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Abstract

This paper concerns the dynamics of planar rocking blocks, which are mechanical systems
subject to two unilateral constraints with friction. A recently introduced multiple impact
law that incorporates Coulomb friction is validated through numerous comparisons between
numerical simulations and experimental data obtained elsewhere by other authors. They
concern the free-rocking motion with no base excitation. The comparisons demonstrate that
the proposed impact model allows one to correctly predict the block’s motions. Especially the
free-rocking experiments can be used to fit the impact law parameters (restitution and friction
coefficients, width). The free-rocking fitted parameters are then used in the excited-base cases
(see Part II).
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1 Introduction

Modeling the dynamics of a rigid block hitting a rigid ground has attracted the attention of
scientists in the field of Earthquake Engineering for a long time, see e.g. [2, 10, 12, 19, 22, 23,
26, 30, 31, 32, 34, 35] to cite a few. In parallel the field of impact dynamics has witnessed an
intense activity in the past twenty-five years, see e.g. [5, 7, 9, 29] and references therein. It
happens that the problem of modeling impacts with friction is a tough issue, especially when
there are several simultaneous contact points (multiple impacts with friction). Typically the so-
called rocking block problem involves double-impacts with friction, when one assumes that the
base contacts the ground at two points only. Together with chains of balls, the rocking block is
an apparently simple multibody system (the block and the ground), however it involves multiple
impacts with friction and its modeling is consequently not simple at all.

In [3] experimental tests were led and compared to the model with Housner angular restitution
r [10] calculated from the conservation of angular momentum before and after the shock. It was

found that the analytical value of r = − 2l2−L2

2L2+2l2
, where l and L are the block height and width

respectively, in [3] did not match with the experimental one. Similar conclusions were drawn in
[21] who found a rather big discrepancy between the analytical and the experimental values of r.
Usually the experimentally measured values for r are larger than the theoretically predicted ones,
and many authors simply fit r with the data without questioning the model [3, 12, 21, 27, 31].
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Recently experimental tests on concrete blocks have shown [8] that the ratio between the measured
r and the above one may be smaller or larger than one, despite it is usually smaller (see Table II in
[8]), contradicting the older conclusions. These authors also showed the unability of the kinematic
angular restitution law to predict the free-rocking motion (see figure 18 in [8]). Lispcombe et al.
[12] calculated r by introducing the kinematic restitution and adding constraints for no slipping
or unidirectional slip. Yilmaz et al. [34] used a generalization of Routh’s approach and so-called
impulse correlation ratios, without friction. They found good agreements between their simulations
and their experiments. Pena, Prieto et al. [19, 20, 22] performed lots of experiments and also
proposed a new model for rocking. It is noteworthy that in their experiments Pena et al. [19] found
better matching between the above value of r and the experimental values, which differ by much
smaller percentage than in [3, 21]. The fact that a block rotating around one corner and impacting
at the other corner may rebound at both corners (and thus become airborne) is studied in [12].
Some authors like Palmeri et al. [18] introduced some compliance at the contacts and frictional
effects in order to cope with such complex dynamics. In [2] the nonsmooth mechanics framework
is adopted and friction with a non-constant sliding coefficient is used. In [23] the normal and
tangential (Coulomb’s friction) models are penalized so that the rocking block (sticking rocking)
dynamics is a smooth second order differential equation, that may be stiff. Taniguchi [30] uses the
Housner angular velocity restitution coefficient, and Coulomb’s law during non-impacting phases
of motion. He points out that perfect rocking seldom occurs, whereas stick/slip phases may be the
common behaviour.

The conclusions to be drawn from all these works are that experimental results are not always
easy to interpret. It happens that the dynamics of a block on a rigid ground with friction is a rather
unexpectedly complex process. Also, the experiments are always prone to a number of uncertainties
like: friction with grooves on the foundation, vibrational effects inside the block, which are not
well understood, deformations and vibrations of the foundation, heterogeneous material so that
the center of mass is not the geometric center, damage at the contact points, so that the corners
are not the exact rotation points, three-dimensional effects, pivot friction at the contact points,
line or surface contact effects, etc. By line or surface contact effects, we mean that the block’s
surface that collides with the ground, and the ground itself, never possess a perfect geometry. It
may happen that the contact is established at some isolated points of the surface, or with some
subsets of the surface. Thus the block’s geometric width may not correspond to its “ideal rocking
block” equivalent width, or effective width. The two extreme cases are when the base is concave
(the corners are the contact/impact points and the geometric and effective width are equal), and
when it is convex (there are no more impacts). Such issues where raised in [24] where it is noted
that overturning responses of blocks with multiple rocking points are equivalent to more slender
blocks with simple basal contact conditions. In other words, when the contact occurs at several
points of the base, the equivalent perfect block with two contact/impact points at A and B is
more slender. In addition it has been noticed experimentally that the block’s motion may be very
sensitive to initial data, a vey small change in the initial position can cause a big change in the
block’s response [3, 17]. For all these reasons, getting very accurate prediction with rigid body
models is expected to be a tough task in general. Getting general tendencies may be a reasonable
and useful goal, instead. It is known that stick/slip behaviour during the impacts may influence
significantly the shock dynamics [29]. It is apparent from the above results and comments that
introducing a correct model of friction in the block dynamics, both at impacts and during contact
phases, is a mandatory step. Tackling this objective within the framework of rigid body systems
and multiple impacts with friction is done in the sequel of this paper, and in Part II.

