
DOI: 10.1007/s00498-004-0145-0
Springer-Verlag London Ltd. © 2004
Math. Control Signals Systems (2005) 17: 57–76

The Krakovskii-LaSalle Invariance Principle for a Class of
Unilateral Dynamical Systems∗

Bernard Brogliato† and Daniel Goeleven‡

Abstract. This paper is devoted to the study of the extension of the invariance
lemma to a class of hybrid dynamical systems, namely evolution variational inequal-
ities. Applications can be found in models of electrical circuits with ideal diodes or
oligopolistic market equilibrium.
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1. Introduction

Recent research in systems and control saw an unprecedented rise in the analy-
sis and control of hybrid dynamical systems [1]–[5]. Stability issues are of utmost
importance for this class of complex systems [9]–[12], [15], [18], [19], [27]–[30], [35].
Due to the high complexity and intricacy of the dynamics of hybrid systems, it is
almost necessary to focus on specific subclasses. Complementarity systems consti-
tute a subclass which has a particular interest since it has a strong structure and is
at the same time rich in terms of potential applications [12]–[14], [18]–[22]. Roughly
speaking, complementarity dynamical systems are made of a continuous dynamical
system, coupled to a set of algebraic relations that involve complementarity con-
ditions between two variables, one of which is a Lagrange multiplier. As we shall
briefly see below, such systems are related to evolution variational inequalities and
to differential inclusions. They can also be seen as a sort of nonsmooth differential-
algebraic system [12]. All these different formalisms are a consequence of convex
analysis and complementarity theory. It is the framework of evolution variational
inequalities that will be chosen here.
The extension of Lyapunov stability and of Lyapunov’s second method for hybrid
systems has been studied by various authors. As already known, the stability of
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unilaterally constrained systems can differ a lot from that of unconstrained systems,
see e.g., [35, example 3.2], [9]. Therefore the development of suitable stability tools
is necessary for such nonsmooth systems. Since it is, in general, difficult to get a
negative definite derivative of a considered Lyapunov function, the Krakovskii–
LaSalle invariance lemma is a widely used result for asymptotic stability [25], [33],
[34]. It is well known that unilaterally constrained systems may have solutions which
are discontinuous in the initial conditions [20], [24]. Consequently, the extension of
the invariance lemma to hybrid systems requires attention [29], [31], [32], and the
same applies to the systems considered in this paper.

Let us deal with the following class of dynamical systems:
Let K ⊂ R

n be a nonempty closed convex set. Let F : R
n → R

n be a nonlinear
operator. For (t0, x0) ∈ R ×K, we consider the problem P(t0, x0): Find a function
t → x(t) (t ≥ t0) with x ∈ C0([t0,+∞); R

n), (dx/dt) ∈ L∞
loc(t0,+∞; R

n) and such
that:






x(t) ∈ K, t ≥ t0,

〈 dx
dt
(t)+ F(x(t)), v − x(t)〉 ≥ 0, ∀v ∈ K, a.e. t ≥ t0,

x(t0) = x0.

(1)

Here 〈., .〉 denotes the euclidean scalar product in R
n. The system in (1) is an evo-

lution variational inequality which we denote as LEVI(A,K) when F ≡ A, with
A ∈ R

n×n denoting a real matrix. It follows from standard convex analysis that (1)
can be rewritten equivalently as the differential inclusion

{
dx
dt
(t)+ F(x(t)) ∈ −NK(x(t)),

x(·) ∈ K, (2)

where NK(x(t)) = {s ∈ R
n : 〈s, v − x(t)〉 ≤ 0, ∀ v ∈ K} is the normal cone to K at

x(t) [23]. In caseK = {x ∈ R
n : Cx+ d ≥ 0} for some matrix C ∈ R

m×n and vector
d ∈ R

m, we can rewrite (1) as
{
dx
dt
(t)+ F(x(t)) = CTλ,

0 ≤ y = Cx + d ⊥ λ ≥ 0,
(3)

where λ ∈ R
m is a Lagrange multiplier, and the second line of (3) means that

both y and λ have to be nonnegative and orthogonal. These conditions are called
complementarity conditions. Let us note that such models are used to represent the
dynamics of various systems like oligopolistic markets, spatial price, elastic demand
traffic [35], and some electrical circuits with ideal diodes [19], [10].

Remark 1. It is noteworthy that the boundary of the setK may possess an infinity
of corners. Consequently, it may not be suitable for a description of (1) as in (3).
The results of this paper continue to hold even in this case. More generally, the rela-
tionships between various formalisms which are used in the literature (variational
inequalities [15], Filippov’s differential inclusions [29], Moreau’s sweeping process
[37], complementarity systems [19], [20], hybrid systems [32], piecewise-linear sys-
tems [31], etc.) need to be investigated further. However, this is outside the topic of
this paper.
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Remark 2. The convention adopted in (1) to write the vector field F(x) is not
the usual one in systems and control theory, but is the standard one in variational
inequality theory [8], [7], [15]. It is adopted in this paper. Consequently, the sign
conditions on the Lyapunov functions derivatives, will be reversed compared to the
usual convention.

The paper is organised as follows: in Section 2, some results on existence, unique-
ness, continuous dependance, and stability of solutions are given. Section 3 is de-
voted to prove the invariance theorem in a general setting. Section 4 applies the
previous results to linear evolution variational inequalities, and section 5 deals with
nonlinear evolution variational inequalities. In Section 6, an example is presented,
and conclusions end the paper in Section 7.

Notations: f ′(x) is the gradient of the function f (·) at x, S̄ denotes the closure of
the set S and W 1,1(I,Rn) denotes the Sobolev space of L1−functions defined on I
with argument in R

n.

