtain a good performance of the controller.

4.3. Piecewise constant input control

The strategy in the previous subsection uses an impulsive input, which is a drawback in
practice. It is therefore of interest to show that other controllers can be designed. This
second control brings the trajectory on the basin of attraction around the fixed point using
a constant input at the collision time and another constant input (with different amplitude)
between two consecutive impacts. The algorithm can be summarized as follows. The primary
mass starts in a constraint and a constant input �L is applied. The system evolves until an
instant wJ 5 +wL > wL.4 , where the input amplitude is changed to �L . The procedure is applied
as many times as necessary to reach the fixed point (as in the preceding section, p denotes
this number of times). The equations governing the system between two consecutive impacts
with the piecewise constant control are
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{4+wL.4 , @ {4+wL , . |4+w
.
L ,�L

{5+wL.4 , @ {5+wL , . |5+w
.
L ,�L .

�L�
5
L

5
+4� �5L , .

�L

5
�5

L�
5
L

|4+w
.
L.4 , @ p44 |4+w

.
L , . p45 |5+w

.
L , . p45�L +4� �L ,�L . p45�L�L�L

|5+w
.
L.4 , @ p54 |4+w

.
L , . p55 |5+w

.
L , . p55�L +4� �L ,�L . p55�L�L�L (55)

where �L @ un
N5

and �L @ mn
N5

. Let us choose the intermediate state as in equation (44).
To bring the trajectory from the initial state to the intermediate state, the flight time is as
in equation (46). Introducing equations (46) and (44) into equation (55) (as indicated in
equation (37)) we can obtain a reduced controller form that brings the trajectory from the
initial conditions to the intermediate state as a function of the discrete inputs �L and �L :�

+��
n,
5+4�k5n,

5

k5n+�
�
n,
5

5

p45�
�
L +4� �L , �Lp45�

�
L

��
�L

�L

�
@

�
{.5 � { J5 � | J5�

�
L

p45|
.
4 � p44|

J
4 � p45|

J
5

�
= (56)

Inverting equation (56) we can obtain the control law on +wL > wL.4 ,:

�
�L

�L

�
@

3
C 5N45+Y

.
5 �Yl5�Zl5�

�
n,�kn�

�
n+Z

.
4 �N44Z

l
4�N45Z

l
5,

N45+��
n,
5+4�kn,

�5N45+Y.5 �Yl5�Zl5�
�
n,.+4.kn,+Z

.
4 �N44Z

l
4�N45Z

l
5,

N45+��
n,
5kn

4
D = (57)

In the second step, the system is considered on +wL > wL.4 ,. From equation (31), {4+wL.5 , @ {D4
implies equation (49). To obtain the values for the control inputs, we proceed as in the
previous step. It follows from the above choices of intermediate target that |�4 and |�5 are
achieved simultaneously. We obtain

�
�L.4

�L.4

�
@

3
C 5N45+Y

f
5�Y.5 �Z.5 �

�
n.4,�kn.4�

�
n.4Z

f
4�N44Z

.
4 �N45Z

.
5 ,

N45+��
n.4,

5+4�kn.4,

�5N45+Yf5�Y.5 �Z.5 �
�
n.4,.+4.kn.4,+Z

f
4�N44Z

.
4 �N45Z

.
5 ,

N45+��
n.4,

5kn.4

4
D = (58)

Notice that the inputs in equations (57), (58) and (48), (50) are similar but not equal. The
viability conditions have to be checked in the same way as for the constantïimpulsive input.
As long as the basin of attraction is not the whole state space, it is clear that we will need
p A 5 to attain the target point. In contrast to the constantïimpulsive control, a numerical
study will be needed to determine the basin of attraction as a function of p and the initial and
target states.

Remark 4. It can be easily shown that defining a third magnitudemodification between
two impacts is useless in terms of controllability of the system, as shown in the previous
subsection, although viability conditions may require p A 5 in general. An open problem is
to determine the reachable space within p impacts, in an analytical way.