The objective of Part I is to demonstrate that the LZB multiple impact model introduced in
[13, 14, 15, 16, 39], is quite suitable to model the free-rocking motion (the base is fixed, the blocks
are initialized with zero velocity and a non zero tilt, one corner in contact with the base). This is
shown through detailed comparisons between numerical results obtained with the LZB model (the
event-driven code used for the simulations is available in [36]), and experimental results obtained
in Pena et al [19, 20] and Lipscombe et al [12]. Further comparisons with the experimental results
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in [8] are reported in [36]. Those comparisons concern free-rocking (fixed base), the onset of
rocking and the onset of overturning (with horizontal base excitation) being the subject of Part
II [38]. Our results are both qualitative (i.e. they concern general properties or tendencies), and
quantitative when this has been possible (in the case of the experiments reported in [19, 20], all the
experimental data and figures were made available to us, making possible accurate comparisons
between the numerical and the experimental figures). The conclusions are quite positive and
confirm the results obtained in [14, 16, 39] where detailed comparisons with experimental data for
Newton’s cradle [16], bouncing dimer [39], column of beads [14], are made: the LZB model does
encapsulate the main dynamical effects of multiple impacts with Coulomb friction. It is noteworthy
that our model seems to be able to predict the motion for systems ranging from few grams (the
dimer [39]) to several hundreds of kilograms (the rocking blocks in [19, 20]). Most importantly it
is shown in Part II that the free-rocking experiments can be used to fit the parameters (restitution
coefficients, friction coefficients, widthes) which are used to predict more complex motions with
base excitation. The paper is organized as follows: in section 2 the planar block dynamics and
the multiple impact model are introduced. Section 3 is dedicated to the comparisons between the
experimental data in [20], [12] and numerical results, for free-rocking motion. Conclusions end the
paper in section 4.

2 The block dynamics and the impact law

2.1 The block dynamics outside the collisions
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Figure 1: The block.

Let us consider the block as a three degrees of freedom planar homegeneous solid, with gen-
eralized coordinates qT = (x, y, θ), where x and y are the horizontal and vertical positions of the
center of gravity, θ is the angular position, see figure 1. Following [5, Chapter 6] we infer that the
block, when y ≤

√
l2 + L2, is subject to two unilateral constraints:







f1(q) = y − l
2 cos(θ) + L

2 sin(θ) ≥ 0

f2(q) = y − l
2 cos(θ) − L

2 sin(θ) ≥ 0,

(1)

where f1(q) ≥ 0 expresses that point B cannot penetrate into the ground, while f2(q) ≥ 0
expresses the same for point A. The underlying assumption is that the block/ground contact can
be represented by the two points A and B at the corners. The dynamics of the block subject to
(1) and Coulomb friction is given by:
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mẍ(t) = λt,1(t) + λt,2(t)
mÿ(t) = λn,1(t) + λn,2(t) − mg

IGθ̈(t) = λn,1(t)
(

l
2 sin(θ(t)) + L

2 cos(θ(t))
)

+ λn,2(t)
(

l
2 sin(θ(t)) − L

2 cos(θ(t))
)

+
(

l
2 cos(θ) − L

2 sin(θ)
)

λt,1 +
(

l
2 cos(θ) + L

2 sin(θ)
)

λt,2

0 ≤ λn(t) ⊥ f(q(t)) ≥ 0
λt,i(t) ∈ −µiλn,i(t) sgn(vt,i(t)), i = 1, 2

(2)

where µi > 0 is the friction coefficient at contact i, and vt,i is the tangential velocity at the

point i, i.e. vt,1 = ẋ+
(

l
2 cos(θ) + L

2 sin(θ)
)

θ̇ at B and vt,2 = ẋ+
(

l
2 cos(θ) − L

2 sin(θ)
)

θ̇ at A (from
which vt,1 = vt,2 when θ = 0). Notice that if the contact point i detaches then the complementarity
conditions imply that λn,i = 0 so λt,i = 0. The dynamics in (2) stands for fixed ground. The
complementarity conditions are componentwise, f(q)T = (f1(q), f2(q)), λT

n = (λn,1, λn,2). For a
block with G at the geometric center one has IG = m

12 (l2 + L2). In (2) we have not yet considered
the impacts with the ground, but only those phases of motion where the contact force is a bounded
function of time. From (1) and (2) the Linear Complementarity Problem (LCP) that allows one
to calculate the contact forces during the smooth phases of motion (i.e. outside impacts) is given
in the frictionless case by:

0 ≤ λn(t) ⊥ d2

dt2
f(q(t)) = A(θ)λn(t) + B(θ, θ̇) ≥ 0 (3)

with A(θ) =

( 1
m

+ 1
4IG

(l sin(θ) + L cos(θ))2 1
m

+ 1
4IG

(l2 sin2(θ) − L2 cos2(θ))
1
m

+ 1
4IG

(l2 sin2(θ) − L2 cos2(θ)) 1
m

+ 1
4IG

(l sin(θ) − L cos(θ))2

)

, A(θ) =

AT (θ), B(θ, θ̇) =

(

−g + 1
2 θ̇2(l cos(θ) − L sin(θ))

−g + 1
2 θ̇2(l cos(θ) + L sin(θ))

)

