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Abstract

This paper concerns the dynamics of planar rocking blocks, which are
mechanical systems subject to two unilateral constraints with friction. A re-
cently introduced multiple impact law that incorporates Coulomb friction is
validated through comparisons between numerical simulations and experimen-
tal data obtained elsewhere by other authors. They concern the free-rocking
motion with no base excitation, and motions with various base excitations for
the study of the onset of rocking and of the overturning phenomenon. The
comparisons made for free-rocking and for the onset of rocking demonstrate
that the proposed impact model allows one to correctly predict the block
motions. Especially the free-rocking experiments can be used to fit the im-
pact law parameters (restitution and friction coefficients, block width). The
free-rocking fitted parameters are then used in the excited-base cases.

Keywords: rocking block, multiple impacts, Coulomb friction, free-rocking,
onset of rocking, overturning.

1 Introduction

Modeling the dynamics of a rigid block hitting a rigid ground has attracted the
attention of scientists in the field of Earthquake Engineering for a long time, see
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e.g. [5, 22, 32, 43, 47, 54, 55, 60, 61] to cite a few. In parallel the field of impact
dynamics has witnessed an intense activity in the past twenty-five years, see e.g.
[8, 9, 10, 15, 18, 19, 20, 29, 31, 39, 49, 53, 67] and references therein. It happens that
the problem of modeling impacts with friction is a tough issue, especially when there
are several simultaneous contact points (multiple impacts with friction). Typically
the so-called rocking block problem involves double-impacts with friction, when one
assumes that the base contacts the ground at two points only. Together with chains
of balls, the rocking block is an apparently simple multibody system (the block and
the ground), however it involves multiple impacts with friction and its modeling is
consequently not simple at all.

In [7] experimental tests were led and compared to the model with Housner
angular restitution r [22] calculated from the conservation of angular momentum
before and after the shock. It was found that the analytical value of r = − 2l2−L2

2L2+2l2
,

where l and L are the block height and width respectively, did not match with
the experimental one. Similar conclusions were drawn in [46] who found a rather
big discrepancy between the analytical and the experimental values of r. Usually
the experimentally measured values for r are larger than the theoretically predicted
ones, and many authors simply fit r with the data without questioning the model
[7, 32, 46, 51, 55]. Recently experimental tests on concrete blocks have shown [16]
that the ratio between the measured r and the above one may be smaller or larger
than one, despite the fact that it is generally found to be smaller (see Table II in
[16]), contradicting the older conclusions. These authors also showed the unability of
the kinematic angular restitution law to predict the free-rocking motion (see Fig. 18
in [16]). Lispcombe et al. [32] calculated r by introducing the kinematic restitution
and adding constraints for no slipping or unidirectional slip. The fact that a block
rotating around one corner and impacting at the other corner may rebound at both
corners (and thus become airborne) is studied in [32]. Most importantly, these
authors also proved experimentally the existence of sequences of impacts at the
corner point around which the block rotates during a rocking motion. The number
of such impacts, and the duration of the rebound phase, depend on the block aspect
ratio l

L
. Yilmaz et al. [60] used a generalization of Routh’s approach and so-called

impulse correlation ratios, without friction. They found good agreements between
their simulations and their experiments. Pena, Prieto et al. [43, 44, 47] performed
many experiments and also proposed a new model for rocking. It is noteworthy
that in their experiments Pena et al. [43] found better matching between the above
value of r and the experimental values, which differ by much smaller percentage
than in [7, 46]. Some authors like Palmeri et al. [42] introduced compliance at
the contacts and frictional effects in order to cope with such complex dynamics.
In [5] the nonsmooth mechanics framework is adopted and friction with a non-
constant sliding coefficient is used. Taniguchi [54] uses the Housner angular velocity
restitution coefficient, and Coulomb’s law during non-impacting phases of motion.
He points out that perfect rocking seldom occurs, whereas stick/slip phases may
be the common behaviour. In [11, §5] it is shown that if rebounds are allowed
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at the corners, r may lack of physical meaning as it cannot be uniquely chosen
given a unique energetical behaviour. It is also shown that Housner coefficient is
a lowerbound in the space of admissible coefficients, corroborating observations in
[17], see [11, Table 1]. The conclusions to be drawn from all these works are that
experimental results are not always easy to interpret, and kinematic restitution rules
applied to planar models are too simplistic to correctly model the motion of a block
rebounding on a ground, which may consist of complex stick/slip/impact/rebound
phases. Recently three dimensional models have been developed [68], thus relaxing
the assumption that the system is confined in a 2D motion.

The objective of this work is to demonstrate that the multiple impact model in-
troduced in [33, 34, 35, 36, 66] and named in the sequel the LZB model, can be useful
for the study of the rocking block dynamics (free-rocking when the base is fixed, and
with various base excitations). This is shown through detailed comparisons between
numerical results obtained with the LZB model, and experimental results obtained
in Pena et al [43, 44]. Those comparisons concern free-rocking (fixed base) and the
onset of rocking (with horizontal base excitation). The conclusions are quite positive
and confirm the results obtained in [34, 36, 40, 66] where detailed comparisons with
experimental data for Newton’s cradle [36], bouncing dimer [66], column of beads
[34], tapered chains [40] are made: the LZB model does encapsulate the main dy-
namical effects of multiple impacts with Coulomb friction. It is noteworthy that our
model seems to be able to predict the motion for systems ranging from few grams
(the dimer [66]) to several hundreds of kilograms (the rocking blocks in [43, 44]).
Most importantly it is shown that the free-rocking experiments can be used to fit
the parameters (restitution coefficients, friction coefficients, block width) which are
used to predict more complex motions with base excitation. The paper is organized
as follows: in Sect. 2 the planar block dynamics and the multiple impact model are
introduced. Sect. 3 is dedicated to the comparisons between the experimental data
in [43, 44] and numerical results, for free-rocking motion. Sects. 4, 5 and 6 deal with
the case of base excitation: rocking motion, the onset of rocking and the overturn
phenomena are studied. Conclusions end the paper in Sect. 7.