4.4. A hybrid PD. controller

In this subsection, we illustrate how the above targeting controller can be used in conjunction
with a PD input to assure tracking of some important classes of desired orbits. The basic
principle of this scheme is simple. We use the property of the collocated PD that ensures not
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)LJXUH �� 3'n VWUDWHJ\�

only global regulation (i.e. stability of the invariant set in equation (7)), but also possesses
some tracking capabilities when vjq+b{E+w,, remains constant. We consider the example of a
triangle signal with a period of 1 s. The proposed hybrid PD. controller merely consists of
switching from the PD to a targeting (constantïimpulsive or piecewise constant) input when
the slope of {E changes, at times wDl and on the interval ^wDl > wDl . �J `, with �J @ 3=38v (see
Figure 5).

The goal is to compare the performance of the PD and the PD. controllers according to
the two criteria:

F4 =

]
QFSJPE

�
+{4 � {E,

5 . +b{4 � b{4E,
5 . X 5

�
g� >

F5 =

]
QFSJPE

�
+{4 � {E,

5 . +b{4 � b{4E,
5
�
g� = (59)

In the following, the piecewise constant input has been used and the intermediate states
are computed such that they minimize the distance to the target, taking into account viability
conditions at each step. In the presented examples, we have not taken into account the
viability conditions. In other words, if the controller is not viable, then an accidental impact
occurs. In addition, only two intermediate points have been chosen. Consequently, it is clear
that adding more intermediate points and incorporating the viability constraints could have
been used as another control parameter, which would have enabled us to improve the results
concerning the PD. input (both the tracking performance and the input magnitude). Due to
the high number of control parameters and to the high nonlinearity of the process, obtaining
general results seems hopeless. We have therefore preferred to limit ourselves to some typical
values of the parameters � and -

"
, but we havemade the restitution coefficient h vary in ^3> 4`.

Notice also that the figures are presented from normalized dynamics, and can therefore be
used for a large variety of parameters O and D.

First, note that there is no general procedure to choose the PD gains in an optimal way
for such a system. Consequently, we have chosen an arbitrary couple +nQ > nW , @ +56> 78, for
the PD so that our results remain more qualitative than quantitative at this stage.
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� Robustness of the PD.: From Figures 6(B) and (D) and from Figure 8, we see that,
despite an uncertainty �F

F
@ 3=48 on the restitution coefficient, the tracking perfor-

mances of the PD. are still better than those of the PD, for all values of h 5 ^3> 4`,
and various values of � and -

"
.

� Input magnitude:
From Figures 6(A) and (C) and from Figure 8(C) we deduce that the control magnitude
is larger for the PD. than for the PD, in general. However, the results in Figures 7(A)ï
(D) contradict this conclusion. We should keep in mind that the high nonlinearity of
the model prevents us from drawing very general conclusions, and that some irregular
behavior in the dynamics is possible. Figure 10 illustrates the influence of h on the
shape of the input X; when h is close to 0 (plastic impacts), then the overall system
(and consequentlyX ) behaves much more nicely (less impacts) than when h is closer
to 1. From Figures 6 and 7, we see that, as -

"
decreases, thenF4 decreases for the PD.

whereasF4 remains constant for the PD input (recall that the values of the vertical axis
have to be multiplied by 4

-5
, i.e. the vertical scale of Figure 7 has to be multiplied by

43�7 to be compared with Figure 6).

� Sensitivity with respect to h: In Figure 9 we illustrate the sensitivity of the motion
with respect to variations on h, as Figures 6(C), 8(B) or 9(A) show. The peak around
h @ 3=; in Figure 9(A) can be explained from the phase plane orbits in Figures 9(B)
and (C) (Figure 9(C) is a zoom of Figure 9(B)). Indeed, we see that changing h from 0.8
to 0.85 (i.e. 9=58() modifies significantly the orbits of the system, and consequently
modifies the values of the criteria F4 and F5. This again is an illustration of the high
nonlinearities of the system in equation (2).

� Importance of X in F4: From Figures 6(A)ï(D), 7(A)ï(D) and 8(A)ï(D), it is clear
that the contribution ofX 5 in the criterion F4 is larger with respect to the contribution
of the tracking error squares. This is the case for both the PD and the PD. controls.

