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Abstract

This note presents an extension of the absolute stability problem and of the Lagrange–Dirichlet theorem, when the
nonlinearities entering the model are considered within the class of monotone multivalued mappings (consequently including
operators with piecewise-linear graphs that may represent physical e3ects like Coulomb friction, dead-zones, saturations,
elasto-plasticity, and unilateral constraints).
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Absolute stability; Nonsmooth Lyapunov functions; Multivalued monotone mappings; Moreau’s sweeping process; Passivity;
Convex analysis

1. Introduction

The absolute stability problem (and its various
forms known as the passivity theorems) and the
Lagrange–Dirichlet theorem are both fundamental
tools for the study of the stability of nonlinear dy-
namical systems [18,20,30]. The >rst one concerns
the study of the stability of a linear positive real
transfer function G(s) (or more generally of any
dissipative system) with a nonlinear static feedback
characteristic (see Fig. 1). The second one gives a
criterion for the stability of Lagrangian mechanical
systems. In this note we >rst extend Theorem 5.6.18
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–7, 2001.
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in [30] 1 to the case when the static nonlinearities
are multivalued monotone mappings (thus in partic-
ular allowing the nonlinearity to belong to the sec-
tor [0;+∞] and not restricted to the sector [0;+∞)).
Then we extend the Lagrange–Dirichlet theorem to
the case of mechanical Lagrangian systems subject to
unilateral [4] (or inequality) frictionless constraints.
We make use of the convex analysis framework as
developed by Rockafellar and Moreau [23,27]. Be-
fore stating the two main results, we brieHy recall the
conditions which guarantee that a given state x0 is a
>xed point of the dynamical system considered. They
take the form of generalized equations. 2 The inter-
est for extending the above stability tools towards the

1 G(s) in Fig. 1 is a strictly positive real transfer matrix and the
operator PL : y �→ yL satis>es PL(0) = 0, yTPL(y)¿ 0 ∀t¿ 0
and ∀y∈Rm, i.e. PL belongs to the sector [0;+∞).

2 i.e. certain types of relations that are similar to equations
except that one side of the relation is multivalued.
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Fig. 1. Absolute stability with monotone multivalued mappings.

case when the feedback nonlinearity is a multivalued
monotone mapping, lies in the fact that such operators
are widely used in physical modelling (e.g. in mechan-
ics [11–13,26]). Though monotonicity clearly implies
dissipativity of the said operator, rendering such ex-
tensions more or less intuitively clear, the analysis has
not, to the best of our knowledge, yet been done.
The note is organized as follows: in Section 2 we

recall some basic concepts of convex analysis. Section
3 is devoted to the absolute stability problem, and Sec-
tion 4 contains the material concerning the Lagrange–
Dirichlet theorem applied to Lagrangian systems sub-
ject to unilateral constraints on the position. Conclu-
sions end the note in Section 5.

2. Basic facts in convex and nonsmooth analysis

All the material in this section is taken from [23,27]
and only aims at introducing the tools which are
needed in this note.
Let K ⊂ Rn denote a convex set. Its indicator func-

tion is de>ned as

 K (x) =

{
0 if x∈K;

+∞ if x �∈ K:
(1)

A convex function f(·) satis>es f(�x+(1−�)y)
6 �f(x) + (1 − �)f(y) for all 0¡�¡ 1, and for
all x and y in its (convex) domain of de>nition.
The subdi3erential of a convex function f(·) at y
is denoted as @f(y) and is the set of subgradients,
i.e. vectors � satisfying f(x) − f(y)¿ �T(x − y)

for all x. The subdi3erential of the indicator of K
(which is convex if K is convex) is given by

@ K (x) =




{0} if x∈ Int (K);

NK (x) if x∈ @K;

∅ if x �∈ K;

(2)

where @K is the boundary of K , and NK (x) = {z |
zT(�−x)6 0;∀�∈K} is the outwards normal cone to
K at x. Notice that 0∈NK (x) and that we have drawn
the sets x + NK (x) rather than NK (x) in Fig. 2. The
set in (2) is the subdi3erential from convex analysis.
However when K is not convex it is possible to ex-
tend (2) using a di3erent de>nition of the subdi3eren-
tial (see [8, Proposition 2.4.12]). This will be useful
when we deal with Lyapunov stability of mechani-
cal systems with non-convex admissible con>guration
subspaces in Section 4.

Remark 1. The symbol @ is used in three di3erent
meanings in this paper: boundary of a set, subdi3er-
ential and partial derivative. Since these notations are
classical we choose not to change them.