2 The block dynamics and the impact law

In this section we introduce the dynamical model of the two-body block/anvil system
which will be used to perform the numerical simulations.

2.1 The block dynamics outside the collisions

Let us consider the block as a three-degree-of-freedom planar homogeneous solid,
with generalized coordinates qT = (x, y, θ), where x and y are the horizontal and
vertical positions of the center of gravity, θ is the angular position, see Fig. 1.
The base (the anvil) is a one degree-of-freedom system with mass mb, moving in
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Figure 1: The planar block with horizontally moving base.

translation along the x−axis. Its position is denoted as xb. Let us make the following
assumptions.

Assumption 1. The block/anvil contact can be represented by two points A and B

at the corners.

Assumption 2. The dynamical effects of the block on the anvil are neglected.

Assumption 1 is common in the rocking block literature. Its validity will be
discussed in this paper. Assumption 2 is motivated by the fact that we shall use
experimental results from [43, 44]. Actually it is indicated in [44] that the uniaxial
shaking table used in their experiments has a total mass mb = 6 tons, while the
blocks have masses ranging from 120 to 500 kg. Hence m

mb
∈ [0.02, 0.08]. In fact,

assumption 2 means that one neglects all vertical motions (velocity jumps at impacts,
vibrational effects) in the mechanical structure which makes the base.

Following [10, Chapter 6] we infer that the block, when y ≤
√

l2+L2

2
, is subject to

two unilateral constraints:







f1(q) = y − l
2
cos(θ) + L

2
sin(θ) ≥ 0

f2(q) = y − l
2
cos(θ) − L

2
sin(θ) ≥ 0,

(1)

where f1(q) ≥ 0 expresses that point B cannot penetrate into the base, while
f2(q) ≥ 0 expresses the same for point A. Given the above assumptions, the dy-
namics of the block subject to (1) and Coulomb friction is given by :
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mẍ(t) = λt,1(t) + λt,2(t)
mÿ(t) = λn,1(t) + λn,2(t) − mg

IGθ̈(t) = λn,1(t)
(

l
2
sin(θ(t)) + L

2
cos(θ(t))

)

+ λn,2(t)
(

l
2
sin(θ(t)) − L

2
cos(θ(t))

)

+
(

l
2
cos(θ(t)) − L

2
sin(θ(t))

)

λt,1 +
(

l
2
cos(θ(t)) + L

2
sin(θ(t))

)

λt,2

0 ≤ λn(t) ⊥ f(q(t)) ≥ 0
λt,i(t) ∈ −µiλn,i(t) sgn(vt,i(t) − vb(t)), i = 1, 2,

(2)
where vb(t) = ẋb(t) is the base horizontal velocity, µi > 0 is the friction coefficient

at contact i, and vt,i is the tangential velocity at the point i, i.e. vt,1 = ẋ +
(

l
2
cos(θ) − L

2
sin(θ)

)

θ̇ at B and vt,2 = ẋ +
(

l
2
cos(θ) + L

2
sin(θ)

)

θ̇ at A (from which
vt,1 = vt,2 when θ = 0). Notice that if the contact point i detaches then the
complementarity conditions imply that λn,i = 0 so λt,i = 0. The complementarity
conditions are componentwise, f(q)T = (f1(q), f2(q)), λT

n = (λn,1, λn,2). For a block
with G at the geometric center one has IG = m

12
(l2 + L2). In (2) we have not yet

considered the impacts with the ground, but only those phases of motion where the
contact force is a bounded function of time. It is possible to rewrite compactly the
smooth part of the dynamics in (2) as:

Mq̈(t) = Wn(q(t))λn(t) + Wt(q(t))λt(t) − g (3)

with g = (0 mg 0)T , M =diag(m,m, IG), Wn(q) and Wt(q) are easily identified
from (2). One has vn = W T

n (q)q̇, vt = W T
t (q)q̇, where vn = (vn,1 vn,2)

T , vt =
(vt,1 vt,2)

T denote the local velocities of the contact points [2]. From (1) and (2) the
complementarity problem that allows one to calculate the contact forces during the
smooth phases of motion (i.e. outside impacts) is given by:

0 ≤ λn(t) ⊥ A(θ)λn(t) + Wn(q)M
−1Wt(q)λt(t) + B(θ, θ̇) ≥ 0, (4)

with

A(θ) =

( 1
m

+ 1
4IG

(l sin(θ) + L cos(θ))2 1
m

+ 1
4IG

(l2 sin2(θ) − L2 cos2(θ))
1
m

+ 1
4IG

(l2 sin2(θ) − L2 cos2(θ)) 1
m

+ 1
4IG

(l sin(θ) − L cos(θ))2

)

,

(5)
and

B(θ, θ̇) =

(

−g + 1
2
θ̇2(l cos(θ) − L sin(θ))

−g + 1
2
θ̇2(l cos(θ) + L sin(θ))

)

. (6)

The matrix A(θ) = W T
n (q)M−1Wn(q) is the so-called Delassus’ matrix of the sys-

tem (1) (2). The details on how to analyze and solve such problems is outside the
scope of this paper, see [2, 35]. Let us just mention that, in general, friction may cre-
ate inconsistencies and indeterminacies [10, §5.5] yielding Painlevé paradoxes. Such
issues are met only for unrealistic values of friction in planar blocks [30, Appendix
A].
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Remark 1. In this paper the basic Coulomb’s law is enhanced to incorporate static
µs and dynamic µ friction coefficients, see Fig. 4. Also it will be assumed in all the
following simulated examples that µ1 = µ2 = µ and µs,1 = µs,2 = µs, in accordance
with the experimental data taken in [43, 44].