� Influence of h on the number of impacts: The results of Figure 10 prove that such
impacting systems behave better when h is close to 0, than when h increases, since the
number of impacts decreases significantly as h decreases (the jumps in X correspond
to shocks). This also shows that the increasing values of F4 and F5 in Figures 6(A), 7
and 8, are due to the increasing number of impacts in the system. However, depending
on � and -

"
, this may be contradicted (see Figures 6(C) and 9(A)).

� Tracking capabilities of the PD. control: From Figures 6(B) and (D), and 7(C) and
(D), it is clear that the action of the discrete control when the motion reverses, dras-
tically improves the tracking performance of the PD control (at least when all the
parameters are known).

� Conclusions: The PD. input improves the tracking performance of the PD input, and
presents interesting robustness properties with respect to uncertainties on h. However,
this is at the price of a generally larger control magnitude. These numerical results only
aim at showing some typical tendencies of the closed-loop behavior, for some values
of the parameters � and -

"
. They also show that, as expected, the non-smooth model

is quite nonlinear and results may be quite sensitive to small variations of physical
or control parameters. This, however, reflects the physical behavior of such systems
which require specific tools for their analysis and control. An interesting conclusion
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is also that plastic impact (h @ 3) generally facilitates the control of an impacting pair;
because it dissipates more energy and decreases the number of impacts involved in the
closed-loop system.

We have normalized the dynamical equations as follows: [ @ Y
-
, � @ U

5
. The simulations

were realized in the normalized system. In other words, the presented graphs in Figures 6ï10
can be read for any couple +O> D,.

Remark 5. (Neglected dynamics) It is noticeable that the introduction of viscous friction
terms (	 i +b{4 � b{5,, in equation (2) allows us to put the free-motion dynamics into a triangular
form. However, specific techniques such as backstepping do not seem promising because they
do not simplify the dynamics of the primary mass during backlash phases. A more promising path
consists of applying a simple control X (like those above), then deducing bt5+w, on backlash phases
and introducing this function of time into the primary mass dynamics. Then, integration of these
dynamics is possible to obtain t4+w, and bt4+w, as explicit functions of time, and the analysis can
be recast into the framework developed in this paper.

5. CONCLUSIONS

In this paper, the control of mechanical systems with backlash has been attacked via the study
of the so-called impact damper. Despite its apparent simplicity, this system incorporates most
of the basic dynamical effects encountered in such non-smooth hybrid dynamical systems.
This system belongs to the class of complementary-slackness mechanical systems (Brogliato,
1999; LÛtstedt, 1982). We have first studied the closed-loop behavior of PD controls, and then
of a nonlinear switching scheme. The proposed hybrid control strategy is a simple feedback
controller that enables us to bring the primarymass from one point of its state space to another.
It can be used in conjunction with a PD control to improve its tracking capabilities. It finds
potential applications in:

(i) enlarging the basin of attraction and accelerating the convergence rate of locally stable
orbits with PD controls;

(ii) tracking a pre-specified sequence of states defined at impact times;
(iii) controlling the change of direction of motion to track certain time-varying orbits in

order to keep both masses stuck together during the phases with constant velocity.

It is notable that item (iii) allows us to derive controllers which are close in spirit to
those in Tao and Kokotovic (1995), i.e. keeping the two masses stuck together despite a
possible change of direction in the motion. However, the consideration of dynamical and
impact effects renders the analysis quite different from those based on a hysteresis model.

The robustness issues are particularly important. Some numerical results show that the
hybrid PD. controller presents reasonable robustness properties with respect to uncertainties
on the restitution coefficient h. Some applications carried out elsewhere (Fanuc, 1994;
Chalhoub and Zhang, 1996) prove that it is quite possible in practice to detect the backlash
phases and apply some switching strategies depending on the variation of the system topology.
Future research will focus first on the experimental validation of the various results presented
in this paper. Then, it would be of interest to study the extension of the hybrid control to
nonlinear kinematic chains using nonlinear control schemes in conjunctionwith the piecewise
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constant input, and on the study of the relationships between viability, reachable spaces in
p impacts and robustness. In practice, such control strategy may be coupled with an on-
line estimation software (Podsedkowski, 1997) to update the clearance parameters when the
PD. performance decreases below some threshold. Also, the control of liquid slosh in fuel
tanks (Ibrahim and Sayad, 1998; Pilipchuk and Ibrahim, 1997; Hung and Pan, 1996) deserves
attention.