. One calculates that det(A(θ)) = L2

mIG
cos2(θ)

so that A(θ) is positive definite except at θ = ±π
2 . These values are however outside the range of

block orientations within which the analysis is done. We conclude that for all angles θ ∈ (−π
2 , π

2 )
A(θ) > 0 and the normal contact force λn can be computed uniquely in the frictionless case as
the solution of the LCP in (3) whatever θ and θ̇. A(θ) is the so-called Delassus’ matrix of the
system (1) (2). When friction is considered the stick/slip behaviour introduces new modes during
the contact phases. It is possible to rewrite compactly the smooth part of the dynamics in (2) as:

Mq̈(t) = Wn(q(t))λn(t) + WT (q(t))λt(t) − g (4)

with g = (0 mg 0)T , M =diag(m, m, IG), Wn and Wt are easily identified from (2). One has
vn = WT

n (q)q̇, vt = WT
T (q)q̇, where vn = (vn,1 vn,2)

T , vt = (vt,1 vt,2)
T denote the local velocities

of the contact points [1]. Also A(θ) = WT
n (q)M−1Wn(q). The LCP (3) becomes if µi > 0:

0 ≤ λn(t) ⊥ A(θ)λn(t) + Wn(q)M−1WT (q)λt(t) + B(θ, θ̇) ≥ 0 (5)

The details on how to analyze and solve such problems is outside the scope of this paper, see
[1, 15]. Let us just mention that, in general, friction may create inconsistencies and indeterminacies
[5, §5.5] yielding Painlevé paradoxes. We have never met such issues for the rocking block in all
our simulations, and consequently do not insist on them.

Remark 1. In this paper the basic Coulomb’s law is enhanced to incorporate static and dynamic
friction, see figure 2.

2.2 The impact dynamics

The impact model proposed in [13, 14, 15, 16, 39] is summarized in this section, it will be
named the LZB impact model in the following. The contact stiffnesses are denoted as ki, the
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potential energy at contact i is Ei, η is the elasticity coefficient. The matrix Wn is the jaco-
bian between the generalized velocities q̇ and the contact points normal relative velocities, i.e.
WT

n = ∂f
∂q

= ∇fT (q) ∈ IR2×3, whereas Wnλn represents the generalized contact force associated to

the generalized coordinates q, see (2) and (4). Pn,i denotes the interaction normal force impulse at
contact point i, Pn = (Pn,1, Pn,2)

T is the vector of normal impulses. The mass matrix M ∈ IR3×3

is given by M =diag(m, m, IG). An important assumption in this model, that is an extension of
the Darboux-Keller approach [5], is that positions q are constant during the impact process. Thus
Wn(q) is constant during the collision process. In the frictionless case one obtains:

• Contact parameters: γij = ki

kj
(stiffnesses ratios), e∗n,j (energetic restitution coefficients),

1 ≤ i ≤ 2, 1 ≤ j ≤ 2, η (= 1 for linear elasticity, = 3
2 for Hertz contact, or other values).

• Dynamical equation:

M
dq̇

dPn,i

= Wn

dPn

dPn,i

if Eji(Pn,j , Pn,i) ≤ 1 for j 6= i (6)

with the distributing law1:

dPn,j

dPn,i

= γ
1

η+1

ji (Eji(Pn,j , Pn,i))
η

η+1 , (7)

and the potential energies ratios:

Eji =
Ej(Pn,j)

Ei(Pn,i)
, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, (8)

where:

Ej(Pn,j) =

∫ Pn,j(t)

0

wT
j q̇dPn,j . (9)

The time tc of maximal compression at the contact j is calculated from δ̇j(tc) = 0 where δj is

the relative normal displacement at contact j (δ̇ = Wnq̇ = ∇fT (q)q̇). The termination time tf is
calculated from the energy constraint Wr,j = −(e∗n,j)

2Wc,j , where the works during expansion and
compression phases are given by:

Wr,j =

∫ Pn,j(tc)

0

wT
j q̇dPn,j , Wc,j =

∫ Pj(tf )

Pn,j(tc)

wT
j q̇dPn,j . (10)

The vectors wj = ∇fj(q) are the columns of the jacobian matrix Wn. The impulse Pn,i at
contact i is the so-called principal impulse that is chosen as the new time-variable in the impact
model. It may change during the impact process, see [13] for details. In view of (2) in the
frictionless case the impact dynamics reduce to a two-dimensional system because dẋ

dPn,i
= 0.

Coulomb’s friction can be easily added in the impact model, at the force (or infinitesimal impulse)
level. In such a case the right-hand-side of (6) has to be modified accordingly with the insertion
of the tangential force components, see (2) and (4):

M
dq̇

dPn,i

= Wn

dPn

dPn,i

+ Wt

dPt

dPn,i

if Eji(Pn,j , Pn,i) ≤ 1 for j 6= i (11)

In this work we use an enhanced model of friction with a static µs and a dynamic µ friction
coefficients, see figure 2. The same model is used outside and during the impacts (where it is
written at the infinitesimal impulse level). This impact model is therefore a rigid body model that

1The power of the potential energies ratio Eji(Pn,j , Pn,i) is inverted in [13, 14].
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incorporates some flexibility effects through the distributing law, with one restitution coefficient
and one (or two) friction coefficient per contact. More details on the implementation may be
found in [13, 15, 16], and the code which has been used for the simulations is given in [36] (a
similar event-driven code is also available in the siconos platform2). For the dynamics outside
the impacts, in the frictionless case the LCP in (3) is used to integrate the system, and either an
explicit Euler or a Runge-Kutta algorithms are implemented. When Coulomb friction is present
the scheme is the same as the one used in [39] and described in [15]. It is noteworthy that the
numerical scheme that is employed next is of the event driven type (see [1] for a description),
and that all the stick/slip and contact/detachment conditions are carefully taken care of (taking
care, in particular, of the multivalued feature of the friction law at zero tangential velocity). Two
flowcharts of the event-driven method are depicted in Part II (see figures 15 and 16 in [38]). To
summarize we use an event-driven method with the complementarity model (2) outside impacts
and the above LZB impact dynamics when an impact is detected. Two flowcharts of the code are
provided in Part II [38].