2. Background and Preliminaries

Let us first specify some conditions ensuring the existence and uniqueness of the
initial value problem P(t0, x0). The following existence and uniqueness result is a
direct consequence of [15, corollary 2.2].

Assumption 1. K is a nonempty closed convex subset. The operator F : R
n → R

n is
a continuous operator such that for some ω ≥ 0, F + ωI is monotone.

Theorem 1. Let assumption 1 be satisfied. Let t0 ∈ R and x0 ∈ K be given. Then,
there exists a unique x ∈ C0([t0,+∞); R

n) such that

dx

dt
∈ L∞

loc(t0,+∞; R
n), (4)

x is right-differentiable on [t0,+∞), (5)
x(t0) = x0, (6)

x(t) ∈ K, t ≥ t0, (7)

〈dx
dt
(t)+ F(x(t)), v − x(t)〉 ≥ 0, ∀v ∈ K, a.e. t ≥ t0. (8)

Remark 3. Suppose that F : R
n → R

n can be written as

F(x) = Ax +�′(x)+ F1(x), ∀x ∈ R
n,

where A ∈ R
n×n is a real matrix, � ∈ C1(Rn; R) is convex and F1 is Lipschitz

continuous, i.e.,

‖F1(x)− F1(y)‖ ≤ k‖x − y‖,∀x, y ∈ R
n,

for some constant k > 0. Then, F is continuous and F +ωI is monotone provided
that ω ≥ 0 is chosen great enough, i.e.

ω ≥ sup
‖x‖=1

〈−Ax, x〉 + k.
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For instance F(x) = −2x+ 4x3 + cos(x) satisfies the requirements withA = −2,
�(x) = x4, F1(·) = cos(·).
Let us recall that an operator F(·) from R

n to R
n is monotone if 〈w−w′, x−x′〉 ≥ 0

for all couples (w, x) and (w′, x′) that belong to its graph. Suppose that the assump-
tion 1 is satisfied and denote by x(.; t0, x0) the unique solution of Problem P(t0, x0).
We prove below that for t ≥ t0 fixed, the function x(t; t0, .) is continuous on K.

Theorem 2 (Continuity in the initial conditions). Suppose that the assumption 1
holds. Let t ≥ t0 be fixed. The function

x(t; t0, .) : K → R
n; x0 → x(t; t0, x0)

is continuous.

Proof. Let x0 ∈ K be given and let {x0,i} ⊂ K such that x0,i → x0 in R
n. Let us

here set x(t) := x(t; t0, x0) and xi(t) := x(t; t0, x0,i ). We know that

〈dx
dt
(t)+ F(x(t)), v − x(t)〉 ≥ 0, ∀v ∈ K, a.e. t ≥ t0 (9)

and

〈dxi
dt
(t)+ F(xi(t)), z− xi(t)〉 ≥ 0, ∀z ∈ K, a.e. t ≥ t0. (10)

Setting v = xi(t) in (9) and z = x(t) in (10), we obtain the relations:

−〈dx
dt
(t)+ F(x(t)), xi(t)− x(t)〉 ≤ 0, a.e. t ≥ t0 (11)

and

〈dxi
dt
(t)+ F(xi(t)), xi(t)− x(t)〉 ≤ 0, a.e. t ≥ t0. (12)

It results that

〈 d
dt
(xi − x)(t), xi(t)− x(t)〉 ≤ ω‖xi(t)− x(t)‖2

−〈[F + ωI ](xi(t))− [F + ωI ](x(t)), xi(t)− x(t)〉, a.e. t ≥ t0.

Our hypothesis ensure that F + ωI is monotone. It results that

d

dt
‖xi(t)− x(t)‖2 ≤ 2ω‖xi(t)− x(t)‖2, a.e. t ≥ t0. (13)

Using some Gronwall inequality (see e.g., Lemma 4.1 in [6]), we get

‖xi(t)− x(t)‖2 ≤ ‖x0,i − x0‖2e2ω(t−t0), ∀t ≥ t0. (14)

It follows that for t ≥ t0 fixed, x(t; t0, x0,i ) → x(t; t0, x0) as i → ∞.

A similar result has been presented in [35, Theorem 2.9] in the framework of pro-
jected dynamical systems. However, the proof of Theorem 2 differs considerably.
Suppose now in addition to assumption 1 that 0 ∈ K and the following holds
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Assumption 2.

〈F(0), h〉 ≥ 0, ∀h ∈ K. (15)

Then
x(t; t0, 0) = 0, ∀t ≥ t0,

i.e., the trivial stationary solution 0 is the unique solution of problem P(t0, 0).
We may now define the stability of the trivial solution as in [15]. The stationary

solution 0 is called stable if small perturbations of the initial condition x(t0) = 0
lead to solutions which remain in the neighborhood of 0 for all t ≥ t0, precisely:

Definition 1. The equilibrium point x = 0 is said to be stable in the sense of Lyapu-
nov if for every ε > 0 there exists η = η(ε) > 0 such that for any x0 ∈ K with ‖x0‖ ≤
η, the solution x(·; t0, x0) of problem P(t0, x0) satisfies ‖x(t; t0, x0)‖ ≤ ε, ∀t ≥ t0.

If in addition, the trajectories of the perturbed solutions are attracted by 0, then we
say that the stationary solution is asymptotically stable, precisely:

Definition 2. The equilibrium point x = 0 is asymptotically stable if it is stable, and
there exists δ > 0 such that for any x0 ∈ K with ‖x0‖ ≤ δ, the solution x(·; t0, x0)

of problem P(t0, x0) fulfills

lim
t→+∞ ‖x(t; t0, x0)‖ = 0.