APPENDIX A.

VIABILITY CONDITIONS FOR THE TARGETING CONTROL

The design of the controls has been made without regarding the viability conditions. Because
the controllers are obtained only addressing the discrete state of the collision, they do not
yield the complete trajectory for arbitrary times between two consecutive collisions. In
particular, it is possible that certain solutions induced by the control result in a relative
displacement violating the physical restrictions k+t, � 3. In this appendix, we give the
criterion to eliminate non-viable inputs. Suppose that the limit of the viability conditions can
be represented in the compact form

S+[+w.L ,> XL >�
�
L , @ 3 (60)

where ��
L is the desired flight-time programmed in the controller. Note that the structure of

equation (60) depends on the used control. In general, the resolution of equation (60) is not
single valued, given certain initial conditions and control. However, it is possible to use the
physical significance of the time�L to disambiguate the multiple solutions. Indeed,�L can
be obtained by finding the minimal time satisfying the condition in equation (60), i.e.

�L @ lqii� A 3mS+[+w.L ,> XL >�, @ 3j= (61)

The controller is viable if�L @ ��
L and is not if�L ? ��

L .

The initial constraint is {� � {2 @ O

Applying this criterion to the constant input �L , we find after some lengthy calculations the
following results that allow us to calculate the interval�QI4 in equation (51):
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(63)
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The initial constraint is {� � {2 @ �O
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{4+wQ,� {5+wQ, @
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= (65)

The same type of expressions can be obtained for�L in equation (52). When �L $ 3, it
is clear from equation (52) that the expressions are even equal.

APPENDIX B.

PROOF OF LEMMA 3

The analysis of the system for a very particular condition �L $ 3 is used to demonstrate that
the proposed strategy of control is global in this case, i.e. all controls are viable whatever
the initial and final states. Let us make the following assumptions: it is possible to use
ideal impulsions (i.e. the velocity of p5 can be changed instantaneously without modifying
its position); it is possible to make wJ as small as desired; all the physical parameters of the
system are known and the states are measurable. In order to simplify the notation, we define
the initial conditions as�

{4+wL , @ {��4 > {5+wL , @ {��5 > |4+w
.
L , @ |��4 > |5+w

.
L , @ |��5

�
= (66)

Given that we have supposed that the first impact occurs in the first constraint, the next
physical conditions have to be satisfied:

{��4 � {��5 @ O> |��4 � |��5 ? 3= (67)

In addition let us assure that |��4 ? 3. The second condition in equation (67) of non-
penetration is expressed in terms of the relative velocity between the masses. The desired
target state is given by�

{4+wL.5 , @ {�4> {5+wL.5 , @ {�5> |4+w
.
L.5 , @ |�4> |5+w

.
L.5 , @ |�5

�
(68)

with

{�4 � {�5 @ O> |�4 � |�5 ? 3 (69)

For the first step, the target is determined by the conditions�
{4+wL.4 , @ {.4 > {5+wL.4 , @ {.5 > |4+w

.
L.4 , @ |.4 @ �|�4> |5+w.L.4 , @ |.5

�
(70)

with

{.4 � {.5 @ �O> |.4 � |.5 A 3 (71)
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For this particular case, the dynamic equations describing the system between two
consecutive collisions are given by

{4+wL.4 , @ {4+wL , . |4+w
.
L ,�L

|4+w
�
L.4 , @ |4+w

.
L ,
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L ,�L .

