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Some results on thecontrollability of planar variational inequalities
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Abstract

This note deals with the controllability of a class of planar complementarity dynamical systems, which can also be viewed
as planar evolution variational inequalities. It is shown that the complementarity conditions influence the controllability of
the system a lot.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Hybrid dynamical systems constitute a very large
class of systems [13]. It is consequently necessary to
focus on specific subclasses to make their study possi-
ble, see e.g. [1] for controllability issues in piecewise-
linear systems. An interesting subclass is made of the
so-called complementarity systems [2,8]. Similar to
the fact that the stability of unilaterally constrained
systems can significantly differ from that of their
unconstrained counterpart [6,11], it will be shown
that their controllability properties can differ a lot as
well. This reinforces the fact that such nonsmooth
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dynamical systems deserve full attention and are not
a mere extension of unconstrained or bilaterally con-
strained systems. In this note, we will restrict our-
selves to a narrow class of complementarity-systems,
that we call planar evolution variational inequalities.
These systems are also sometimes called projected dy-
namical systems [4,11] and are used to model the dy-
namics of oligopolistic markets, spatial price equilib-
rium, elastic demand traffic equilibrium [11]. As il-
lustrated at the end of the note, they can also model
some electrical circuits with ideal diodes. In this note
it is shown that the controllability of such systems de-
pends a lot on the convex set within which the state is
constrained to evolve.

2. Planar evolution variational inequalities

The linear complementarity systems (LCS) [8] we
are dealing with in this study, possess the following
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dynamics:

ż1(t) = z2(t) + CT
1 �,

ż2(t) = u(t) + CT
2 �,

0�� ⊥ Cz(t) + d �0, (1)

whereC = (C1C2) ∈ Rm×2, C1 ∈ Rm andC2 ∈ Rm

are the two columns ofC, d ∈ Rm, � ∈ Rm. The non-
negativity is understood componentwise andm <+∞.
The LCS in (1) is equivalent to the linear evolution
variational inequality (VI)

〈ż(t) − Az(t) − Bu(t), v − z(t)〉�0, ∀v ∈ K,

z(t) ∈ K, ∀t �0, (2)

wherez=(z1, z2)
T ∈ R2, A=

(
0
0
1
0

)
, B=

(
0
1

)
, K =

{z|Cz+d �0}={(z1, z2) ∈ R2|C1z1+C2z2+d �0}.
The equivalence between (1) and (2) is obtained by
noting that{

ż(t) = Az(t) + Bu(t) + CT�
0�� ⊥ Cz(t) + d �0

⇔ − ż(t)+Az(t)+Bu(t) ∈ CT��(R+)m(Cz(t)+d)

⇔
{−ż(t)+Az(t)+Bu(t) ∈ NK(z(t))

z(t) ∈ K, ∀t �0,
(3)

where�(R+)m(·) is the indicator function of(R+)m,

��(R+)m(·) is its subdifferential, andNK(·) is
the normal cone toK. The last formalism in (3)
is exactly (2), from the definition of the normal
cone. These equivalences are obtained from stan-
dard convex analysis rules and definitions [10]
and are not developed further here for the sake of
brevity.
It is noteworthy that, seen from an LCS point of

view, the controlled dynamics in (1) is rather a nar-
row class. However, the VI formalism in (2) shows
that it is not so restrictive from an application point
of view, since VI are widely used in some domains
of science (see [11] for market and finance applica-
tions). VI can also represent some electrical circuits
with ideal diodes [6]. The LCS in (1) is a partic-
ular gradient complementarity system [9], which is
in turn equivalent to the so-called projected dynami-
cal systems [4,11,15]. There certainly remains a big
gap between this work, and obtaining similar results
for general projected dynamical systems (to say noth-
ing for general LCS). Since the studies on control-
lability of this type of dynamical systems are rare,

this paper nevertheless has some interest. The follow-
ing lemma is a direct consequence of [7, Corollary
2.2]:

Lemma 1. Consider the system in(1). For all con-
tinuous and locally differentiable inputsu(·), a con-
tinuous and right-differentiable solution with locally
bounded derivative exists and is unique on[0, +∞).

Let us now introduce a controllability definition.

Definition 1. The system in (1) (equivalently in (2))
is said to beK-controllable, if any statezf ∈ K can
be reached from any statezi ∈ K, in a finite or infinite
timeT, and with an admissible inputu(·).