Let us now recall general abstract theorems of stability and asymptotic stability in
terms of generalized Lyapunov functions V ∈ C1(Rn; R). The following results are
particular cases of those proved in [15].

Theorem 3. Suppose that the assumptions 1 and 2 hold. Suppose that there exists
σ > 0 and V ∈ C1(Rn; R) such that

(1)
V (x) ≥ a(‖x‖), x ∈ K, ‖x‖ ≤ σ,

with a : [0, σ ] → R satisfying a(t) > 0, ∀t ∈ (0, σ ); [resp. a(t) ≥ ctτ ,
∀t ∈ [0, σ ], for some constants c > 0, τ > 0];

(2) V (0) = 0;
(3) x − V ′(x) ∈ K, for all x ∈ ∂K, ‖x‖ ≤ σ ;
(4) 〈F(x), V ′(x)〉 ≥ 0, [〈F(x), V ′(x)〉 ≥ λV (x)] for all x ∈ K, ‖x‖ ≤ σ .

Then, the trivial solution of (7)–(8) is stable [resp. asymptotically stable].

Assumption (3) implies that −V ′(x) ∈ TK(x) for all x ∈ ∂K, ||x|| ≤ σ , where
TK(x) is the tangent cone to K at x [23, Prop. 5.2.1]. Assumptions (3) and (4) are
illustrated on Fig. 1, where the ellipsoid stands for some level set of the Lyapunov
function.

Let us here denote by S the set of stationary solutions of (7)–(8), that is,

S := {z ∈ K : 〈F(z), v − z〉 ≥ 0,∀v ∈ K}.
Condition (15) ensures that 0 ∈ S.

Let us now remark that some conditions for asymptotic stability invoked in
Theorem 3 ensure that the trivial stationary solution of (7)–(8) is isolated in S.
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Fig. 1. Conditions on the Lyapunov function.

Proposition 1. Suppose that the assumptions 1 and 2 hold. Suppose that there exists
σ > 0 and V ∈ C1(Rn; R) such that

(1) x − V ′(x) ∈ K, for all x ∈ ∂K, ‖x‖ ≤ σ ;
(2) 〈F(x), V ′(x)〉 ≥ 0, for all x ∈ K, ‖x‖ ≤ σ ;
(3) E := {x ∈ K, ‖x‖ ≤ σ : 〈F(x), V ′(x)〉 = 0} = {0}.

Then, the trivial stationary solution of (7)–(8) is isolated in S. If the same conditions
hold with σ = +∞, then S = {0}, i.e., the trivial stationary solution of (7)–(8) is the
unique stationary solution of (7)–(8).

Proof. Let 0 < δ ≤ σ be given and let Bδ := {x ∈ R
n : ‖x‖ ≤ δ}. We claim that

Bδ ∩ S = {0}. Indeed, let z ∈ Bδ ∩ S be given. We have z ∈ K and

〈F(z), v − z〉 ≥ 0, ∀v ∈ K. (16)

We claim that
〈F(z), V ′(z)〉 ≤ 0.

Indeed, if z ∈ ∂K, then z − V ′(z) ∈ K and thus setting v = z − V ′(z) in (16), we
get 〈F(z), V ′(z)〉 ≤ 0. If z ∈ int{K}, then there exists ε > 0 such that z − εV ′(z) ∈
K, and thus setting v = z − εV ′(z) in (16), we obtain ε〈F(z), V ′(z)〉 ≤ 0. Thus,
〈F(z), V ′(z)〉 ≤ 0 since ε > 0.
Now using assumption (2), we obtain

〈F(z), V ′(z)〉 = 0.

Finally, assumption (3) yields z = 0. The last part of the proposition can be proved
by following the same argument.

Note that condition (4) for asymptotic stability in Theorem 3 yields conditions (2)
and (3) in Proposition 1. It results that the assumptions for asymptotic stability
done in Theorem 3 ensure that the trivial solution of (7)–(8) is isolated in S.



The Krakovskii-LaSalle Invariance Principle for a Class of Unilateral Dynamical Systems 63

3. The Invariance Theorem

Suppose that assumption 1 holds. For x0 ∈ K, we denote by γ (x0) the orbit

γ (x0) := {x(τ ; t0, x0); τ ≥ t0}
and by �(x0) the limit set

�(x0) := {z ∈ R
n : ∃{τi} ⊂ [t0,+∞); τi → +∞ and x(τi; t0, x0) → z}.

We say that a set D ⊂ K is invariant provided that

x0 ∈ D ⇒ γ (x0) ⊂ D.
Theorem 4 (Invariance Theorem). Suppose that the assumption 1 holds. Let� ⊂ R

n

be a compact set and V ∈ C1(Rn; R) a function such that

(1) x − V ′(x) ∈ K, for all x ∈ ∂K ∩�,
(2) 〈F(x), V ′(x)〉 ≥ 0, for all x ∈ K ∩�.

We set
E := {x ∈ K ∩� : 〈F(x), V ′(x)〉 = 0}

and denote the largest invariant subset of E by M. Then, for each x0 ∈ K such that
γ (x0) ⊂ �, we have

lim
τ→+∞ d(x(τ ; t0, x0),M) = 0.