2.2 The impact dynamics

The impact model proposed in [33, 34, 35, 36, 66] is summarized in this section. It
will be named the LZB impact model in the following (from the authors’ names).
The contact stiffnesses are denoted as ki, the elasticity potential energy at contact
i is Ei, η is the elasticity coefficient. The matrix Wn(q) is the jacobian between
the generalized velocities q̇ and the contact points normal relative velocities, i.e.
W T

n (q) = ∂f

∂q
(q) = ∇fT (q) ∈ IR2×3, whereas Wn(q)λn represents the generalized con-

tact force associated with the generalized coordinates q, see (2) and (3). The scalar
Pn,i denotes the normal component of the interaction force impulse at contact point
i, Pn = (Pn,1, Pn,2)

T is the vector of normal impulses. An important assumption
in this model, that is an extension of the Darboux-Keller approach [10], is that
positions q are constant during the impact process. Thus Wn(q) is supposed to be
constant during an impact and is simply denoted as Wn. In the frictionless case the
LZB impact dynamics is summarized as follows:

• Contact parameters: γji =
kj

ki
(normal contact stiffnesses ratios), en,j (energetic

restitution coefficients), 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, η (= 1 for linear elasticity, = 3
2

for Hertz contact, or other values).

• Dynamical equation:

M
dq̇

dPn,i

= Wn
dPn

dPn,i

if Eji(Pn,j, Pn,i) ≤ 1 for j 6= i (7)

with the distributing law1:

dPn,j

dPn,i

= γ
1

η+1

ji (Eji(Pn,j, Pn,i))
η

η+1 , (8)

and the potential energies ratios:

Eji(Pn,j, Pn,i) =
Ej(Pn,j)

Ei(Pn,i)
, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, (9)

where:

Ej(Pn,j) =

∫ Pn,j(t)

0

wT
j q̇ dPn,j. (10)

1The power of the potential energies ratio Eji(Pn,j , Pn,i) is inverted in [33, 34].
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The vectors wj
∆
= ∇fj are the columns of the jacobian matrix Wn. The impulse

Pn,i at contact i is the so-called principal impulse that is chosen as the new time-
variable in the impact model. It may change during the impact process, see [33] for
details. The compliance effect is added into LZB model by using a contact model
such as the mono-stiffness or bi-stiffness compliance models. We limit ourselves to
the bi-stiffness as presented in [21, pp.92, 107], which aims to incorporate elastic
effects together with plastic, damage and other irreversible effects. It has been
experimentally verified for sphere/sphere impacts in several papers, see e.g. [6, 12,
13, 52, 57, 59]. As illustrated in Fig. 2, for the bi-stiffness compliance model the
force-indentation relationship at a given contact point j for the compression phase
is expressed as:

Figure 2: Bi-stiffness contact compliant model.

λc,j = kj(δj)
η. (11)

It is different from that for the expansion phase expressed as:

λe,j = λM,j

( δj − δr,j

δM,j − δr,j

)η

, (12)

where δr,j is the plastic deformation, and λM,j and δM,j are respectively the maximum
values of the normal contact force and of the normal deformation at the contact point
j at the end of the compression phase (when δ̇j = 0). The maximum compression
is attained at the point M in Fig. 2, and δr is the residual indentation. The time
tc of maximal compression at the contact j is calculated from δ̇j(tc) = 0 where
δj is the relative normal displacement at contact j (δ̇j = wT

j q̇ = ∇fT
j q̇). For a

single impact at contact j, the termination time tf is calculated from the energy
constraint Wr,j = −e2

n,jWc,j, where the works during compression and expansion
phases are given by, respectively:

Wc,j =

∫ Pn,j(tc)

0

wT
j q̇ dPn,j, Wr,j =

∫ Pn,j(tf )

Pn,j(tc)

wT
j q̇ dPn,j. (13)
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Thus the residual indentation δr,j at contact j is a function of en,j, and δr,j =
δM,j(1 − e2

n,j) for constant en,j, see [33, Equ. (3.4)]. When a contact experiences
multiple cycles of compression and expansion phases, secondary cycles can be treated
as the case of single cycles with an initial potential energy. The initial potential
energy of each secondary cycle is the one computed for the preceding cycle at the
point where the secondary cycle under consideration starts. To illustrate this, we
consider a contact experiencing two compression and expansion phases shown in
Fig. 3. The secondary cycle starts at the point R, follows the compression curve

R̂M2 and then the expansion curve M̂2B, and finally stops at the point B where the
potential energy is entirely released or dissipated. This secondary cycle is treated
as a single cycle whose initial potential energy Eo,j is the potential energy at the

point R computed for the cycle ÔM1R. As proved in [33] the distributing law in
(8) remains valid for multiple compression/expansion phases, i.e. more than two
compression/expansion cycles at the same contact point.