The inwards tangent cone V (x) is the po-
lar cone to NK (x) and is de>ned as V (x) =
{z | ∀�∈NK (x); �Tz6 0}. It is also sometimes de-
noted as TK (x) in the literature. Both the normal
and the tangent cones are convex sets. If the set K
is de>ned as {x | h(x)¿ 0} for some di3erentiable
function h : Rn → Rm, then an alternative de>nition
of the tangent cone at x is [24]

V (x) = {v∈Rn | vT∇hi(x)¿ 0; ∀ i∈ J (x)} (3)

with J (x)={i∈{1; : : : ; m} | hi(x)6 0}. One notes that
this de>nition coincides with the >rst one as long as
x∈K , and that K needs not be convex to de>ne V (x)
in (3). We shall use some material from [24] in Sec-
tion 4. Some examples are depicted in Fig. 2 (see
also [4]).
A mapping �(·) from X to Y is said multivalued

if it assigns to each element x of X a subset �(x)
of Y (which may be empty, contain just one ele-
ment, or contain several elements). The mappings
whose graphs are in Figs. 3(c)–(f) are multivalued
[26]. A multivalued mapping �(·) is monotone if
(x − x′)T(y − y′)¿ 0 for any couples (x; y) and
(x′; y′) in its graph. When n= 1 monotone mappings
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Fig. 2. Tangent and normal cones.
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Fig. 3. Monotone mappings (one-dimensional case).

correspond to completely non-decreasing curves. Let
D(�)= {x | x∈X; �(x) �= ∅} be the domain of �(·). A
monotone mapping �(·) is maximal if for any x∈X
and any y∈Y such that 〈y − y1; x − x1〉¿ 0 for any
x1 ∈D(�) and any y1 ∈ �(x1), then y∈ �(x). Com-
plete nondecreasing curves in R2 are the graphs of
maximal monotone mappings. Another interpretation
is that the graph of a maximal monotone mapping can-
not be enlarged without destroying the monotonicity
(hence the notion of maximality). The subdi3erential
@’(·) of a convex lower semicontinuous function on
Rn is a monotone mapping. Examples of monotone

mappings (n=1) are depicted in Fig. 3. They may rep-
resent various physical laws, like dead-zone (a), sat-
uration or elasto-plasticity (b), corner law—unilateral
e3ects, ideal diode characteristic—(c), Coulomb fric-
tion (d), MOS transistor ideal characteristic (e), uni-
lateral and adhesive e3ects (f) [11]. One has for in-
stance ’(x) =  R−(x) in Fig. 3(c), ’(x) = |x|+ x2=2
for (d),

’(x) =  (−∞; a](x)−  [−a;+∞)(x)

+

{
1
2 (a− b)(x − b)2 if |x|¿ b

0 if |x|¡b
for (e):

If ’(x1; : : : ; xm) = $1|x1|+ · · ·+ $m|xm|+ 1
2x

Tx, then
@’(0) = ([− $1; $1]; : : : ; [− $m; $m])T.

3. The absolute stability problem

The absolute stability problem consists of studying
the stability of a system as in Fig. 1 where G(s) is a
positive real transfer function and the feedback branch
contains a sector static nonlinearity. It is of interest to
extend this result to the case where the operator PL :
y∈Rl �→ yL ∈Rl is a monotone operator.
The state-space equations of the system in Fig. 1

are given by

ẋ a:e:= Ax − ByL;

y = Cx;

yL ∈ @’(y); (4)

where y; yL ∈Rm, x∈Rn and a.e. means almost ev-
erywhere in the Lebesgue measure. The >xed points
of (4) can be characterized with the generalized equa-
tion 0∈{Ax0} − B@’(Cx0). Let us assume that

(a) G(s) = C(sI − A)−1B, with (A; B; C) a minimal
representation, is a strictly positive real (SPR)
transfer matrix. In particular this implies that there
exists positive de>nite matrices P=PT andQ=QT

such that PA+ ATP =−Q and BTP = C [18].
(b) ’ : Rm → R ∪ {+∞} is convex lower semicon-

tinuous, so that @’ is a maximal monotone mul-
tivalued mapping (see e.g. [3, Example 2.3.4]).
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Lemma 1. Let assumptions (a) and (b) hold. If
Cx(0)∈ dom @’, then the system in (4) has a unique
absolutely continuous (AC) solution on [0;+∞).

Proof. Let R be the square root of P, i.e. R=RT ¿ 0,
RR = P. Consider the convex lower semicontinuous
function f : Rn → R ∪ {+∞} de>ned by f(z) =
’(CR−1z). Using (a) shows that Ker(CT) = {0} so
that Im(CR−1) = Im(C) = Rm. From [27, Theorem
2.3.9] it follows that @f(z) = R−1CT@’(CR−1z). Let
us prove that the system

ż ∈RAR−1z − @f(z);

z(0) = Rx(0); (5)

has a unique AC solution on [0;+∞). First, to say that
Cx(0)∈ dom @’ is to say that CR−1z(0)∈ dom @’,
and this just means that z(0)∈ dom @f. Second, it
follows from the Kalman–Yakubovich–Popov lemma
that RAR−1 + (RAR−1)T is negative de>nite [18,
Section 3.3.1]. Therefore the multivalued mapping
−RAR−1 +@f is maximal monotone [3, Lemma 2.4].
Consequently the existence and uniqueness result
follows from [13, Theorem 3.1].
Now set x(t) = R−1z(t). It is straightforward to

check that x(t) is a solution of the system in (4). Ac-
tually the system in (5) is deduced from (4) by the
change of state vector z = Rx.