Proof. 1) Let us first remark that for x0 given in K, the set �(x0) is invariant.
Indeed, let z ∈ �(x0) be given. There exists {τi} ⊂ [t0,+∞) such that τi →
+∞ and x(τi; t0, x0) → z. Let τ ≥ t0 be given. Using Theorem 2, we obtain
x(τ ; t0, z) = limi→∞ x(τ ; t0, x(τi; t0, x0)). Then, remarking from the uniqueness
property of solutions that x(τ ; t0, x(τi; t0, x0)) = x(τ − t0 + τi; t0, x0), we get
x(τ ; t0, z) = limi→∞ x(τ − t0 +τi; t0, x0). Thus, settingwi := τ − t0 +τi , we see that
wi ≥ t0,wi → +∞ and x(wi; t0, x0) → x(τ ; t0, z). It results that x(τ ; t0, z) ∈ �(x0).

2) Let x0 ∈ K such that γ (x0) ⊂ �. We claim that there exists a constant k ∈ R

such that
V (x) = k, ∀x ∈ �(x0).

Indeed, let T > 0 be given. We define the mapping V ∗ : [t0; +∞) → R by the
formula

V ∗(t) := V (x(t; t0, x0));
The function x(.) ≡ x(.; t0, x0) is absolutely continuous on [t0, t0 + T ], and thus V ∗
is a.e. strongly differentiable on [t0, t0 + T ]. We have

dV ∗

dt
(t) = 〈V ′(x(t)),

dx

dt
(t)〉, a.e. t ∈ [t0, t0 + T ].

We know by assumption that

x(t) ∈ K ∩�,∀t ≥ t0,
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and

〈dx
dt
(t)+ F(x(t)), v − x(t)〉 ≥ 0, ∀v ∈ K, a.e. t ≥ t0. (17)

We claim that

〈dx
dt
(t), V ′(x(t))〉 ≤ 0, a.e. t ≥ t0.

Indeed, if x(t) ∈ ∂K then by assumption, x(t) − V ′(x(t)) ∈ K and setting v =
x(t)− V ′(x(t)) in (17), we obtain

〈dx
dt
(t), V ′(x(t))〉 ≤ −〈F(x(t)), V ′(x(t))〉 ≤ 0, a.e. t ≥ t0. (18)

If x(t) ∈ int{K}, then there exists ε > 0 such that x(t) − εV ′(x(t)) ∈ K. Setting
v = x(t)− εV ′(x(t)) in (17), we obtain

ε〈dx
dt
(t), V ′(x(t))〉 ≤ −ε〈F(x(t)), V ′(x(t))〉 ≤ 0, a.e. t ≥ t0 (19)

and thus

〈dx
dt
(t), V ′(x(t))〉 ≤ 0, a.e. t ≥ t0. (20)

Thus,
dV ∗

dt
(t) ≤ 0, a.e. t ∈ [t0, t0 + T ].

We know that x ∈ C0([t0, t0 +T ]; R
n), dx

dt
∈ L∞(t0, t0 +T ; R

n) and V ∈ C1(Rn; R).
It follows that V ∗ ∈ W 1,1(t0, t0 +T ; R

n) and applying Lemma 3.1 in [15], we obtain
that V ∗ is decreasing on [t0, t0 +T ]. The real T has been chosen arbitrarily and thus
V ∗ is decreasing on [t0,+∞). Moreover,� is compact and thus V ∗ is bounded from
below on [t0,+∞). It results that

lim
τ→+∞V (x(τ ; t0, x0)) = k,

for some k ∈ R.
Let y ∈ �(x0) be given. There exists {τi} ⊂ [t0,+∞) such that τi → +∞ and

x(τi; t0, x0) → y. By continuity,

lim
i→+∞

V (x(τi; t0, x0)) = V (y).

Therefore, V (y) = k. Here, y has been chosen arbitrarily in �(x0) and thus

V (y) = k, ∀y ∈ �(x0).

3) The set γ (x0) is bounded and thus �(x0) is nonempty and

lim
τ→+∞ d(x(τ ; t0, x0),�(x0)) = 0.
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Let us now check that �(x0) ⊂ E. We first note that

�(x0) ⊂ γ (x0) ⊂ K ∩� = K ∩�.
We know from part (2) of this proof that there exists k ∈ R such that V (x) =
k,∀x ∈ �(x0). Let z ∈ �(x0) be given. Using Part (1) of this proof, we see that
x(t; t0, z) ∈ �(x0),∀t ≥ t0 and thus

V (x(t; t0, z)) = k, ∀t ≥ t0.

It results that

d

dt
V (x(t; t0, z)) = 0, a.e. t ≥ t0. (21)

Setting x(.) ≡ x(.; t0, z), we check as above that

〈V ′(x(t)),
dx

dt
(t)〉 ≤ −〈F(x(t)), V ′(x(t))〉, a.e. t ≥ t0. (22)

Assumption (2) together with (21) and (22) yields

〈F(x(t)), V ′(x(t))〉 = 0, a.e. t ≥ t0.

The mapping t → 〈F(x(t; t0, z)), V ′(x(t; t0, z))〉 is continuous and thus taking the
limit as t → t0, we obtain 〈F(z), V ′(z)〉 = 0. It results that z ∈ E.

Finally, �(x0) ⊂ M since �(x0) ⊂ E and �(x0) is invariant.

Corollary 1. Suppose that the assumption 1 holds. Let V ∈ C1(Rn; R) be a function
such that

(1) x − V ′(x) ∈ K, for all x ∈ ∂K.
(2) 〈F(x), V ′(x)〉 ≥ 0, for all x ∈ K.
(3) V (x) → +∞ as ‖x‖ → +∞, x ∈ K.

We set
E := {x ∈ K : 〈F(x), V ′(x)〉 = 0},

and let M be the largest invariant subset of E. Then, for each x0 ∈ K, the orbit γ (x0)

is bounded and
lim

τ→+∞ d(x(τ ; t0, x0),M) = 0.