0
−vt,i

λt,i
λn,i

−µi

−µs,i

µi

µs,i

Figure 2: The friction model.

Remark 2. An interesting feature of the LZB impact law is that it allows for stick/slip transitions
during the impacts, as shown in [37]. This means that the relative tangential velocity can reverse its
sign during the collision without implying energetical incoherencies, as it is the case with kinematic
restitution laws [7]. Tangential velocity reversals do occur in the planar block, see figure 21 (b) in
[36]. Notice that complementarity modeling has been introduced for block/ground systems in [2].

3 Comparisons with free-rocking experimental data

In this section it is proved that the LZB model can be fitted well to provide correct predictions
of free-rocking motions, with fixed base. Free-rocking corresponds to the block initialized with
a non-zero angle θ(0), one corner in contact, and zero initial velocity θ̇. Two different sets of
experimental results are used, from [20] and [12]. The comparisons with the data in [19, 20] are
done from the accurate experimental data (not available in the papers but provided to us by the
authors), whereas those with the data in [12] are made only from the figures available in the papers
and are therefore less accurate and more qualitative.

3.1 Comparisons with the experimental data in Pena et al [20]

Experimental data led on blue granite stone blocks are reported in [20]. In this section we provide
detailed comparisons between the numerical simulations obtained with the LZB model and the

2http://siconos.gforge.inria.fr/
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experimental data of [20]3 The tests concern four specimens of blocks with ratios l
L

≈ 1
0.25 = 4

and thickness d = 0.754m (specimen 1), l
L

≈ 1
0.17 = 5.88 and thickness d = 0.502m, (specimen

2), l
L

≈ 1
0.12 = 8.33 and thickness d = 0.375m (specimen 3), l

L
≈ 0.457

0.16 = 2.85 and thickness
d = 0.750m (specimen 4), where l and L are in meters. Specimen 3 is the most slender one with
the smallest thickness, and is of the tower type. Specimen 4 is the less slender one with the largest
thickness and is of the slice type. The masses of the blocks are estimated from their dimensions
and density, and are given by 503 kg, 228 kg, 120 kg, 245 kg for specimens 1, 2, 3, 4 respectively.

3.1.1 The θ(t) response

Let us study the θ(t) response of the blocks. The results are depicted in figures 3, 4, 6 (a), 6
(b), and 7. The corresponding responses yA(t) and yB(t) are in figures 5 (a) and 5 (b). The
fitted restitution coefficients are e∗n,i = 0.999 for specimen 2 in figure 4, and e∗n,i = 0.97 for the
first 10 impacts and e∗n,i = 0.88 for the last impacts, for specimen 1 in figure 3. For specimen
4 the fitted values are e∗n,i = 0.99 for the first 4 impacts, e∗n,i = 0.84 between impact 5 and
impact 8, and e∗n,i = 0.99 for the last impacts (see comment (ii) in section 3.1.3 for explanations

about this switching parameter). The fitted dimensions are l
L

= 1
0.23 ≈ 4.35 for specimen 1 and

l
L

= 1
0.155 = 6.45 for specimen 2, l

L
= 0.457

0.10 = 4.57 for specimen 4. The friction coefficients are
chosen as µ = 0.3 and µs = 0.577 as in [20]. The results for specimen 3 are depicted in figures 6
(a) and 6 (b). In figure 6 (a) the magnitudes of the oscillations are correctly predicted with the
same restitution as for the fitted values of specimens 1 and 2, i.e e∗n,i = 0.999, however there is a
shift in the oscillations pseudo-period. The parameters are varied in figure 6 (b) with a smaller
restitution coefficient and width, but this does not change much the result (see the comments about
three-dimensional effects below). The results for specimen 4 are in figure 7. As indicated above
in this case we had to switch e∗n twice to obtain a good matching. In Tables 2 to 7 are reported
some data on the impact times and the maximal amplitudes that correspond to the θ(t) responses
for specimens 1, 2 and 4. All these results show that the LZB model has very good prediction
capabilities. The large errors in Table 7 are due to some imperfect measurement data at the peaks
and should not be considered as significant results. Such issues are common in experimental data
and do not call into question neither the experimental data from [19, 20] nor our comparison
results.

Uncertainties in e∗n It happens that the rocking motion is highly sensitive to parameters varia-
tions, which renders the calibration of the parameters a delicate process. In figure 8 (a) is depicted
the θ(t) response for specimen 2, with e∗n,i = 0.95, which represents a variation of 4.9% with re-
spect to the fitted value e∗n,i = 0.999 in figure 4. The same is done in figure 8 (b) with e∗n,i = 0.99,
which represents a variation of 1% with respect to the fitted value. It is apparent that a very small
variation on e∗n,i produces a large mismatch in the θ(t) response.