Figure 3: Contact experiencing multiple compression and expansion phases.

One has en,j ∈ [0, 1] which means that the work performed by the normal force
during the expansion cannot exceed the energy “injected” in the system during
the compression (when several compression/expansion phases exist at contact j the
energetical constraint is applied to the whole contact process at this point). In
view of (2) in the frictionless case the impact dynamics has reduced dimension
because dẋ

dPn,i
= 0, hence the coordinate x plays no role in the analysis, see (2) with

λt,1(t) + λt,2(t) = 0. Coulomb friction can be easily added in the impact model,
at the force (or infinitesimal impulse) level [35, 66]. In such a case the right-hand-
side of (7) has to be modified accordingly with the insertion of the tangential force
components, see (2) and (3):

M
dq̇

dPn,i

= Wn
dPn

dPn,i

+ Wt
dPt

dPn,i

if Eji(Pn,j, Pn,i) ≤ 1 for j 6= i (14)

This impact model is therefore a rigid body model that incorporates some flex-
ibility effects through the distributing law, with one restitution coefficient and one
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(or two) friction coefficient per contact. In this work we shall use the same static
and dynamic coefficients of friction for the two contact points. More details on the
implementation may be found in [35, 36, 41]. For the dynamics outside the impacts,
the complementarity problem in (4) is used to integrate the system, and either an ex-
plicit Euler or a Runge-Kutta algorithms are implemented. It is noteworthy that the
numerical scheme that is employed next is of the event driven type [2], and that all
the stick/slip and contact/detachment conditions are carefully taken care of (taking
care, in particular, of the multivalued feature of the friction law at zero tangential
velocity). To summarize we use an event-driven method with the complementarity
model (2) outside impacts and the above LZB impact dynamics when an impact is
detected. In the rest of the paper it will be assumed that the normal restitution is
identical for the two contact points, denoted as e∗n. The impact LZB model applied
to the block/anvil system therefore has a total of 5 parameters including friction:
en, η, γ12 = k1

k2
, µ, µs.

0

−µ

−µs

µs

µ

λt,i
λn,i

−vt,i

Figure 4: The friction model, i = 1, 2.

Remark 2. An interesting feature of the LZB impact law is that it allows for
stick/slip transitions during the impacts, as shown in [64, 65]. This means that
the relative tangential velocity can reverse its sign during the collision without im-
plying energetical incoherencies, as it is the case with kinematic restitution laws
[11, 15]. Tangential velocity reversals do occur in the planar block, see Fig. 21
(b) in [64]. Notice that the complementarity modeling in (2) has been used before
for block/ground systems in [5, 45, 50, 63]. Finally it’s noteworty that rocking mo-
tions cannot be described by kinematic normal restitution laws coupled to Coulomb
friction [11]. This means that kinematic restitution laws are unable to model dry
friction effects and rocking motions together. Other models have been introduced
[4, 24] which allow for different modes (airborne block, stick/slip transitions). [4]
use a compliant contact/impact model, whereas [24] uses a rigid body model but no
complementarity relations, and the friction during impacts is simply introduced with
constant kinematic tangential restitution coefficients.
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3 Free-rocking experiments

In this section it is proved that the LZB model can be fitted to provide correct
predictions of free-rocking motions, with fixed base. Free-rocking corresponds to
the block initialized with a non-zero angle θ(0), one corner in contact, and zero
initial velocity θ̇. Experimental data led on blue granite stone blocks are reported
in [43, 44]. In the following we provide detailed comparisons between the numerical
simulations obtained with the LZB model and the experimental data of [43, 44]2.
The tests concern four specimens of blocks. The masses of the blocks are estimated
from their dimensions and density, and are given by 503 kg, 228 kg, 120 kg, 245 kg
for specimens 1, 2, 3, 4 respectively. It has been shown in [44] that specimen 3 is
prone to significant three-dimensional effects like torsional and vibrational effects.
Due to this the planar model could not satisfactorily reproduce the experimental
θ(t) response. Similar difficulties were found in [43] to calibrate a DEM model
on specimen 3 data (see Table III in [43]). The results for specimen 3 are thus not
presented in this paper. Specimens 1, 2 and 4 experimentally showed no or negligible
three-dimensional effects [44, Sect. 8.1].

3.1 The θ(t) response

The results are depicted in Figs. 5 (a), (b) and (c). The fitted restitution coefficients
are en = 0.999 for specimen 2 in Fig. 5 (b), and en = 0.97 before 2.83s, en = 0.88
after 2.83s for specimen 1 in Fig. 5 (a). For specimen 4 the fitted values are en = 0.99
before 0.85s, en = 0.84 after 0.85s (see comments (i) and (ii) in Sect. 3.2). The fitted
dimensions are l

L
= 1

0.23
≈ 4.35 for specimen 1 and l

L
= 1

0.155
= 6.45 for specimen 2,

l
L

= 0.50
0.115

= 4.34 for specimen 4. The friction coefficients are chosen as µ = 0.3 and
µs = 0.577 as in [44]. The SRM curves correspond to the response calculated with
the Housner angular restitution coefficient (as recalled in the introduction).