As an example, let us consider dissipative linear
complementarity systems (LCS) [7]:

ẋ = Ax + B�;

06y = Cx ⊥ �¿ 0; (6)

where (A; B; C) satis>es (a) above, y; �∈Rm, and
Cx(0)¿ 0. The second line in (6) is a set of com-
plementarity conditions between y and �, stating that
both these terms have to remain non-negative and
orthogonal one to each other. The LCS in (6) can be
equivalently rewritten as in (5) with ’(y)= (R+)m(y).

Remark 2. It is interesting to note a close connection
between the system in (5) and Moreau’s >rst order
sweeping process [16,22], i.e. evolution problems of
the form ẋ(t)∈− @ C(t)(x(t)) for some set C(t). The
systems we will deal with in the next section are sec-
ond order sweeping processes. Incidentally Lemma 1
sheds a new light on the result in [7] since it shows that

initial jumps in the solution x(t) are not needed if x(0)
belongs to the admissible set {x |Cx∈ dom @’}. The
results in [7] allow a feedthrough term in y and pro-
vide necessary and suQcient conditions for absence
of initial jumps. The present paper does not allow a
feedthrough term and gives only suQcient conditions
for non initial jumps, however more general functions
’(·) are considered. Finally Lemma 1 is related to
the uniqueness result in [17] where the graph @’ is a
relay characteristic and the transfer matrix G(s) is a
P-matrix [9] for suQciently large s∈R. SPR transfer
matrices satisfy such requirements, but we considered
more general characteristics.
Finally let us note in passing that Lemma 1 applies

to nonlinear systems as ẋ=−∑n
k=0 x2k+1−yL, y=x,

yL ∈ @’(y), x∈R. Indeed the dynamics −yL �→ y is
strictly dissipative with storage function x2=2, so that
P = 1 and z = x.

Let us notice that y∈ dom @’. Finally there exists
a Lebesgue integrable function w(t) such that x(t) =∫
w(/) d/, where d/ is the Lebesgue measure. Hence

dx = w(t) dt as an equality of measures.

Lemma 2. Let assumptions (a), (b) hold, the ini-
tial data be such that Cx(0)∈ dom @’, and assume
that the graph of @’ contains (0; 0). Then: (i) x = 0
is the unique solution of the generalized equation
Ax∈B@’(Cx). (ii) The :xed point x = 0 of the sys-
tem in (4) is exponentially stable.

Proof. The proof of part (i) is as follows. First of
all notice that x = 0 is indeed a >xed point of the
dynamics with no control, since 0∈B@’(0). Now
Ax∈B@’(Cx) ⇒ PAx∈PB@’(Cx) ⇒ xTPAx =
xT@g(x), where g(x) = ’(Cx) [27, p. 225], g(·) is
convex [27, p. 38], and we used assumption (a). The
multivalued mapping @g(x) is monotone since g(·) is
convex. Thus xT@g(x)¿ 0 for all x∈Rn. Now there
exists Q = QT ¿ 0 such that xTPAx = − 1

2x
TQx¡ 0

for all x �= 0. Clearly then x satis>es the generalized
equation only if x = 0.
Let us now prove part (ii). Consider the candidate

Lyapunov function W (x) = 1
2x

TPx. From Lemma 1 it
follows that the dynamics in (4) possesses on [0;+∞)
a solution x(t) which is AC, and whose derivative ẋ(t)
exists a.e.. The same applies to W which is AC [28, p.
189]. Di3erentiating along the closed-loop trajectories
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we get

dW
dt

(x(t)) a:e:= xTPw

= xTP(Ax − ByL) =−xTQx − xTPByL

= −xTQx − xTCTyL; (7)

where yL is any vector that belongs to @’(Cx). The
equality in the >rst line means that the density of
the measure d(W ◦ x) with respect to the Lebesgue
measure dt (which exists since W (x(t)) is AC) is
the function xTPw. Consequently dW=dt + xTQx∈ −
xTCT@’(Cx) = −xT@g(x) a.e.. Let us consider any
z ∈ @g(x). One gets dW=dta:e:= − xTQx− xTz6− xTQx
from the property of monotone multivalued map-
pings and since (x; z) = (0; 0) belongs to the graph of
@g(x). The set of time instants at which the inequality
dW=dt6 − xTQx is not satis>ed is negligible in the
Lebesgue measure. It follows that the function of time
W (·), which is continuous, is nonincreasing. Thus
one has W (t) − W (0) =

∫ t
0 (−xTQx − xTz) d/6 −∫ t

0 xTQx d/. Consequently 1
2�min(P)xTx6W (0) −∫ t

0 �min(Q)xTx d/, where �min(·) is the smallest eigen-
value. By the Gronwall’s lemma one gets that
1
2�min(P)xTx6W (0) exp(−2(�min(Q)=�min(P))t)
which concludes the proof.