Uncertainties in the width L The sensitivity of the θ(t) response w.r.t. variations in l
L

is
shown in figure 9 (a) for specimen 2, and in figure 9 (b) for specimen 4. The values for e∗n,i are
the fitted ones. It follows that the uncertainty in the width L affects mainly the pseudo frequency
of the oscillations and has little effect on the magnitudes. This is in contrast with uncertainties
on e∗n,i which affect both the frequency and the magnitude, see figure 8 (a). The various widthes
which enter the study are recapitulated in Table 1. The geometric widthes are those measured on
the blocks. The experimental widthes are obtained from an estimation process using the Housner
model, see section 4.1 in [19]. The other two sets of widthes are obtained by the fitting the
parameters. The choices for smaller widthes in simulation are in agreement with the conclusion in
[24], where what we call the width in simulation may be called the effective width following [24].

3All the data corresponding to the comparisons presented in this section have been made available to us by Dr
F. Pena from UNAM, Mexico.
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1 2 3 4
Geometric width 0.24 0.16 0.11 0.15
Experimental width 0.2394 0.1645 0.1552 0.1255
Width in simulations of [20] 0.2468 0.1696 0.1196 0.1464
Width in LZB model 0.23 0.155 0.12 and 0.115 0.10

Table 1: The various widthes.

0 0.5 1 1.5 2 2.5 3 3.5 4
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−2

−1
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time[s]

θ
[o

]

 

 
Pena experiment
LZB model

Figure 3: Numerical vs experimental values of θ(t), specimen 1. e∗n = 0.97 and 0.88, l = 1m,
L = 0.23m.

In short, due to the contact line geometry imperfections, the equivalent width of the model with
two contact points must be smaller than the geometrical width of the real block.

The elasticity coefficient η The elasticity coefficient enters the LZB impact model through
the co-called distributing law and the potential energies ratios Eji(Pj , Pi). In all the simulations
of this Part and of Part II, we have made the choice η = 3

2 (Hertz contact).

3-dimensional effects For specimen 3 the numerical results do not perfectly match with the
experimental ones, see figures 6 (a) and 6 (b). This is due to 3-dimensional effects which occur for
this block in the experiments as noted in [20]. This is why two values are indicated in Table 1 for
specimen 3, because we were not able to fit the parameters.

3.1.2 The angular velocity restitution coefficient

The angular velocity restitution coefficient r = θ̇(t+)

θ̇(t−)
is widely used in the rocking block literature,

and is known to be of limited applicability as recalled in the introduction. It is interesting to study
its value from the numerical results that fit well with the experimental ones. Let us start with
Table 3 in [20] where experimentally measured values of a kinematic angular restitution coefficient,
denoted as µ in [20] and next as rexp to avoid confusions, are reported from the free-rocking of the
above four specimens of blocks. In [20] rexp is computed indirectly from the averaged values of the
expressions:
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Impact no Experiment IT (s) Numerical IT (s) Absolute error Relative error in %
1 0.279 0.279 0 0
2 0.647 0.637 0.01 1.5
3 0.977 0.958 0.019 1.94
4 1.293 1.278 0.015 1.16
5 1.578 1.567 0.011 0.70
6 1.855 1.825 0.03 1.62
7 2.097 2.092 0.005 0.24
8 2.336 2.334 0.002 0.09
9 2.570 2.545 0.025 0.97
10 2.745 2.770 0.025 0.97
11 2.928 2.956 0.028 0.96
12 3.104 3.114 0.01 0.32
13 3.256 3.262 0.006 0.18
14 3.406 3.399 0.007 0.20
15 3.538 3.526 0.012 0.34
16 3.665 3.641 0.024 0.65

Table 2: The data of figure 3, specimen 1, impact times (IT).

Peak no Experiment MA Numerical MA absolute error Relative error in %
1 -2.968 -2.968 0 0
2 2.666 2.472 0.194 7.28
3 -2.271 -2.076 0.195 8.59
4 2.045 2.032 0.013 0.64
5 -1.794 -1.711 0.083 4.63
6 1.521 1.381 0.14 9.21
7 -1.352 -1.497 0.145 10.72
8 1.267 1.142 0.125 9.87
9 -0.986 -1.158 0.172 17.44
10 0.846 0.885 0.039 4.6
11 -0.738 -0.716 0.022 2.98
12 0.613 0.575 0.038 6.20
13 -0.504 -0.491 0.013 2.58
14 0.452 0.419 0.033 7.30
15 -0.363 -0.358 0.005 1.38
16 0.325 0.297 0.028 8.62

Table 3: The data of figure 3, specimen 1, maximum amplitudes (MA).
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Figure 4: Numerical vs experimental values of θ(t), specimen 2. e∗n = 0.999, l = 1m, L = 0.155m.