Proof. Let x0 ∈ K be given. We set

� := {x ∈ K : V (x) ≤ V (x0)}.
The set � is closed. Assumption (3) ensures that � is bounded and thus � is com-
pact. If τ ≥ t0, then x(τ ; t0, x0) ∈ K, and as in the proof of Theorem 4, we check
that the mapping t → V (x(t; t0, x0)) is decreasing on [t0,+∞). Thus,

V (x(τ ; t0, x0)) ≤ V (x(t0; t0, x0)) = V (x0)

and thus
γ (x0) ⊂ �.
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It results that γ (x0) is bounded. From Theorem 4, we obtain

lim
τ→+∞ d(x(τ ; t0, x0),M′) = 0,

where M′ is the largest invariant subset of � ∩E. It is clear that M′ ⊂ M and the
conclusion follows.

Example 1. Let us consider problem P(t0, x0) with F(.) = A., where

A =
(

0 −1
k h

)

, k > 0, h > 0,

and K = {(x1, x2) ∈ R
2 : x1 ≥ 0}. We set

V (x1, x2) = 1
k
(
1
2
kx2

1 + 1
2
x2

2 ).

We check that both assumptions of Corollary 1 are satisfied. Indeed, V ′(x1, x2) =
1
k
(kx1 x2)

T and 〈Ax, V ′(x)〉 = h
k
x2

2 . It is clear that assumptions 2 and 3 are sat-
isfied. Moreover, x − V ′(x) = (0, k−1

k
x2) ∈ K. Here E = {(x1, 0); x1 ≥ 0}. Let

z = (z1 0)T ∈ E be given. We claim that if γ (z) ⊂ E, then necessarily z1 = 0.
Indeed, suppose that γ (z) ⊂ E and set x(.) := x(., t0, x0). From the dynamics in E
we have

−x1(t)ẋ1(t) ∈ NR+(x1(t)), a.e. t ≥ t0

since x1 ≥ 0 and the right-hand-side is a cone, and

kx1(t)v2 ≥ 0,∀v2 ∈ R, a.e. t ≥ t0.

From the first relation, we obtain d
dt
x2

1 (t) = 0, a.e. t ≥ t0 from which it easily
follows that x1(t) = z1 a.e. t ≥ t0. The second relation then gives z1 = 0. There-
fore, M = {0} is the largest invariant subset of E, and for any x0 ∈ K, we have
limt→+∞ x(t; t0, x0) = 0.

Example 2. Let us consider a system as in example 1; however, this time we choose

the convex function �(x1, x2) = x4
2 , so that F(x) = Ax +

(
0

4x3
2

)

. Using the same

Lyapunov function, we get that 〈F(x), V ′(x1, x2)〉 = h
k
x2

2 + 4
k
x4

2 . Consequently,
E = {(x1, 0); x1 ≥ 0}. The same reasoning can be led as in example 1 to conclude
that corollary 1 applies with M = {0}.

Example 3. Let us finally consider A =
(

0 −1
k 0

)

, k > 0, �(x1, x2) = x4
1 , so that

F(x) = Ax +
(

4x3
1

0

)

. This time, still using the same Lyapunov function candi-

date, one gets 〈F(x), V ′(x1, x2)〉 = x4
1 . Therefore, E = {(0, x2); x2 ∈ R}. From the

dynamics in E, it follows that

−x2(t)(v1 − x1(t)) ≥ 0, ∀ v1 ≥ 0,
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and
ẋ2(t)(v2 − x2(t)) ≥ 0, ∀ v2 ∈ R.

From the first relation, we obtain that x2(t) ∈ NR+(0) = R
−, and from the second

relation ẋ2(t) ∈ −NR(x2) = {0}. Let z = (0, z2)
T ∈ E be given. From the second

relation, we obtain x2(t) = z2, a.e. t ≥ t0. From the first relation, we get z2 ≤ 0.
Therefore, M = {z| z1 = 0, and z2 ≤ 0} is the largest invariant subset of E and
Corollary 1 applies.

Remark 4. The conclusion of Corollary 1 holds true if condition (3) is replaced by
(3’) K is bounded.

Corollary 2. Suppose that assumptions 1 and 2 hold. Suppose that there exists V ∈
C1(Rn; R) such that

(1)
V (x) ≥ a(‖x‖), x ∈ K,

with a : R+ → R satisfying a(0) = 0, a increasing on R+;
(2) V (0) = 0;
(3) x − V ′(x) ∈ K, for all x ∈ ∂K;
(4) 〈F(x), V ′(x)〉 ≥ 0, for all x ∈ K;
(5) E := {x ∈ K : 〈F(x), V ′(x)〉 = 0} = {0}.

Then, the trivial solution of (7)–(8) is (a) the unique stationary solution of
(7)–(8), (b) asymptotically stable, and (c) globally attractive, i.e., for each x0 ∈ K,
limt→+∞ ‖x(t; t0, x0)‖ = 0.

Proof. Assertion (a) is a consequence of Proposition 1. The stability is a direct con-
sequence of Theorem 3. Moreover, we may apply Corollary 1 with M = {0} (since
E = {0}) to obtain that for any x0 ∈ K the limit

lim
τ→+∞ x(τ ; t0, x0) = 0

holds. Assertions (b) and (c) follow.