Remark 3. Related works can be found in [14] and
in [21, Theorem 10.5.31], which appears as a particu-
lar case of Lemma 2. Other extensions for the passiv-
ity theorem with feedback branches that may contain
various operators and nonlinearities, can be found in
[20]. Some of the operators y �→ yL considered in [20]
encompass the ones considered in this paper (like the
saturation in Fig. 3(b)). However multivalued map-
pings are not included in the framework of [20], and
neither are graphs including unilateral constraints as
in Figs. 3(c), (e), and (f).

4. The Lagrange–Dirichlet theorem

Let us consider the following class of unilaterally
constrained mechanical systems:

M (q) Sq+ F(q; q̇) =∇h(q)�;

q(0) = q0; q̇(0−) = q̇0;

06 h(q) ⊥ �¿ 0;

q̇(t+k ) =−eq̇(t−k ) + (1 + e)proxM (q(tk ))

×[q̇(t−k ); V (q(tk))]: (8)

In (8) M (q) =MT(q)¿ 0 is the n× n inertia ma-
trix, F(q; q̇)=C(q; q̇)q̇+(@U=@q)(q), where C(q; q̇)q̇
denotes centripetal and Coriolis generalized forces,
whereasU (q) is a smooth potential energy fromwhich
conservative forces derive, and h(·) : Rn �→ Rm. We
assume that h(q0)¿ 0. The impact times are generi-
cally denoted as tk , the left-limit q̇(t−k )∈ − V (q(tk))
whereas the right-limit q̇(t+k )∈V (q(tk)). The third
line in (8) is a collision mapping that relates pre- and
post-impact generalized velocities, and e∈ [0; 1] is
a restitution coeQcient [19]. The notation proxM (q)
means the proximation in the kinetic metric, i.e. the
metric de>ned as xTM (q)y for x; y∈Rn: the vector
(q̇(t+k ) + eq̇(t−k ))=(1 + e) is the closest vector to the
pre-impact velocity, inside V (q(tk)) (it can therefore
be computed through a quadratic programme) [24].
In particular the impact law in (8) implies that
the kinetic energy loss at time tk satis>es (see [2; 4,
p. 199, 489; 19])

TL(tk) =−1
2
1− e
1 + e

(q̇(t+k )

−q̇(t−k ))TM (q(tk))(q̇(t+k )− q̇(t−k ))6 0:
(9)

Remark 4. The formulation of the unilateral con-
straints in (8) does not encompass all closed domains
7 = {q | h(q)¿ 0}, as simple non-convex cases with
so-called reentrant corners prove [5]. It can be used
to describe admissible domains 7 which are de>ned
either by a single constraint (i.e. m = 1), or with
m¡+∞ where convexity holds at nondi3erentiable
points of the boundary @7 (such sets are called regu-
lar [8]). It is easy to imagine physical examples that
do not >t within this framework, e.g. a ladder. We
prefer not to analyze this case in this note since nei-
ther the modelling nor the mathematical parts are yet
>xed for non-di3erentiable non-convex boundaries
@7 [12, p. 156; 13, Section 9.5].
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Let us note that the tangent cone V (q(t)) is assumed
to have its origin at q(t) so that 0∈V (q(t)) to allow
for post-impact velocities tangential to the admissible
set boundary @7. The second line in (8) is a set of
complementarity conditions between h(q) and �, stat-
ing that both these terms have to remain non-negative
and orthogonal one to each other. Let us make the fol-
lowing assumptions:

Assumption 1. The gradients∇hi(q)=@h=@qT(q) are
not zero at the contact con>gurations hi(q) = 0, and
the vectors ∇hi, 16 i6m, are independent. Further-
more the functions h(·), F(q; q̇), M (q) and the sys-
tem’s con>guration manifold are real analytic, and
‖F(q; q̇)‖q6d(q; q(0)) + ‖q̇‖q, where d(·; ·) is the
Riemannian distance and ‖ ·‖q is the norm induced by
the kinetic metric.

Then the following results hold, which are essen-
tially a compilation of Proposition 32, Theorems 8 and
10, and Corollary 9 of [2]:

(i) Solutions of (8) exist on [0;+∞) such that q(·)
is AC, whereas q̇(·) is right-continuous of local
bounded variation (RCLBV). In particular the
left- and right-limits of these functions exist ev-
erywhere.