Uncertainties in en and L It happens that the rocking motion is highly sensitive
to parameters variations, which renders the calibration of the parameters a delicate
process. This is illustrated in Figs. 5 (b) and 6 below, see also Fig. 41 in [64], where
it is shown that very small variations on en and L produce large variations on the
θ(t) response. The uncertainty in the width L affects mainly the pseudo frequency
of the oscillations and has little effect on the magnitudes. This is in contrast with
uncertainties on en which affect both the frequency and the magnitude. The various
widthes which enter the study are recapitulated in Table 1. The geometric widthes
are those measured on the blocks. The experimental widthes are obtained from an
estimation process using the Housner model, see Sect. 4.1 in [43]. The other two

2All the experimental data used for the comparisons with numerical data presented in this
paper have been made available to us by Dr F. Pena from Instituto di Ingenieria, UNAM, Mexico.
They correspond to the data in the various figures and tables in [43, 44]. They can be consulted
in Tables 3–8 in [64].

10



1 2 4
Geometric width (m) 0.24 0.16 0.15
Experimental width (m) 0.2394 0.1645 0.1255
Width in simulations of [44] (m) 0.2468 0.1696 0.1464
Width in LZB model (m) 0.23 0.155 0.115

Table 1: The various widthes.

sets of widthes are obtained by fitting the parameters. The larger width discrepancy
for specimen 4 comes from large cuts at the corners on this block. The choices for
smaller widthes in simulation are in agreement with the conclusion in [48], where
what we call the width in simulation may be called the effective width following [48].
In short, due to the contact line geometry imperfections, the equivalent width of the
model with two contact points must be smaller than the geometrical width of the
real block. See also Sect. 3.2 (ii) below.

The elasticity coefficient η and normal stiffnesses The elasticity coefficient
enters the LZB impact model through the co-called distributing law and the poten-
tial energies ratios Eji(Pj, Pi). In all the simulations we have made the choice η = 3

2

(Hertz contact). It happens that the potential energies ratios are small enough so
that changing η from 1 to 3

2
does not much influence the results. Also we always

chose stiffnesses ratios equal to one for obvious physical reasons (the materials char-
acteristics are the same at both contact points). Notice that only the stiffnesses
ratios play a role in the impact dynamics, not their absolute values (this fact holds
true for other types of multibody systems with several contact points, see [10, Claim
6.3]).

3.2 Comments

• (i) Some fitted values for en (i.e. 0.999 or 0.99) are very close to one, show-
ing very small amounts of kinetic energy loss at each impact. Experimental
works on single granite/granite impacts without friction report values of the
restitution coefficient in [0.873, 0.897], and varying non monotonously with the
height drop [23, Fig. 6]. It is also known from many experimental results that
the restitution coefficient usually tends to 1 when the initial relative velocity
tends to zero, see e.g. [52]. In the presented results the normal relative ve-
locity is very small (about 0.02 m/s). The values for the angular restitution
coefficient r calculated in Table II in [43] are very high also, however. In Fig.
5 (d) are reported the values of r obtained from the LZB model and from the
experiments in [44]: they almost match. This demonstrates indirectly that our
values are realistic values close to the experimental ones. We infer that the dis-
sipation visible on the θ(t) responses in Figs. 5 (a) (b) (c) may be due mainly
to the rebound phases that involve many impacts before the contact corner
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Figure 5: Numerical vs experimental values of θ(t) and r.
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stabilizes on the base (as experimentally evidenced in [32]), and possibly to
sliding during the impacts.

• (ii) The fitted value for en had to be decreased after some impacts for both
specimens 1 and 4. Arguments concerning the two-point contact assumption,
the line contact effects and the effective width are discussed in [43], see also
[48]. It is noteworthy that such switching process has not been necessary for
the bouncing dimer (see [66] and [35]). However the bouncing dimer has two
physical contact points (two sphere/plane contact points), whereas the two-
contact-point model is a rough approximation of the line/line contact for the
planar block/anvil system. Line/line or even plane/plane effects together with
low normal veclocities may explain the necessity of the switch in the fitted
values for en.

• (iii) A detailed analysis of the angular restitution coefficient r = θ̇(t+)

θ̇(t−)
is pro-

posed in [64, Sects. 6.1.2, 6.3]. The major conclusion is that r varies very little
during the established rocking motions, despite its first value may differ by a
small percentage from the other values (see Figs. 43, 44, 45 and 56 in [64]),
and that it varies little when en varies, see Table 9 in [64]. This suggests that
a kinematic restitution law with angular velocity restitution might be used,
provided that r can be chosen within the admissible domain defined by the
kinematic, kinetic and energetic constraints [11] (see also comment (iv) below).
However an important part of the dynamics like the rebound phases after the
first impact, may be missed in many instances of slender blocks. The transient
behaviour before rocking occurs cannot be predicted by such an impact model
(see Sect. 5). We infer that this kinematic law does represent the rocking
motion only when there is tangential sticking at impacts and outside impacts,
and when the rebound phases vanish (such cases have been experimentally
shown, see [32] with l

L
= 8). Moreover such a kinematic law does not permit

to predict that a particular motion will occur: it can just be fitted a posteriori.
If, anyway, one knows in advance that perfect rocking3 with sticking (or almost
sticking) contact/impact points is going to occur, then a kinematic law may
be preferred because of its simplicity that may be important for calculations.

• (iv) In Fig. 5 (d) are plotted three angular restitution coefficients: computed
and averaged from the LZB simulations with the above fitted parameters rLZB,
from the experiments in [44] rexp, and the Housner coefficient obtained from the

conservation of angular momentum r = L2−2l2

2L2+2l2
. The conservation of angular

momentum hypothesis usually yields an underestimation of r. This is quite
visible in Figs. 5 (a) (b) (c) where the Housner value of r yields a much too
big dissipation. This is consistent with the results reported in the fourth row
of Table 1 in [11].