Admissibility of the input means that the well-
posedness conditions of Lemma 1 are respected. We
do not make the difference between finite and infi-
nite T to simplify the presentation (as we shall see
below, this allows us to consider the controllabil-
ity in the whole of the closed convex setK with-
out excluding some isolated points of the boundary
�K).
The objective of this work is to prove that,

under some restrictions on the convex setK, K-
controllability holds. To begin with and to moti-
vate the study, let us remark that in casem = 1
and K = {z | z2� − c, c <0}, then surely the sys-
tem is notK-controllable. Indeedz1 can only move
from the left to the right in the phase plane, since
ż1 = z2� − c >0. This controlled VI is accessible
[12] with reachable subspaces from(z1(0), z2(0))
equal to {(z1, z2) | z1�z1(0), z2� − c}, but notK-
controllable.
Let us note that adding some “imaginary” state re-

initialization rules on�K such thatK-controllability
holds, is not envisaged here since the dynamical
systems in (1) or (2) are the topic of the study.
However motivated by this simple example of non-
controllability, one guesses that a crucial step in
the study will be to prove whether or not one is
able to move on�K in order to reach some states
which are otherwise unreachable. Due to the com-
plementarity conditions (third line in (1)) which
imply that the vector field is modified when�K

is attained, this will under certain conditions be
possible.
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3. Main result

The following assumption is made and supposed to
hold in the sequel:

Assumption 1. The set K has a positive measure in
R2.

It is easy to constructCandd in (1) such that indeed
K=∅ or it has zero measure. Polyhedra with a positive
area are an example of setsK, as well as cones (see
Fig. 1), or half-planes.
Let C1 = (a1, . . . , am)T, C2 = (b1, . . . , bm)T, d =

(d1, . . . , dm)T and let us denote the faces of the convex
setK asDi , such thatDi ⊆ {z|aiz1 + biz2 + di = 0}
andD̄i = {z|aiz1+ biz2 + di = 0}. In other words the
faces are segmentsDi (possibly unbounded, like in
the caseK is a cone, or ifK is defined as a half-space),
and the segments can be extended to straight linesD̄i

whose equations in the plane areaiz1 + biz2 + di =
0,1� i�m. For instance in Fig. 1 and considering
the setK1, one hasD1 = A′A whereasD̄1 is the line
passing throughA′ andA and intersecting{z|z2 = 0}
atB. Let us place ourselves in the phase plane of the
system, with the two axis(0, z1) and(0, z2).
Then the following is true.

Proposition 1. The system in(1) (equivalently in(2))
is K-controllable, if and only if, there is no face of K

Fig. 1. Examples ofK-controllable andK-uncontrollable systems.

such that:

• there is a portion ofDi with finite negative slope
on the right(resp. left) of the pointD̄i ∩ {z|z1=0},
when K is below(resp. above) Di ;

• Di is vertical and above(resp. below) {z|z2 = 0} if
K is on the right(resp. left) of Di ;

• Di is horizontal and in the half-space{z|z2<0}
(resp.{z|z2>0}) if K is below(resp. above) Di ;

• Di = {z|z2 = 0}.

For instance in Fig. 1, the facesA′A of K1, or DC
ofK4, preclude controllability because they satisfy the
first item.
Let us state intermediate results which characterize

the motion on the boundary�K (Fig. 2). The proof
of Proposition 1, will then be a direct consequence of
Lemma 2. In the next lemma, we place ourselves in
the case when there is a single constraint and we study
the behavior of the system on this constraint. When
K has several faces it will suffice to consider each of
them separately and apply the results of the lemma
independently to each constraint. Let us consider the
system in (1) or (2), withC1 = a ∈ R, C2 = b ∈
R, d = c ∈ R. Let us define the coordinate change

x1 = bz1 − az2 + bc

a
,

x2 = az1 + bz2 + c.
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Fig. 2. Trajectories on�K (vertical faces).

Fig. 3. The new coordinate frame.

We denote asP the intersection between the lineaz1+
bz2 + c = 0 and thez1-axis, i.e.,P is the origin of
the new frame(x1, x2) and the constraint boundary
is {x|x2 = 0}. The new coordinate frame(x1, x2) is
depicted in Fig. 3.
Then the following holds:

Lemma 2.

(i)
◦ Positive slope. If −a/b >0, b �= 0,any pointx1f
on the constraint can be attained from any point
x1i �x1j .

◦ Negative slope. If −a/b <0, b �= 0, then any
point x1f on the constraint can be attained from
any pointx1i �x1f ,and any pointx1f on the con-
straint can be attained from any pointx1i �x1f
only on the axisx1 ∈ (P, +∞). Moreover the
point P can be attained from anyx1i >0 only
asymptotically.

(ii) If a = 0 then the boundary is a horizontal line
z2 = −c/b and

◦ If (b >0 and c <0) or (b <0 and c >0), trajec-
tories move from the left to the right.