(ii) The function q(·) cannot be supposed to be ev-
erywhere di3erentiable. One has q(t) = q(0) +∫ t
0 v(s) ds for some function v(·) a:e:= q̇(·). More-
over q̇(t+) = v(t+) and q̇(t−) = v(t−) [16].

(iii) Solutions are unique (however, in general, they
do not depend continuously on the initial condi-
tions).

(iv) The acceleration Sq is a measure dv, which is the
sum of two measures: an atomic measure d$a,
and a Lebesgue integrable function which we
denote Sq(·), i.e. dv = d$a + Sq(t) dt. The atoms
correspond to the impact times [24]. See Remark
5 for some comments on this decomposition.

(v) The set of impact times is countable. In many ap-
plications one has d$a=

∑
k¿0 [q̇(t

+
k )−q̇(t−k )]9tk ,

where 9t is the Dirac measure and the se-
quence {tk}k¿0 can be ordered, i.e. tk+1 ¿tk .
However phenomena like accumulations of
left-accumulations of impacts may exist (at least
bounded variation does not preclude them). In
any case the ordering may not be possible. This

is a sort of complex Zeno behaviour. 3 In the
case of elastic impacts (e=1) it follows from [2,
Proposition 4.11] that tk+1−tk ¿ 9¿ 0 for some
9¿ 0. Hence, solutions are piecewise continuous
in this case.

(vi) Any quadratic function W (·) of q̇ is itself
RCLBV, hence its derivative is a measure dW
[24]. Consequently dW 6 0 has a meaning and
implies that the function W (·) does not increase
[10, p. 101].

These results enable one to lead a stability analysis
safely. Let us now introduce a new formulation of the
dynamics in (8), which can be written as the following
measure di3erential inclusion (MDI) [24]

−M (q(t)) dv− F(q(t); v(t+)) dt ∈ @ V (q(t))(w(t))

⊆ @ 7(q(t)); (10)

where w(t) = (v(t+) + ev(t−))=(1 + e)∈ @V (q(t))
from (8). If e = 0 then w(t) = v(t+), if e = 1 then
w(t) = (v(t+) + v(t−))=2. Moreover when v(·) is
continuous then w(t) = v(t). The term MDI has
been coined by Moreau, and (10) may also be called
Moreau’s second-order sweeping process [16]. The
inclusion in the right-hand side of (10) is proved in
Appendix A. When q̇(t) is discontinuous, (10) im-
plies that Moreau’s collision rule in (8) is satis>ed.
This can be proved using basic tools from convex
analysis, see Appendix B. The term  V (q(t))(w(t)) can
be interpreted as a velocity potential and its subdi3er-
ential @ V (q(t))(w(t)) is depicted in Fig. 4 in special
cases. The MDI in (10), whose left-hand side is a
measure and whose right-hand side is a cone, has the
following meaning [19,22]: there exists a positive
measure d$ such that both dt and dv possess densities
with respect to d$, denoted respectively as (dt=d$)(·)
and (dv=d$)(·). One also has

dt
d$

(t) = lim
:→0; :¿0

dt([t; t + :])
d$([t; t + :])

[22, p. 9; 25], which shows the link with the usual
notion of a derivative. The choice of d$ is not unique

3 I.e. all phenomena involving an in>nity of events in a >nite
time interval, and which occur in various types of hybrid systems
like Filippov’s inclusions, etc. [29].
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Fig. 4. Moreau’s velocity potential.

because the right-hand side is a cone [24]. However
by the Lebesgue–Radon–Nikodym theorem [28], the
densities (dt=d$)(·) and (dv=d$)(·) are unique func-
tions for a given d$. To shed some light on this, let us
consider for instance d$ = dt + Uk¿09tk , which cor-
responds to applications where the system is subject
to impacts at times tk and otherwise evolves freely.
Then (dt=d$)(tk) = 0 (the Lebesgue measure dt and
the Dirac measure 9t are mutually singular) whereas
(dv=d$)(tk) = v(t+k ) − v(t−k ) (tk is an atom of the
measure dv). When t �= tk then (dt=d$)(t) = 1 and
(dv=d$)(t) = v̇(t).
Therefore the meaning of (10) is that there exists

a positive measure d$ with respect to which both dt
and dv possess densities, and

−M (q(t))
dv
d$

(t)− F(q(t); v(t+))
dt
d$

(t)

∈ @ V (q(t))(w(t)) ⊆ @ 7(q(t)) (11)

holds d$—almost everywhere. In a sense, densities
replace derivatives, for measures. When dealing with
measure di3erential equations or inclusions, it is then
natural to manipulate densities instead of derivatives.
In general one can choose d$ = |dv| + dt [22, p.
90], where |dv| is the absolute value of dv, or d$ =
‖v(t)‖dt+d$a, or d$=dt+d$a. It is fundamental to
recall at this stage, that the solution of (11) does not
depend on this choice. For instance, if d$=‖v(t)‖dt+
d$a then for all t �= tk , (dt=d$)(t) = 1=‖v(t)‖ and
(dv=d$)(t) = Sq(t)=‖v(t)‖. Whereas if d$ = dt + d$a

then for all t �= tk , (dt=d$)(t)=1 and (dv=d$)(t)= Sq(t).