Corollary 3. Suppose that the assumptions 1 and 2 hold. Suppose that there exists
V ∈ C1(Rn; R) such that

(1)
V (x) ≥ a(‖x‖), x ∈ K,

with a : R+ → R satisfying a(0) = 0, a increasing on R+;
(2) V (0) = 0;
(3) x − V ′(x) ∈ K, for all x ∈ ∂K;
(4) 〈F(x), V ′(x)〉 ≥ 0, for all x ∈ K;
(5) z ∈ K, z �= 0 ⇒ γ (z) ∩ Ec �= ∅,

where Ec := R
n\E and E := {x ∈ K : 〈F(x), V ′(x)〉 = 0}. Then, the trivial solution

of (7)–(8) is (a) asymptotically stable, and (b) globally attractive.
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Proof. The stability is here also a direct consequence of Theorem 3. Moreover, we
may also apply Corollary 1 with M = {0} to conclude. Indeed, assumption (5)
entails that no solution can stay identically in E, other than the trivial solution.

Assumption (5) makes Corollary 3 quite similar to the original result by Krakov-
skii [33], [34]. The following result generalizes Theorem 3.

Corollary 4. Suppose that assumptions 1 and 2 hold. Suppose that there exists σ > 0
and V ∈ C1(Rn; R) such that

(1)
V (x) ≥ a(‖x‖), x ∈ K, ‖x‖ ≤ σ,

with a : [0, σ ] → R satisfying a(t) > 0, ∀t ∈ (0, σ );
(2) V (0) = 0;
(3) x − V ′(x) ∈ K, for all x ∈ ∂K, ‖x‖ ≤ σ ;
(4) 〈F(x), V ′(x)〉 ≥ 0, for all x ∈ K, ‖x‖ ≤ σ ;
(5) E := {x ∈ K, ‖x‖ ≤ σ : 〈F(x), V ′(x)〉 = 0} = {0}.

Then, the trivial solution of (7)–(8) is (a) isolated in S, and (b) asymptotically
stable.

Proof. Assertion (a) is a direct consequence of Proposition 1. The stability fol-
lows from Theorem 3; the stability ensures the existence of δ > 0 such that if
x0 ∈ K, ‖x‖ ≤ δ, then

γ (x0) ⊂ Bσ := {x ∈ R
n : ‖x‖ ≤ σ }.

Applying Theorem 4 with � = Bσ , we obtain for x0 ∈ K, ‖x‖ ≤ δ such that

lim
t→+∞ d(x(t; t0, x0),M) = 0,

where M is the largest invariant subset of E. It is clear that assumption (5) yields
M = {0}. The attractivity and assertion (b) follow.

4. Linear Evolution Variational Inequalities

LetK ⊂ R
n be a closed convex set such that 0 ∈ K. LetA ∈ R

n×n be a given matrix.
We consider Problem P(t0, x0) with F(·) ≡ A., i.e., : Find x ∈ C0([t0,∞); R

n) such
that dx

dt
∈ L∞

loc(t0,+∞; R
n) and

〈dx
dt
(t)+ Ax(t), v − x(t)〉 ≥ 0,∀v ∈ K, a.e. t ≥ t0, (23)

x(t) ∈ K, t ≥ t0, (24)

x(t0) = x0. (25)

The i-th canonical vector of R
n is denoted by ēi . For a matrix B ∈ R

n×n, we set

E(K,B) := {x ∈ K : 〈Bx, x〉 = 0} = ker{B + BT } ∩K.
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Theorem 5. Suppose that there exists a matrix G ∈ R
n×n such that

(1) infx∈K\{0} 〈Gx,x〉
‖x‖2 > 0,

(2) 〈Ax, [G+GT ]x〉 ≥ 0,∀x ∈ K,
(3) x ∈ ∂K ⇒ [I − [G+GT ]]x ∈ K,
(4) E(K, (G+GT )A) = {0}.
Then, the trivial solution of (23)–(24) is (a) the unique stationary solution of (23)–
(24), (b) asymptotically stable, and (c) globally attractive.

Proof. Let V ∈ C1(Rn; R) be defined by

V (x) = 1
2
〈[G+GT ]x, x〉. (26)

Then, V ′(x) = [G + GT ]x, and we see that all the assumptions of Corollary 2 are
satisfied. Indeed assumption (1) ensures the existence of a constant k > 0 such that
V (x) ≥ k ‖ x ‖2,∀x ∈ K. It is clear that V (0) = 0. Finally, from assumptions (2),
(3), and (4), we deduce that 〈Ax, V ′(x)〉 ≥ 0,∀x ∈ K, x ∈ ∂K ⇒ x − V ′(x) ∈ K

and E := {x ∈ K : 〈Ax, V ′(x)〉 = 0} = E(K, (G+GT )A) = {0}.
A matrix A ∈ R

n×n satisfying the conditions (1), (2), and (3) in Theorem 5 is
said to be “Lyapunov positive semi-stable on K”. This last concept has been intro-
duced and studied in [9]. Using the results in [9], we remark that the conclusions of
Theorem 5 hold for the following cases:

– A is positive definite.
– A is positive semi-definite and E(K,A) = {0}.
– A is strictly copositive onK (see [36, §2.3] for definition of copositive matrices).
– A is copositive on K and E(K,A) = {0}.
– K is a cone such that x ∈ ∂K ⇒ xi ēi ∈ K, and there exists a positive diagonal

matrix D such that DA is copositive on K and E(K,DA) = {0}.
– A is Lyapunov positive stable on K (see [9]).