3Perfect rocking means that the block rocks without any tangential slip, and with no rebound
at the impacting corners.
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Figure 6: Specimen 2, en = 0.99.

• (v) A very good fitting has been obtained for specimen 2, with en = 0.999 in
Fig. 5 (b). As we shall see in Sects. 4 and 5, the persistent rocking motion and
the onset of rocking with base excitation are better fitted with en = 0.99. One
observes in Fig. 6 that the choice en = 0.99 provides a very good fitting for the
first oscillations, with a small divergence after 8.5 s. The underlying question
is whether the free-rocking experiments can be used to fit the parameters for
the base-excited simulations. The relative difference between the two fitted
en is less than 1%. In view of the high sensitivity of the block responses with
respect to such parameters, it seems unavoidable that an additional process
for parameter identification may be necessary in some instances.

4 Rocking motion with harmonic base excitation

Experiments with horizontal base excitation are presented in [44]. We consider here
the specimens 1 and 2 in [44]. The base excitation has the form xb(t) = A sin(ωt).
The parameters en and µ, µs in the LZB model are those obtained from the free-
rocking fitting process, i.e. en = 0.97 for specimen 1, en = 0.99 for specimen 2,
µ = 0.3, µs = 0.577,l = 1m and L = 0.23m for specimen 1, l = 1m and L = 0.155m
for specimen 2. The results are reported in Fig. 7. It is seen that the LZB model has
the tendancy to underestimate the peaks magnitudes, however the frequency of the
response is very well predicted. As shown in Fig. 12 in [44] through repeatability
tests, the amplitude of the rocking angle θ(t) may vary from one experiment to the
other, which may explain that the LZB model does not predict the same amplitude
as in the experimental figures. We may anyway conclude that there is a very good
matching between the numerical results and the experimental ones using the free-
rocking fitted parameters, taking into account comment (v) of Sect. 3.2.
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Figure 7: θ(t) responses with base excitation.
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Remark 3. The DEM method employed for the simulations in [43] seems to provide
comparable results to the LZB/complementarity one, see Fig. 7 in [43] that concerns
specimen 2 with A = 5mm, ω

2π
= 5 hz. It is difficult at this stage of the studies to

determine which of the two methods is the best one. It is however noteworthy that
we show in this paper that the LZB/complementarity model and event-driven code, is
able to correctly predict several types of motions (free-rocking, rocking with horizotal
motion, onset of rocking). It is also recalled that the LZB model successfully predicted
various motions of different impacting systems like chains of balls [34, 36, 40] and
bouncing dimer [66]. It therefore encaspulates the main dynamical effects which are
necessary to well simulate multiple impacts for rate-independent materials, with few
parameters that possess a clear physical meaning for both the tangential and the
normal dissipation effects.

5 Onset of rocking with harmonic base excitation

To start with, the onset of rocking motion in the (A, ω) plane is depicted in Fig. 8
(a) with the experimental data taken from Table 4 in [44]. They concern specimen 2
with l = 1m, L = 0.155m, m = 228 kg. In all of this section en = 0.99, µ = 0.3 and
µs = 0.577. A good matching is found between the numerical and the experimental
results4. Notice that it is considered that rocking is initiated if the block not only
starts to rock on the base, but if this rocking motion is persistent in time (i.e. the
mere detachment of one contact point is not sufficient to decide for rocking). The
tendency is that rocking starts to occur for large A when ω is small, and for small
A when ω is large. This tendency is also in agreement with the experimental data
of Fig. 14 in [58].

Fig. 8 (b) depicts the onset of rocking for base amplitude A = 5mm. The
friction parameters are varied. For high enough friction the onset of rocking occurs
almost independently of the friction, but depends mainly on the aspect ratio l

L
,

corroborating previous results [58]. For small enough friction however, there exists
a minimum aspect ratio l

L
under which the onset of rocking starts to depend a lot

on friction. When the friction is high enough the contacts statuses are mostly stick,
therefore the value µ does not count whereas µs plays a role. The results for l

L
< 2

are not depicted in Fig. 8 (b). Indeed for such values of the aspect ratio and for
realistic values of friction, the onset or rocking occurs for very large values of the
frequency and one may infer that rocking never occurs in practice.

Let us now consider Fig. 8 (c), which depicts the onset of rocking as a function
of the aspect ratio l

L
and the amplitude A, for a fixed frequency f = ω

2π
=3.3 Hz.

The points on the curve represent the lower limit of the necessary A for onset of

4It is important to notice here that the experiments in [44] have been led for a discrete set of
amplitude values, for obvious experimental constraints. Thus the experimentally obtained mini-
mum amplitudes, for a given frequency, are necessarily larger than the numerical ones, which have
been computed from a much finer set of amplitude values. This explains the discrepancies between
the red dots and the triangles in Fig. 8 (a)
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rocking, i.e. rocking occurs for magnitudes just larger. Flat blocks need a large A

to rock, while slender blocks rock for small A. This seems intuitively clear. Fig. 9
are depicted the trajectories θ(t) and the relative tangential velocity ẋrel(t) at the
contact point A, for amplitude A = 5.94 mm just below the amplitude that triggers
rocking and frequency f = 3.3 hz, and the amplitude such that there is onset of
rocking A = 5.95 mm. These trajectories show that the block motion before rocking
settles, is far from an all-stick motion (stick in the tangential direction, and with
no impacts), but usually possesses velocity jumps and stick/slip transitions (accel-
eration jumps). The fact that the complementarity + LZB model is able to predict
the onset of rocking after such a complex transient dynamics, with few parameters
fitted from the free-rocking experiments, proves that is does encapsulate the main
dynamical effects of the block/anvil system.