Remark 5. The above mathematical framework is
more than just a mathematical fuss. Indeed as noted
in [24], introducing the velocity into the right-hand
side of the dynamics as done in (10), not only allows
one to get a compact formulation of the nonsmooth
dynamics (see Fig. 6 in this respect), but it also paves
the way towards the consideration of friction in the
model. In turn it is clear that introducing friction,
is likely to complicate the dynamics. Especially, the
above framework paves the way towards more com-
plex cases where the measure dv may contain a third
term d$na which is a nonatomic measure singular
with respect to the Lebesgue measure dt (Assump-
tion 1 implies that d$na = 0 [2]). In summary the
dynamics in (11) is rich enough to encompass com-
plex behaviours involving solutions which may be far
from merely piecewise continuous as for the models
and stability analysis in [1]. This is a consequence
of replacing functions by the more general notion of
measure, at the price of a more involved model. In fact
using measures allows one to encompass somewhat
complex Zeno behaviours occurring in unilaterally
constrained mechanical systems in a rigorous manner.

In the case of unconstrained Lagrangian mechan-
ical systems, the Lagrange–Dirichlet theorem states
that the equilibrium point (q∗; 0) is locally stable if
the potential energy U (q) has a strict minimum at q∗.
First notice that since F(q; 0) = @U=@q and 0∈V (q),
>xed points of (10) satisfy the generalized equation
0∈ @ 7(q∗)+(@U=@q)(q∗) which in particular implies
q∗ ∈7. Conditions under which such a generalized
equation possess at least one solution, and numerical
algorithms to compute one solution, exist [15]. In the
following, we shall assume for simplicity that the so-
lutions are isolated.

Lemma 3. Consider a mechanical system as in (8).
Then if  7(q)+U (q) has a strict minimum at q∗, the
equilibrium point (q∗; 0) is Lyapunov stable.

Let us note that 7 need not be convex in general
(for instance, the equilibrium may exist in Int(7), or
it may belong to @7 but be forced by the continuous
dynamics, see Fig. 5 for planar examples with both
convex and non-convex 7; it is obvious that in the de-
picted non-convex case all points (q∗; 0) with q∗ ∈ @7
are >xed points of the dynamics).
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Fig. 5. Convex and nonconvex admissible sets.

Proof. The proof may be led as follows. Let us con-
sider the nonsmooth Lyapunov candidate function

W (q; q̇) = 1
2 q̇TM (q)q̇+  7(q) + U (q)− U (q∗):

(12)

Since the potential  7(q)+U (q) has a strict minimum
at q∗ equal to U (q∗), this W is positive de>nite on
the whole state space. AlsoW (q; q̇)6 ;(‖q‖; ‖q̇‖) for
some class K function ;(·) is satis>ed on 7 (� q(t)
for all t¿ 0). The potential function  7(q)+U (q) is
continuous on 7. Thus W (q; q̇) in (12) satis>es the
requirements of a Lyapunov function candidate on 7,
despite the indicator function has a discontinuity on
@7 (but is continuous on the closed set 7, see (1)).
Moreover since (10) secures that q(t)∈7 for all t¿ 0,
it follows that  7(q(t)) = 0 for all t¿ 0. In view
of this one can safely discard the indicator function
in the subsequent stability analysis. Let us examine
the variation of W (q; q̇) along trajectories of (11). In
view of the above discussion, one can characterize the
measure dW by its density with respect to d$ and the
functionW decreases if its density (dW=d$)(t)6 0 for
all t¿ 0. We recall Moreau’s rule for di3erentiation of
quadratic functions of RCLVB functions [22, pp. 8–9]:
let u(·) be RCLBV, then d(u2)= (u+ + u−) du where
u+ and u− are the right-limit and left-limit functions
of u(·). Let us now compute the density of the measure
dW with respect to d$:
dW
d$

(t) = 1
2 [q̇(t

+) + q̇(t−)]TM (q(t))
dv
d$

(t)

+
@U
@q

dq
d$

(t)+
1
2

@
@q

(q̇(t+)TM (q(t))q̇(t+))

× dq
d$

(t); (13)

where dq= v(t) dt since the function v(·) is Lebesgue
integrable.
Let us now choose d$=dt+d$a. Since (dt=d$)(tk)=

0 and (dq=d$)(tk)= 0 whereas (dv=d$)(tk)= v(t+k )−
v(t−k ) = q̇(t+k ) − q̇(t−k ), it follows from (13) that at
impact times one gets

dW
d$

(tk) = 1
2 [q̇(t

+
k ) + q̇(t−k )]TM (q(t))[q̇(t+k )− q̇(t−k )]