5. Nonlinear Variational Inequalities

Let K ⊂ R
n be a closed convex set such that 0 ∈ K. Let F ∈ C1(Rn; R) be a

nonlinear mapping. We consider Problem P(t0, x0) : Find x ∈ C0([t0,∞); R
n) such

that dx
dt

∈ L∞
loc(t0,+∞; R

n) and

〈dx
dt
(t)+ F(x(t)), v − x(t)〉 ≥ 0,∀v ∈ K, a.e. t ≥ t0, (27)

x(t) ∈ K, t ≥ t0, (28)

x(t0) = x0. (29)

Theorem 6. Suppose that F ∈ C1(Rn; R) is Lipschitz continuous and F(0) = 0. Let
us here denote by JF (0) the Jacobian matrix of F at 0, i.e.,

JF (0) = (∂Fi

∂xj

)
.
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Suppose that there exists a matrix G ∈ R
n×n such that

(1) infx∈K\{0} 〈Gx,x〉
‖x‖2 > 0,

(2) infx∈K\{0} 〈JF (0)x,[G+GT ]x〉
‖x‖2 > 0,

(3) x ∈ ∂K ⇒ [I − [G+GT ]]x ∈ K.
Then, the trivial solution of (27)–(28) is (a) isolated, and (b) asymptotically stable.

Proof. From Taylor’s formula, we may write

F(x) = Ax + F1(x),

where A := JF (0) and F1 satisfies

lim
‖x‖→0

‖ F1(x) ‖
‖ x ‖ = 0 (30)

Moreover, F1 is Lipschitz continuous since F1(.) := F(.)−A., and F is assumed to
be Lipschitz continuous.

Our aim is to verify that all conditions of Corollary 4 are satisfied with V ∈
C1(Rn; R) defined by

V (x) = 1
2
〈[G+GT ]x, x〉.

From assumption (1), we see that there exists a constant c1 > 0 such that

V (x) = 〈Gx, x〉 ≥ c1 ‖ x ‖2,∀x ∈ K.
This yields assumption (1) of Corollary 4. It is clear that V (0) = 0 so that assump-
tion (2) of Corollary 4 is also satisfied. Here, V ′(x) = [G+GT ]x and assumption (3)
yields assumption (3) of Corollary 4. Finally, from assumption (2) we obtain that

〈Ax, V ′(x)〉 ≥ c2 ‖ x ‖2, ∀x ∈ K,
for some constant c2 > 0.On the other hand, because of (30) there exists a constant
σ > 0 such that

‖ x ‖≤ σ ⇒‖ F1(x) ‖≤ c2

‖ G+GT ‖ ‖ x ‖ .

Thus, if ‖ x ‖≤ σ , then

〈F1(x), V
′(x)〉 = 1

2
〈F1(x), [G+GT ]x〉

≥ −1
2

‖ G+GT ‖ ‖ F1(x) ‖ ‖ x ‖≥ −1
2
c2 ‖ x ‖2 .

It results that

〈Ax + F1(x), V
′(x)〉 ≥ c2

2
‖ x ‖2, ∀x ∈ K, ‖ x ‖≤ σ,

and thus assumptions (4) and (5) of Corollary 4 hold.
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The matrix JF (0) ∈ R
n×n satisfying the conditions (1), (2), and (3) in Theorem 6 is

is said to be “Lyapunov positive stable onK”. This concept has also been introduced
and studied in [9].

6. Applications

6.1. Absolute Stability

Let us consider the following system (see Fig. 2):






dx
dt
(t) = Ax(t)− ByL(t), a.e. t ≥ 0,

y(t) = Cx(t),

y(t) ∈ K,
yL(t) ∈ ∂ψK(y(t)),

(31)

where K ⊆ R
n is convex, closed, and 0 ∈ K. Here, ∂. denotes the subdifferential

from convex analysis andψK(·) is the indicator function ofK [23]. We suppose also
that a point y0 = CR−1x0 ∈ int K exists. Assume that (A,B,C) is a positive-real
transfer matrix [17]. There existsG = GT positive definite andQ positive semi-defi-
nite such that ATG+GA = −Q andGB = CT . Then, the dynamics in (31) can be
rewritten equivalently as [9], [10]

{
〈 dz
dt
(t)− RAR−1z(t), v − z(t)〉 ≥ 0,∀v ∈ K̄, a.e. t ≥ 0,

z(t) ∈ K̄, t ≥ 0,
(32)

where z = Rx, R is a symmetric positive definite square root of G, and K̄ = {h ∈
R
n : CR−1h ∈ K}. One has

〈GAx, x〉 + 〈ATGx, x〉 = −〈Qx, x〉,∀x ∈ R
n. (33)

Thus,

〈Ax,Gx〉 = −1
2
〈Qx, x〉,∀x ∈ R

n. (34)

Fig. 2. PR transfer with multivalued feedback.
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Consequently,

−〈RAx,Rx〉 ≥ 0,∀x ∈ R
n. (35)

Setting z = Rx, one gets

−〈RAR−1z, z〉 ≥ 0,∀z ∈ R
n. (36)

Therefore, −RAR−1 is positive semi-definite, and from the result in Section 4 we
deduce

Corollary 5. Let (A,B,C) be positive real. Let M be the largest invariant subset of
ker{RAR−1 +R−1AT R} ∩ K̄; then, for each z0 ∈ K̄, we have limt→+∞ d(z(t; 0, z0),
M) = 0.

Corollary 6. Let (A,B,C) be positive real. If ker{RAR−1 + R−1AT R} ∩ K̄ = {0},
then the trivial solution of the system in (32) is asymptotically stable.

Examples of systems in (31) are the so-called dissipative linear complementarity
systems [18], [19], [20] with relative degree one, i.e.