�L

5
�5

L

|5+w
�
L.4 , @ |5+w

.
L , . �L�L (72)

It is important to note that the equation describing the system evolution depends only
on the constant control between impacts. For the first phase in the limit when �L $ 3, the
control inputs from equation (48) are given by
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|��4
= (73)

We remark that sL has a finite limit, hence there will be no penetration. The necessary
condition to have the impact in the desired constraint is given by the inequality (see
Appendix 5, equations (62)ï(65)):

�L @
5+{.5 � {��5 � |��5 ��L ,

+��L ,5
� �+ |��4 � |��5 ,5

7O
= (74)

Introducing equation (74) into the expression for �L equal to that in equation (62) we
can obtain

��
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�7O
+ |��4 � |��5 ,

= (75)

Proceeding similarly for +wL.4 > wL.5 , from equation (50) we obtain
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and similarly to equations (74) and (75)
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The condition in equation (74) can be expressed in terms of {.4 as

{.4 � {��4
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� �7O
+ |��4 � |��5 ,

(79)

i.e.

{.4 � {��4 � 7O|��4
|��4 � |��5

if |��4 A 3

{.4 � {��4 � 7O|��4
|��4 � |��5

if |��4 ? 3= (80)

Similarly, equation (78) can be expressed as

{�4 � {.4
|.4

� 7O

+ |.4 � |.5 ,
= (81)

The velocities in the intermediate state are given by
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|��4 (82)

so that, introducing equations (82) and (82) into equation (81), we obtain

{.4 � {�4 .
7O|�4

#+ |�4 . |��4 ,
(83)

where # @ F+4.v ,
4.F

. Then, if we want to have a solution for |��4 ? 3, the conditions
in equations (80) and (83) must be simultaneously satisfied. This is verified through the
following expression:

{.4 � pd{

�
{��4 � 7O|��4

|��4 � |��5
> {�4 .

7O|�4
#+ |�4 . |��4 ,

�
= (84)

Remark 6. If �L @ 3, then the closed-loop system is not well posed, because applying
an impulsive input at an impact time requires much care (Brogliato, 1999). Therefore, this
analysis should be limited to �L $ 3, and only points out how the control viability can be
analyzed in a particular case.
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APPENDIX C.

STABILITY CONDITIONS

The characteristic polynomial can be divided as

k6]
6 . k5]

5 . k4]. k3 @
�
m6�

6 . m5�
5 . m4� . m3

� �
m6�

6 � m5�
5 . m4� � m3

�
(85)

where ] @ � 5 and the coefficients m6, m5, m4 and m3 are given by

m6 @ 6

m5 @ 5J+5� J. h,� 6

m4 @ 5J+4� J. 5h,� 6h5

m3 @ 6h5= (86)

It is easy to see that m]m ? 4 implies m� m ? 4. Thus, we can apply the Jury criterion to
the equation m6�6. m5�

5. m4� . m3 in order to obtain the conditions for stability. After some
calculations, we have the following stability conditions

M 3D @ 6 A 3 (87)

M 4D @ 6+4� h7, A 3 (88)

M 5D @ M 5.D M 5�D A 3 (89)

M 6D @ M 6.D M 6�D A 3 (90)

where

M 5.D @ 6+4 . h. h5 . h6, . 5+5h. h5,J. 5+4 . h,+4�J,J

M 5�D @ 5J 5 . h5 . 6h6 . 5h+4� J,5 . +5 . h. 5h5,+4� J, . +4� hJ,

M 6.D @ +4� J,^7+4 . 6h. 5h5 . 6h6, . 43h5+4� J, . J5 . 6+4 . 5h,+4� J,5`

. J+4 . 5hJ5 . 9hJ, . 6h6+5 . 6h, . 5+4� h5J,

M 6�D @ <h6+4 . h, .J5++5h5 . 6h,+4 . J, . 5, . h+4� hJ, . 7+4� h5J,

+4� J,^+5 . 8h. 5h5,+4�J,5 . 6+4 . 7h. 8h5 . 6h6, . h5`= (91)

From the above equations, we observe that if the viability condition in equation (19) is
satisfied (which implies 3 ? J � 4) and 3 ? h ? 4 then the conditions in equations (87)ï
(90) are always verified.

NOTES

�� In the following, we suppose that h is constant. However, we could use a more complex expression

without calling into question the proposed analysis validity. Also sE|n� ' *�4�<|c�:| sE�� and

sE|3� ' *�4�<|c�	| sE��.

�� The calculations are given in Appendix 5.
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