= TL(tk)6 0; (14)

where TL(tk) is in (9). Let the matrix function Ṁ (q; q̇)
be de>ned by Ṁ (q(t); q̇(t)) = (d=dt)M (q(t)). Let
us use the expression of F(q; q̇) given after (8),
and let us assume that Christo3el’s symbols of the
>rst kind are used to express the vector C(q; q̇)q̇ =
Ṁ (q; q̇) − 1

2 [(@=@q)(q̇
TM (q(t))q̇)]T. Then the matrix

Ṁ (q; q̇) − 2C(q; q̇) is skew-symmetric [31, Section
1.2]. Now if t �= tk , one gets (dv=d$)(t) = v̇(t) = Sq(t)
and (dt=d$)(t) = 1 [22, p. 76] and one can calculate
from (13), using the dynamics and the skew-symmetry
property:

dW
d$

=
dW
dt

=−q̇TC(q; q̇)q̇+ 1
2 q̇

TṀ (q; q̇)q̇− q̇Tz1

=−q̇Tz1; (15)

where z1 ∈ − @ V (q(t))(w(t)) and W (·) is de>ned
in (12). To simplify the notation we have dropped
arguments in (15), however q̇ is to be under-
stood as q̇(t) = q̇(t+) since t �= tk . Now since
for all t¿ 0 q̇(t+)∈V (q) [24] which is polar to
@ 7(q(t)), and from the inclusion in Appendix A
it follows that zT1 q̇(t

+)¿ 0. Therefore the mea-
sure dW is non-positive. Consequently the function
W (·) is non-increasing [10, p. 101] and Lemma 3 is
proved.

Remark 6.

• The inclusion of the indicator function  7(q(t)) in
the Lyapunov function not only guarantees its pos-
itive de>niteness (which anyway is assured along
solutions of (11), which remain in 7), but it also
allows one to consider cases where the smooth po-
tential has a minimum that is outside 7. Saying
“ 7(q) + U (q) has a strict minimum at q∗” is the
same as saying “U (q) has a strict minimum at q∗ in-
side 7”. Since the indicator function has originally
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Fig. 6. Unilaterally constrained Lagrangian system.

been introduced byMoreau as a potential associated
to unilateral constraints, it >nds here its natural use.
In fact, we could have kept the indicator function
in the stability analysis. This would just add a null
term q̇(t+)Tz2(dt=d$)(t) in the right-hand side of
(13), with z2 ∈ @ 7(q(t)).

• As alluded to above, taking e = 1 in (8) assures
that there is no accumulation of impacts, thus the
sequence of impact times {tk}k¿0 can be ordered,
d$a =

∑
k¿0 9tk , and velocities are piecewise con-

tinuous. Then a much simpler formulation can be
adopted by separating continuous motion phases oc-
curring on intervals (tk ; tk+1) from impact times.
The system is therefore non-Zeno for e = 1 and if
Assumption 1 holds.

• One does not need to make further assumptions on
the measure d$a to conclude, and one sees that this
conclusion is obtained directly applying general dif-
ferentiation rules of RCLBV functions. The dynam-
ics might even contain dense sets of velocity dis-
continuities, (13) and (14) would continue to hold.
This shows that using the MDI formalism in (10)
or (11) places the stability analysis in a much more
general perspective than, say, restricting q̇(·) to be
piecewise continuous.

Let us note that the dynamics in (10) has the inter-
pretation as in Fig. 6, where =∈ @ V (q(t))(w(t)). Since
@ V (q(t))(w(t)) ⊆ N7(q) = V?(q) (the cone polar to
V (q) [27]), the feedback loop in Fig. 6 contains the
cone complementarity problem [9]

N7(q) ⊇ @ V (q(t))(w(t)) � = ⊥ w(t)∈V (q): (16)

Fig. 7. A simple 2-D of system.

When m = 1 and q∈ @7, one has V (q) = R+

and N7(q) = R− in a suitable frame attached to q,
and the graph of the multivalued mapping is the
so-called corner law. In general, this is an example
of an m-dimensional monotone multivalued mapping
w(t) �→ =. Thus, Lemma 3 extends the absolute stabil-
ity problem studied in the foregoing section towards
another type of dynamical systems. It is noteworthy
that the feedback loop in Fig. 6 contains both the com-
plementarity conditions and the collision mapping in
(8). A quite similar structure can be found for the dy-
namics in (6) with the state re-initialization mapping
proposed in [7], which is an extension of (16).
The Lagrange–Dirichlet theorem serves as a basis

for the stabilization of unconstrained mechanical sys-
tems, both in the regulation and the tracking cases [18].
In the regulation case, one may shape the potential
energy so that the new equilibrium of the closed-loop
system is the desired one. Lemma 3 can be used to
that aim by shaping the potential  7(q) + U (q) to
a new closed-loop potential  7(q) + Ũ (q̃) via a PD
control where q̃= q− qd and qd is some constant de-
sired position. However the closed-loop >xed points
have to satisfy the generalized equation 0∈ @ 7(q∗)+
(@Ũ =@q̃)(q̃∗) with q̃∗=q∗−qd, which reHects the fact
that q∗ ∈7. Extension towards tracking is more com-
plex but can be done [4,6].