{
dx
dt
(t) = Ax(t)+ Bλ,

0 ≤ y = Cx(t) ⊥ λ ≥ 0,
(37)

where (A,B,C) is positive real. By elementary convex analysis, one can rewrite (37)
as

−dx
dt
(t)+ Ax(t) ∈ B∂ψR

m+(Cx(t)) (38)

which is (31) with K = R
m+. Then, the above change of coordinates allows one

to write (38) as the LEVI(−RAR−1, K̄) similarly as in (32), with K̄ = {h ∈ R
n :

CR−1h ≥ 0}. Dissipative linear complementarity systems are models for electrical
circuits with ideal diodes. As pointed out in the introduction, other applications
exist [35].

6.2. An Electrical Circuit

Let us consider the circuit in Fig. 3 (R1, R2, R3 ≥ 0, L2, L3 > 0). One has 0 ≤
−uD4 ⊥ x2 ≥ 0 and 0 ≤ −uD1 ⊥ −x3 + x2 ≥ 0, where uD4 and uD1 are the voltages
of the diodes. The dynamical equations are the following ones






ẋ1 = x2

ẋ2 = −
(
R1+R3
L3

)
x2 + R1

L3
x3 − 1

L3C4
x1 + 1

L3
λ1 + 1

L3
λ2

ẋ3 = −
(
R1+R2
L2

)
x3 + R1

L2
x2 − 1

L2
λ1

0 ≤
(
λ1

λ2

)

⊥
(

−x3 + x2

x2

)

≥ 0

(39)
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Fig. 3. A circuit with ideal diodes.

where x1(·) is the time integral of the current across the capacitor, x2(·) is the current
across the capacitor, and x3(·) is the current across the inductor L2 and resistor R2,
−λ1 is the voltage of the diode D1 and −λ2 is the voltage of the diode D4. The
system in (39) can be written compactly as ẋ = Ax + Bλ, 0 ≤ λ ⊥ y = Cx ≥ 0,
with

A =






0 1 0
− 1
L3C4

−R1+R3
L3

R1
L3

0 R1
L2

−R1+R2
L2




 ,

B =






0 0
1
L3

1
L3

− 1
L2

0




 , C =

(
0 1 −1
0 1 0

)

.

We set

G =




1
C4

0 0
0 L3 0
0 0 L2



 .

It is clear that G is symmetric and positive definite. Moreover, we see that ATG +
GA = −Q with

Q =



0 0 0
0 2(R1 + R3) −2R1
0 −2R1 2(R1 + R2)



 .

The matrixQ is symmetric and positive semi-definite. Moreover,GB = CT and the
system in (39) is positive real, as expected from the physics. From the previous sub-
section, we deduce that (39) can be rewritten as an evolution variational inequality as
in (32), whereR and z are easily calculated (z1 = 1√

C4
x1, z2 = √

L3x2, z3 = √
L2x3).

We have ker{RAR−1 + R−1AT R}={z ∈ R
3 : z2 = 0} and K̄ = {z ∈ R

3 : z2 ≥ 0,

z3 ≤
√
L2
L3
z2}. Thus,
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E := ker{RAR−1 + R−1AT R} ∩ K̄
= {z ∈ R

3 : z2 = 0, z3 ≤ 0}.
Remark 5. The stationary points x∗ have to satisfy
{

0 = −Ax∗ + Bλ∗

0 ≤ λ∗ ⊥ Cx∗ ≥ 0
⇔
{

−GAx∗ +GBλ∗ = 0
0 ≤ λ∗ ⊥ Cx∗ ≥ 0

⇒
{

−x∗T GAx∗ = 0
0 ≤ λ∗ ⊥ Cx∗ ≥ 0

⇔
{
x∗T Qx∗ = 0
0 ≤ λ∗ ⊥ Cx∗ ≥ 0

(40)

for some λ∗ ∈ R
2.

For example, let us now consider R1 = R2 = 0, R3 > 0. Then, the set S of
stationary points is given by

S = {z ∈ R
3 : z1 ≥ 0, z2 = 0, z3 ≤ 0}.

The set S is an invariant subset of E. We claim that it is the largest one. Indeed, let
us study the dynamics in E:






ż1 = 0,
0 = −z1 + √

C4λ1 + √
C4λ2,

ż3 = − 1√
L2
λ1,

0 ≤ λ ⊥
(

−z3

0

)

≥ 0.

(41)

Thus, inE we get z1(.) = z∗1(= z1(0)), and from the second line in (41) it follows that
z∗1 ≥ 0. From the fourth line, we obtain λ1(t)z3(t) = 0, a.e. t ≥ 0. Then, using the
third line, we see that ż3z3(t) = 0, a.e. t ≥ 0. Thus, 1

2
d
dt

| z3(t) |2= 0, a.e. t ≥ 0. It
results that z3(.) = z∗3(= z3(0)) ≤ 0. Thus, any invariant subset of E is a subset of
S. From Corollary 5, for any z0 ∈ K̄, we have limt→+∞ d(z(t; 0, z0), S) = 0.

Let us assume now that the diode D4 is mounted in the opposite sense on Fig. 3.
Then, 0 ≤ uD4 ⊥ −x2 ≥ 0, and the second line in (41) is changed to 0 = −z1 +√
C4λ1 − √

C4λ2. The only discrepancy with the previous case is that z∗1 ≤ 0.

7. Conclusions

This paper deals with the extension of the Krakovskii–LaSalle invariance lemma, to
a class of nonsmooth dynamical systems. Evolution variational inequalities are the
formalism of the work. Firstly some technical results (existence, uniqueness, con-
tinuous dependance in the initial conditions, invariance of the limit sets, etc.) are
proven. Then, the invariance theorem and various corollaries are proposed. These
results are applied to linear and nonlinear evolution variational inequalities. Several
applications are proposed to illustrate the developments.
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