Impact no Experiment IT (s) Numerical IT (s) Absolute error Relative error in %
1 1.525 1.531 -0.006 0.39
2 2.347 2.442 -0.095 4.05
3 3.108 3.171 -0.063 2.03
4 3.785 3.861 -0.076 2.01
5 4.431 4.493 -0.062 1.40
6 5.019 5.082 -0.063 1.26
7 5.585 5.632 -0.047 0.84
8 6.105 6.158 -0.053 0.87
9 6.605 6.657 -0.052 0.79
10 7.075 7.119 -0.044 0.62
11 7.525 7.555 -0.03 0.40
12 7.952 7.947 0.005 0.06
13 8.362 8.323 0.039 0.47
14 8.745 8.695 0.05 0.57
15 9.123 9.061 0.062 0.68
16 9.477 9.408 0.069 0.73

Table 4: The data of figure 4, specimen 2, impact times (IT).
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Peak no Experiment MA Numerical MA absolute error Relative error in %
1 -6.516 -6.520 -0.004 0.06
2 5.582 5.542 0.04 0.72
3 -5.152 -4.925 0.227 4.41
4 4.574 4.404 0.17 3.72
5 -4.241 -3.962 0.279 6.58
6 3.846 3.626 0.22 5.72
7 -3.574 -3.299 0.275 7.69
8 3.280 3.111 0.169 5.15
9 -3.046 -2.843 0.203 6.66
10 2.801 2.605 0.196 7.00
11 -2.593 -2.342 0.251 9.68
12 2.384 2.013 0.371 15.56
13 -2.237 -1.825 0.412 18.42
14 2.031 1.841 0.19 9.35
15 -1.926 -1.768 0.158 8.20
16 1.758 1.631 0.127 7.22

Table 5: The data of figure 4, specimen 2, maximum amplitudes (MA).
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Figure 5: Numerical values of yC(t).
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(a) e∗n,i = 0.999, l = 1m, L = 0.12m.
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(b) e∗n,i = 0.97, l = 1m, L = 0.115m.

Figure 6: Numerical vs experimental values of θ(t), specimen 3
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Figure 7: Numerical vs experimental values of θ(t), specimen 4, e∗n,i = 0.99, and 0.84, l = 0.457m,
L = 0.10m.
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Impact no Experiment IT (s) Numerical IT (s) Absolute error Relative error in %
1 0.199s 0.195s 0.004 2.01
2 0.403 0.406 -0.003 0.74
3 0.592 0.599 0.007 1.18
4 0.764 0.776 -0.012 1.55
5 0.925 0.937 -0.012 1.30
6 1.070 1.081 -0.011 1.03
7 1.208 1.213 -0.005 0.41
8 1.333 1.335 -0.002 0.15
9 1.449 1.446 0.003 0.21
10 1.556 1.548 0.008 0.51
11 1.659 1.643 0.016 0.96
12 1.751 1.741 0.01 0.57
13 1.841 1.831 0.01 0.54
14 1.921 1.924 -0.003 0.16

Table 6: The data of figure 7, specimen 4, impact times (IT).

Peak no Experiment MA Numerical MA absolute error Relative error in %
1 2.201 2.200 0.001 0.04
2 -1.789 -1.869 -0.08 4.47
3 1.626 1.594 0.032 1.97
4 -1.315 -1.363 -0.048 3.65
5 1.178 1.155 0.023 1.95
6 -0.962 -0.932 0.03 3.12
7 0.953 0.794 0.159 16.68
8 -0.749 -0.675 0.074 9.88
9 0.682 0.572 0.11 16.13
10 -0.525 -0.485 0.04 7.62
11 0.512 0.421 0.091 17.77
12 -0.376 -0.447 -0.071 18.88
13 0.408 0.385 0.023 5.63
14 -0.295 -0.399 -0.104 35.25

Table 7: The data of figure 7, specimen 4, maximum amplitudes (MA).
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(a) e∗n,i = 0.95
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(b) e∗n,i = 0.99

Figure 8: Sensitivity of the θ(t) response w.r.t. variations in e∗n,i (specimen 2).
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Figure 9: Sensitivity of the θ(t) response w.r.t. variations in L.

(

cos(α − an) − cos(α)

cos(α − a0) − cos(α)

)
1
2n

(12)

where the an are the magnitudes of the block’s orientation θ(t), n is the impact number. This
expression is deduced from the energy at the nth impact as a function of the initial energy and r.
This is also used in [8] to compute the energy of various rocking blocks (figures 15, 16, 17 in [8]).
We shall use this way of computing r in figures 10 (a) and 11 (a). The angular restitution r is

calculated directly from the ratios θ̇(t+)

θ̇(t−)
in figures 10 (b) and 11 (b). The latter are not available

from the experimental data, but only from our numerical simulations with the LZB model in the
previous section. However since they are calculated with the fitted parameters the computed values
should be close to the experimental ones.

The masses indicated in [20]: m ≈ 503, 228, 120 kg respectively4. In figures 10 (a) and 11 (a)
are depicted the values of rLZB and rexp with the fitted parameters5. It is seen that r is almost
constant from one impact to the next. The fist values of rexp and rLZB may be smaller than the
other ones: this is explained by the absence of a rebound phase after the first impact, see figure

5. In figures 10 (b) and 11 (b) are depicted the values of −r = θ̇(t+)

θ̇(t−)
, which differ from those of

figures 10 (a) and 11 (a) which are computed as in [20]: they are less “smooth”, in the sense that
r varies more with some peaks.

3.1.3 Comments

• (i) The values for e∗n (0.999 or 0.99) are large values, since other works on single gran-
ite/granite impacts without friction report values of the restitution coefficient ≈ 0.86 [11].
However it is also known from many experimental results that the restitution coefficient usu-
ally tends to 1 when the initial relative velocity tends to zero, see e.g. [28]. In the presented
results the normal relative velocity is very small (about 0.02 m/s). This may explain this
high value for e∗n. Recall that for specimen 2 the planar rocking assumption is well respected,
where no three dimensional effects could be noticed experimentally in [20].