Example 1. Let us consider the system in Fig. 7
whose dynamics is given by

m Sx =−fẋ − cx;
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m Sy =−mg+ �; 06y ⊥ �¿ 0;

ẏ(t+k ) =−eẏ(t−k ) when y(tk) = 0: (17)

Obviously (q; q̇(t+)) = (0; 0) is the unique >xed
point of (17) and one can check that the same dynam-
ics with y6 0 no longer possesses any >xed point.
For any y(0)¿ 0 and e∈ (0; 1) the sequence of im-
pact times has a >nite accumulation t∞ [4]. The func-
tion in (12) is equal to

W (q; q̇) = 1
2 mẋ2 + 1

2 mẏ 2 +  R+(y) + mgy

+ 1
2 cx2: (18)

One may check that this function has the properties
required in the proof of Lemma 3.

5. Conclusions

This note examines the extension of the absolute
stability problem and of the Lagrange–Dirichlet the-
orem, to the case when nonlinearities in the feedback
loop are multivalued monotone mappings. Some of the
considered systems may also be recast in the frame-
work of complementarity systems, which in turn may
be seen as a special class of hybrid dynamical systems.
Another, fruitful point of view, is that of di3erential
inclusions, with or without measures. This class of sys-
tems encompasses mechanical systems with unilateral
constraints and impacts, as well as dissipative linear
complementarity systems without feedthrough term
in the output equation. The well-posedness is care-
fully examined before studying the stability. Roughly
speaking, the >rst class of nonsmooth systems studied
in this paper correspond to relative degree one sys-
tems, while the second class are relative degree two
systems. In particular a new existence and uniqueness
proof for a class of nonsmooth dissipative systems, is
given. Further extensions of the results towards more
complex mechanical systems with set valued force
laws [12,13], seem quite interesting.
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Appendix A. Proof of Moreau’s inclusion

For convenience let us rewrite the following de>-
nitions for a convex set 7:

N7(q) = {z | zT=6 0; ∀=∈V (q)}; (A.1)

which is an alternative de>nition to the one given in
Section 2, and

@ V (q)(w) = {z | zT(@− q̇)6 0; ∀@∈V (q)}: (A.2)

Since V (q) as it is de>ned in (3) (replace K by 7)
is a cone and since q̇∈V (q), one can choose @= =+
q̇ with =∈V (q) as a particular value for @. Thus if
z ∈ @ V (q)(w) one gets zT@6 zTq̇(t+) and introducing
@==+q̇, one gets zT=6 0 so that z ∈N7(q). Therefore
Moreau’s inclusion in (10) is proved.
Let us note [16] that the cones are to be understood

as being attached to the same origin in the inclusion
(for instance in Fig. 4, one has @ V (q)(v1) ⊂ N7(q)).
Moreover, some natural identi>cations between spaces
(the dual T ∗

q̇ TqQ at q̇ of the tangent space TqQ at q
to the con>guration space Q, and the cotangent space
T ∗
q Q) have been made, thanks to the linear structure of

these spaces in which the cones @ V (q)(·) and N7(q)
are de>ned. This allows to give a meaning to the in-
clusion in (10). This is just a generalization of the
well-known identi>cation between the space of ve-
locities and that of forces acting on a particle in a
3-dimensional space, which both are identi>ed with
R3. More details are in [2,24].

Appendix B. The MDI at impact times

Let x and z be two vectors of a linear Euclidean
space E, V be a closed convex cone of E, and
N be the polar cone to V . Then from Moreau’s
lemma of the two cones [4, Lemma D1; 27, p. 340],
one has (x − z)∈ − @ V (x) ⇔ x = prox[V; z] ⇔
z − x = prox[N; z]. Times tk are atoms of the mea-
sure dv in (10). Via a suitable base change, the
kinetic metric at an impact time can be considered
as a Euclidean metric since q(·) is continuous at tk ,
and in particular all the identi>cations between var-
ious dual spaces can be done. One gets from (10):
−M (q(tk))[q̇(t+k ) − q̇(t−k )]∈ @ V (q(tk ))(w(t

+
k )) ⇔

q̇(t+k )+eq̇(t−k )=proxM (q(tk ))[V (q(tk)); (1+e)q̇(t−k )] ⇔
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q̇(t+k )+ eq̇(t−k )= (1+ e)proxM (q(tk ))[V (q(tk)); q̇(t−k )],
where the second equivalence is proved in [24].
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