Finally Fig. 10 depicts the variation of the minimum value of the product Af 2

that determines the onset of rocking, as a function of l
L
. Notice that this quantity

is directly related to the maximum acceleration of the base. The values of Fig. 10
are obtained from the average of several values obtained by varying both A and
f (see the data in Tables 17 and 18 in [64]). It is clear that the minimum Af 2

tends to infinity as l
L

tends to zero (very flat blocks), while it tends to zero as
l
L

diverges (very slender blocks). The curve is very regular (and exponential-like)
for aspect ratios ≥ 3. Previous works report a criterion for the onset of rocking
without sliding [27, 45, 50], which in fact reduces to a static equilibrium criterion
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µs ≥ L
l

(see e.g. equ. (32) in [27]). The results obtained here do not make the
sticking assumption, and some slipping phases are possible both outside and during
the impacts, as evidenced in Fig. 9. The maximal acceleration of the base is known
to play a significant role in the block dynamics, see e.g. [26] where this is denoted
as PTA (for Peak Table Acceleration) and used to study the so-called Engineering
Demand Parameter in purely sliding motions. It is also noteworthy that our results
are not based on some model approximations as done sometimes [1] but keep the
full non-linearity of the dynamics in addition to the nonsmooth features.

6 Overturning phenomenon

In this section the overturning phenomenon is studied numerically, where the classi-
cal harmonic and pulse-based excitations are used. Many studies have been devoted
to the overturning phenomenon, see e.g. [1, 3, 14, 17, 26, 27, 28, 48, 54, 56, 58]. In
particular several works aim at defining simple enough criteria that may be used to
assert if a block is likely to overturn or not. Our goal in this section is rather to
prove that the LZB model may be useful to study the overturning because it encap-
sulates the rich dynamics of the block/ground system. Comparisons with existing
numerical studies on the overturning are presented.

6.1 Harmonic base excitation

We first consider a horizontal harmonic motion of the base of the above form
xb(t) = A sin(ωt). It is expected that the overturning phenomenon hardly obeys
simple rules, because it is known that the block dynamics with moving base is
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an extremely sensitive process with respect to initial data and parameters, espe-
cially when restitution is high and stick/slip occurs [25]. In all the figures of this
section, the curves are numbered starting with the smallest magnitude, or with
the smallest frequency. The overturning is the result of an “optimal” exchange of
energy between the base and the block, through an increase of the block’s oscil-
lation magnitude. This is illustrated in Fig. 11 (a), where the θ(t) response is
depicted during 6s, with frequency ω

2π
= 3.3Hz, en = 0.99, l

L
= 6 and L = 0.155m,

µ = 0.3, µs = 0.577. This figure demonstrates that overturning may occur quickly
for A = 40, 55, 60, 70, 30, 50mm, later for A = 25, 35, 45, 65mm, and not overturn
for A = 15mm before 6s. In all cases the block motion before the overturn is quite
similar in frequency and amplitude. This indicates that the overturn is the result
of a sudden “break” in the base/block relative motion. Fig. 11 (b) shows that
decreasing en, i.e. adding normal dissipation at the impacts, decreases significantly
the risk of overturning since all amplitudes A ≤ 40mm yield stable rocking. Fig. 12
(a) shows that decreasing A may yield a stable rocking motion after some transient,
as may be expected. In Fig. 12 (b) the same study is done with varying frequencies
and fixed A = 3mm. Similar conclusions as for the varying amplitude can be drawn,
that there is no monotonic variation of the overturning phenomenon as a function
of the base frequency. Discontinuities in the dynamical behaviour are common in
systems with impact and Coulomb friction. It is expected that more energy dissi-
pation is going to prevent the block from overturning. Dissipation may come from
two sources: sliding motions and normal restitution. The friction between the base
and the block mainly influences the onset of rocking, for if µ = µs = 0 the block’s
corners never detach from the base. However when rocking has been established
the most efficient way to “control” the overturning via energy dissipation is through
the normal restitution, as demonstrated in Fig. 11 (b). The base excitation is a
persistent one. This means that it is difficult to assert firmly whether a motion
is really stable or not, because the mechanism of energy transmission between the
base and the block is very complex. For instance we cannot say if the motion with
A = 40mm in Fig. 11 (b) is stable or not on a long term. This is why studying
overturning with simpler base excitations like one-sine period only, may be useful.
This is done in the next section.

6.2 Pulse-type base excitation

Let us consider that the base has the pulse-type motion (called one-sine type-A
pulse in [26, 37, 62]) with an acceleration equal to:

v̇b(t) =







ap sin(ωpt + ψ) if − ψ

ωp
≤ t ≤ 2π−ψ

ωp

0 otherwise,

(15)

with ψ = arcsin(αg

ap
), α = arctan(L

l
). The advantage of considering such a base

excitation is that it allows one to clearly separate the motions that overturn and
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Figure 11: The overturning with varying A, f = 3.3Hz.
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those that do not overturn. Indeed once the base is at rest, the block may only
lose energy. If it has not overturned before it starts to lose its energy, it will never
overturn. This has been used in [26, 62], where one can find numerical results about
the safe and unsafe areas depending on the amplitude and frequency of the base
excitation (see for instance Fig. 6 in [26]). The results are reported in Fig. 13 (a).
The parameters are chosen as in [37, Fig. 5] which is reproduced in Fig. 13 (b), i.e.

l = 1.555, L = 0.3971, en = 0.9, so that p
∆
=

√

3g

4R
= 2.14 and α = arctan(L

l
) = 0.25.