4The masses are estimated from the density and the dimensions in [20], hence prone to some uncertainties.
5We call the fitted parameters the parameters used in figures 3, 4 and 7
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Figure 10: Numerical and experimental values of the angular restitution coefficient (specimen 1
with fitted parameters).
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Figure 11: Numerical and experimental values of the angular restitution coefficient (specimen 2
with fitted parameters).

15



• (ii) The decrease of the fitted value for e∗n for specimen 1 may be explained by some damage
that has occurred on the contact points after the tenth impact (t ≈ 2.7s), implying more dis-
sipation. Indeed it is indicated in section 7 of [19, 20] that specimen 1 was damaged after the
first tests. Since these experimental data are not ours we are unable to more accurately deter-
mine the source of this necessary variation of e∗n. A similar process of decreasing/increasing
the fitted value of e∗n has been necessary for specimen 4 in figure 7, which is of the slice type.
It is possible that the line contact assumption is not perfectly satisfied experimentally due to
the large thickness, or due to the base geometry with large cuts (see figure 1 in [20]). Only
a study on the impact force shape on the contact surface could bring an answer, but this is
outside the scope of this study. Let us point out that no simulation result about specimen 4 is
presented in [20], where it is mentioned that during the experiments specimen 4 shows small
rotation around the vertical axis (that is a three-dimensional effect we cannot incorporate
into our planar model). Other arguments concerning the two-point contact assumption, the
line contact effects and the effective width are discussed in [19]. This may explain why we
had to switch twice e∗n to get good matching.

• (iii) The results in figures 9 are important because they directly relate to the uncertainty
on the values of the width L (equivalently l

L
) that may occur due to impact line or surface

effects. These effects are in turn linked to the definition of the distance between the block
and the ground, i.e. to the definition of the unilateral constraints, which are an essential
ingredient in such a rigid body approach.

• (iv) When the block collides the ground at A while rotating around B, it may experience
a sequence of small bounces at this corner A while performing a rocking motion. We call
this phenomenon the rebound phase. Rebound phases are clearly seen in figures 5 (a) and 5
(b). It is somewhat surprizing that there may be rocking without 2-impacts, if the rebound
phases do not vanish before the impact at the other corner, like in figures 5 (a) and 5 (b). In
such cases one should speak of a macroscopic rocking motion, see figures 23 to 26 in [36].

• (v) It has been shown in [20] that specimen 3 that is of the tower-block type is prone to
significant three dimensional effects like torsional effects and friction at the base. This ex-
plains why our planar model could not satisfactorily reproduce the experimental θ(t) response
(figures 6 (a) and 6 (b)).

• (vi) The fact that r is constant during the rocking motion means that a kinematic law like
the one in entry (3,3) in Table 1 in [6] can be used, provided that en,21(= −r) can be chosen
within the required interval. However an important part of the dynamics like the rebound
phases after the first impact, may be missed in many instances of slender blocks. We infer
that this kinematic law does represent the rocking motion only when there is perfect sticking
at impacts and outside impacts, and when the rebound phases vanish (such cases exist, see
[12] with l

L
= 8). We reiterate also that such a law does not permit to predict that such

a particular motion will occur, it can just be fitted a posteriori. If, anyway, one knows
in advance that perfect rocking with sticking (or almost sticking) contact/impact points is
going to occur, then a kinematic law may be preferred because of its simplicity that may be
important for calculations.

Remark 3. Simulations with the discrete element method (DEM) are presented in [19]. They
seem at first sight to provide results of the same quality as ours. We should note however that the
DEM involves more parameters than the LZB/complementarity one, and that there is a significant
difference between the theoretical parameters (computed from the materials properties) and the fitted
ones in [19], see Table III in [19]. Moreover it seems that there is no logic behind this process since
the theoretical parameters may be larger or smaller than the fitted ones. For instance the ratio
between the theoretical and fitted stiffness constants K for specimen 2 is equal to 3302

3449 ≈ 0.957
while for specimen 1 it is 7233

6560 ≈ 1.10 in Table III [19]. More generally it is clear that much
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more work is needed to compare the LZB/complementarity and the DEM approaches, particularly
in terms of computational intensity, ease of parameter-fitting process, ability to apply to higher
degree-of-freedom systems, three-dimensional blocks, etc.

3.2 Comparisons with the experimental data of Lipscombe et al [12]

Other experimental data obtained with steel blocks/steel foundation are reported in [12], for l
L

= 1
(specimen 1), 2 (specimen 2), 4 (specimen 3) and 8 (specimen 4). Figures 5, 6 and 7 in [12] show
that “macroscopic” rocking occurs for l

L
= 2, 4 and 8. However “perfect” rocking where the

contact points stick after the shock, is obtained only for l
L

= 8. For the other two values, the
system becomes airborne after the first impact at B, then undergoes several impacts at B while
still airborne. For l

L
= 4 this sequence of impacts at B while airborne becomes much smaller,

then disappears for l
L

= 8. From a qualitative point of view, this indicates that perfect rocking

occurs only for large enough l
L
. This also confirms that the impact phases which are visible for

instance in figures 5 (a) and 5 (b) do exist experimentally. Thanks to the small size of the blocks,
values of e∗n,i have been measured and found to be close to 0.9 in [12]. However these values were
measured in figure 11 of [12] for relative approach velocities within [0.1, 0.4] m/s, which may be
too large values for rocking motions, especially when the energy has dissipated sufficiently. Thus
we have to fit e∗n once again. The fitted values are e∗n = 0.5 for specimen 1, e∗n = 0.9 for specimen
2, e∗n = 0.98 for specimens 3 and 4. The numerical results are depicted in figures 12 (a) (b), 12 (c)
(d), 13 (a) and 13 (c). The friction coefficients are chosen as in [12] as µ = 0.16 and µs = 1.3 for
the first three blocks, and µ = 0.13 and µs = 0.28 for the most slender block. The dashed curves in
figures 12 (b), 13(c) and 13 (d) correspond to the simulations made in [12] with the so-called SRM
(Simple Rocking Model). The SRM uses the Housner’s angular velocity coefficient of restitution
with angular momentum conservation. Some comments arise:

• The qualitative behaviour of the four blocks dynamics is well reproduced:

– Specimen 1 does not rock but performs half-rocking (i.e. one corner sticks on the ground
while the other one bounces repeatedly) with two impacts before coming to rest, see
figure 12 (a) (b). This is the only example of flat block we were able to find in the
literature, with experimental data.

– The rebounds phase occurs during the whole motion for specimen 1, then its duration
decreases for specimens 2 and 3 until it vanishes for specimen 4, see figures 12 (c) (d),
13 (a) (b) and 13 (c) (d).

– The impacts during the rebounds phases are well reproduced. For specimen 1 there is a
first impact at B followed by rebound of B, then A detaches also from the ground and
the block is airborne during a certain time. Then a series of impacts at B occurs again
before complete rest (figures 12 (a) (b)). For specimen 2 the impacts at B are equally
distributed during the rocking phase (figures 12 (c) and 12 (d)). For specimen 3 the
rebound phase at B becomes shorter with more impacts concentrated on the right of
the first impact time (figures 13 (a) (b)). For specimen 4 the rebound phases reduces
to the first impact at B (figures 13 (c) (d)).

– The possibility of predicting airborne phases is quite important in many applications
and is one source of strong limitation of the basic Housner’s approach with angular
velocity restitution [33].

• The fitted values for e∗n are in agreement with the experimental values provided in [12] which
are close to 0.9, except for specimen 1 where a large discrepancy exists.

• Due to the lack of accuracy on the data provided in the upper parts of figures 5, 6, 7 in
[12] which concern the long term θ(t) responses, it was impossible to get a matching between
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(a) simulation, e∗n,i = 0.5, l = 0.0458m, L = 0.0458m. (b) figure 4 in [12].
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(c) simulation, e∗n,i = 0.9, l = 0.0916m, L = 0.0458m. (d) figure 5 in [12].

Figure 12: Responses for: (a) (b) specimen 1, l
L

= 1; (c) (d) specimen 2, l
L

= 2.

numerical and experimental data as good as the one in section 3.1 for the evolution of θ(t) over
a long period. Consider for instance the upper figure 7 of [12]. An initial angle θ(0) ≈ 0.125
rad is depicted, however this is larger than the critical angle α calculated from the dimensions
which are given on page 1391 of [12]. There is consequently a strong mismatch between the
data and the presented experimental results in that paper, which we cannot understand
without having access to more informations. To be more concrete, we have even been unable
to correctly simulate the block’s motion before the first impact for specimens 2, 3 and 4 which
rock, despite the dynamics on this period is simply that of an inverted pendulum. So the
subsequent θ(t) responses were nonsense. The same is for the upper part of figure 6 in [12].
The simulations reported in [12] are not initialized as the experimental system, indicating
that there may have been significant uncertainties during the experiments. The fact that
we are able to qualitatively reproduce important phenomena is to be considered as the best
results we could get.
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Figure 13: Responses for: (a) (b) specimen 3, l
L

= 4; (c) (d) specimen 4, l
L

= 8.
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4 Conclusions

Part I of this paper has focused on the experimental validation of the multiple impact law with
Coulomb friction introduced in [13, 14, 15, 16, 39]. This impact law is based on the Darboux-Keller
assumptions, and is a rigid body model incorporating flexibility effects, with few parameters per
contact (restitution and friction coefficients). It is shown that this impact model, coupled to a
complementarity model of the block outside the impacts, is able to reproduce successfully the
free-rocking (fixed base). Detailed comparisons between the numerical results obtained with an
event-driven method and the experimental data found in [12, 19, 20] are made (see also [36] for
comparisons with the data in [8]). These comparisons prove that the model we use is able to cor-
rectly predict the free-rocking motion of various types of block/ground systems. Most importantly
it is shown that the free-rocking data can be used to fit the impact law parameters. To the best of
the authors’ knowledge it is the first time that such an extensive simulation/experiments compar-
ison work is performed, with data obtained independently by other authors. The obtained fitted
parameters are then used for the more complex cases with base excitation in Part II. The future
works should concern the analysis of the three-dimensional block (with four contact/impact points)
and of stacked blocks. Incorporating lumped flexibilities in the structure, asymmetry in the block’s
geometry, irregular bases with more than two contact points, more complex base excitations, could
also be beneficial.

Ackowledgements: the authors are very grateful to Dr Fernando Pena (UNAM Mexico) for
providing them with detailed figures from the experiments in [20]. These data have been valuable
for achieving this work. This work was performed with the support of the NSFC/ANR project
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