• In Fig. 13 (a) are depicted various areas in the ( ap

αg
,

ωp

p
) plane. Qualitatively

we recover the same shapes as in [26, Fig. 6] or [37, Figs. 5, 8, 9]: a big
area within which overturning occurs with no impact, and a smaller “tongue
shaped” area where overturning occurs after one or several impacts. In more
details:

– µ = 0.3, µs = 0.577: overturn with no impact in AGH, with one or two
impacts in AFECBA.

– µ = 0.3, µs = 0.8: overturn with no impact in AGH, with one or two
impacts in AFIDCBA.

– µ = 0.5, µs = 0.8: overturn with no impact in AGJK, with one or two
impacts in AFIDCBA.

The tongue-shaped areas have been reported numerically and with some ex-
perimental validations on overturning in [17, Figs. 6,7,8]. They have been
computed numerically in various papers [14, 26, 28, 56].

• The transitions between the various areas in Fig. 13 (a) are illustrated in Figs.
67, 68, 69 in [64]. In particular the number of impacts before the overturn event
may be seen on the θ(t) curves (a) (b) (c) of these figures. There are however
some discrepancies with respect to the results in [26, 37, 62], see also [27]:

– Consider the case µ = 0.5, µs = 0.8. The overturn in the area above
the line AB and below the line AF , occurs after two impacts (which is
new compared to [26, Fig. 6] and to Fig. 13 (b) which indicate only one
impact). There is a discontinuity between points B and C, because the
overturning in the area above CD and below the next curve AFI occurs
with one impact only. The result is that the LZB model considers that
overturn may occur for much higher frequencies than the linear model
used in [37] to establish Fig. 5 in that paper. Notice that the break at
BC corresponds to the largest frequency of the one-impact overturn area
of Fig. 13 (b).

– The overturning area with one or two impacts, is much larger than the
one-impact overturning area in [26, Fig. 6] or [27, Fig. 11]. It is note-
worthy that Fig. 11 in [27] and Figs. 8 and 9 in [37] already show a big

23



discrepancy between the two models used in these papers (called therein
the linear and the non linear models), as illustrated in Fig. 13 (c) (the
scales are not the same but are presented in [37] so that the two figures
can still be compared). Our simulations are led with the full smooth
nonlinearities, and with in addition the stick/slip modes. This indicates
that simplyfying too much the dynamical equations and neglecting the
smooth nonlinearities in (2) as well as Coulomb’s friction modes outside
and during the impacts, may result in an overestimation of the safe area
of no overturn: as long as new dynamical effects are added to the model,
the safe area decreases as is visible starting from Fig. 13 (b) then (c) then
(a). As shown in [37, Fig. 14] the discrepancy between the results pro-
vided by the various models also depends on the type of excitation that
is applied on the base. We may infer that much more work is needed in
the future to determine safe areas as a function of all parameters: aspect
ratio, contact parameters, base excitation.

• As expected the safe area increases when the friction decreases, that indicates
that more slip implies less overturn. In the frictionless limit there is no overturn
since the block keeps slipping on the base.

• Figs. 14 (a) (d) (g) correspond to a point on the line AB in Fig. 13, Figs.
14 (b) (e) (h) correspond to a point on the line CD, Figs. 14 (c) (f) (i)
correspond to a point on the line AF . From Figs. 14 (g) (h) (i) one sees that
the overturning is almost always occurring after a phase of slip, followed by a
sticking phase at the point of contact (notice that the vertical scales in Figs.
14 (g) (h) (i) and in Figs. 14 (d) (e) (f) are quite different in magnitude).

The overturning phenomenon is certainly the most complex phenomenon that
may occur in the block/ground system. Our numerical results mainly aim at show-
ing that the LZB model with friction, coupled to the complementarity system in
(2) outside the impacts, may improve our knowledge about overturning in planar
blocks. It is to be considered as a preliminary work because on the first hand three-
dimensional effects are likely to play a significant role in most of the experiments
with strong base excitation, on the second hand real earthquakes excitations are
more complex than those considered here.

7 Conclusions

This paper focusses on the experimental validation of the multiple impact law with
Coulomb friction introduced in [33, 34, 35, 36, 66] on the planar block/anvil system.
This impact law is based on the Darboux-Keller assumptions, and is a rigid body
model incorporating local flexibility effects at the contact points, with few parame-
ters per contact (restitution and friction coefficients). Detailed comparisons between
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the numerical results obtained with an event-driven method and the experimental
data found in [43, 44] are made. It is shown that the simple, free-rocking exper-
iments, may be used to fit the parameters of the impact law for simulating more
complex dynamics with base excitation. Compared to other models widely used in
the Earthquake Engineering literature, our model incorporates Coulomb friction and
allows for bounces at the contact corner, a fact experimentally evidenced elsewhere
[32]. In particular, this allows to simulate the transient behaviour that occurs before
the onset of rocking, which is shown to consist of stick/slip and impact events, that
can hardly be neglected. It also has the advantage of using few parameters. This
work is a preliminary validation of a recently introduced multiple impact law with
Coulomb friction, on a two-body, two-dimensional system. Future works should
concern in priority :

• the analysis of the three-dimensional block/anvil system;

• incorporating line/line or plane/plane contact models, lumped flexibilities in
the structure, asymmetry in the block geometry;

• more complex base excitations, like real earthquake and random excitations;

• stacked blocks.
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