◦ If (b >0 and c >0) or (b <0 and c <0), trajec-
tories move from the right to the left.

◦ If c = 0 then the system remains stuck on�K at
the contacting point.

(iii) If b =0 then the boundary is a vertical linez1=
−c/a and

◦ If (a >0 and c >0) or (a >0 and c <0) then
the system is controllable in the set{z|z2<0}
and any trajectory initialized in the set{z|z2�0}
detaches from�K.

◦ If (a <0 and c <0) or (a <0 and c >0) then
the system is controllable in the set{z|z2>0}
and any trajectory initialized in the set{z|z2�0}
detaches from�K.

Let us note that the casea = b = 0 is mean-
ingless since, the system is no longer constrained,
hence it is not treated in Lemma 2. We note that
the two depicted cases can be rotated to obtain
the admissible domain below the boundary. The
axis (P, x2) points inside the admissible setK.
The dashed arrows on�K indicate the directions
in which trajectories can be controlled on�K. In
Fig. 1 the arrows also indicate the possible di-
rections of motion on�K. Due to the comple-
mentarity conditions, it follows that in some re-
gions of �K, trajectories are restricted to move in
a single direction (otherwise they leave�K). The
cases when the boundary is vertical, is depicted in
Fig. 2.

Proof of Lemma 2. (i) It is simple to calculate
that the dynamics (1) in the coordinates (x1, x2)
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is

ẋ1(t)= −ab

a2 + b2
x1(t) + b2

a2 + b2
x2(t) − au,

ẋ2(t)= −a2

a2 + b2
x1(t) + ab

a2 + b2
x2(t)

+ bu + (a2 + b2)�,

0�� ⊥ x2(t)�0. (4)

Let us study the dynamics when the system evolves
on {x|x2 = 0} on an interval[�, � + �), �>0. Conse-
quently, the derivativesx(i)

2 =0 as well, for alli�1 on
(�, �+�). Then on[�, �+�) the complementarity condi-
tion 0�� ⊥ x2�0 implies that 0�� ⊥ ẋ2�0. Indeed
the “velocity” can point only insideK on [�, � + �).
Therefore, one can replace (4) by

ẋ1(t)= −ab

a2 + b2
x1(t) + b2

a2 + b2
x2(t) − au(t),

ẋ2(t)= −a2

a2 + b2
x1(t) + ab

a2 + b2
x2(t)

+ bu(t) + (a2 + b2)�,

0�� ⊥ ẋ2(t)�0. (5)

Now sincex2 = 0 in the considered time interval
one deduces from (5)

ẋ1(t) = −ab

a2 + b2
x1(t) − au(t),

−a2

a2 + b2
x1(t) + bu(t) + (a2 + b2)� = 0,

0�� ⊥ ẋ2(t)�0. (6)

Since��0 on �K, one deduces that−a2/(a2 +
b2)x1 + bu�0 is a necessary and sufficient condition
that bothx1 andu(·) have to satisfy so that the sys-
tem keeps moving on a face included in{x|x2 = 0}.
Detachment from this face occurs at a timetd, if
and only if, ẋ2(td) >0, which implies�(td) = 0 and
−a2/(a2 + b2)x1(td) + bu(td) >0. We can say that
the systemgrazesthe surface whenx2 = 0 and� = 0.
We conclude that the dynamics on a face included in
{x|x2 = 0} is given by

ẋ1(t) = − ab

a2 + b2
x1(t) − au(t),

− a2

a2 + b2
x1(t) + bu(t)�0. (7)

If a �= 0 then the feedbacku = −1/a(v + [ab/(a2 +
b2)]x1) yields from (7)

ẋ1(t) = v(t),

−x1(t) − b

a
v(t)�0, (8)

where v is the new input. We notice that if
−x1 − (b/a)v = 0 then the system grazes�K. If
−a/b >0, b �= 0, then necessarilyv� − (a/b)x1,
andv can be chosen<0 so thatx1 can be made to de-
crease while staying on�K. If −a/b <0, b �= 0, then
necessarilyv� − (a/b)x1. If x1<0 thenv >0, so
on (−∞,0), x1 can only increase. On(0, +∞) � x1,
one can choosev = −(a/b)x1 so thatP is attained
only asymptotically from anyx1i >0.
(ii) Now if a = 0 (and consequentlyb �= 0), the

dynamics on�K is given by

ż1(t) = − c

b
,

z2(t) = − c

b
,

u(t) + b� = 0 and ��0 ⇒ bu(t)�0. (9)

This is obtained in a similar way as above, noting
that on�K ones hasbż2 = 0 and 0�� ⊥ bż2�0.
The results follow. The detachment from the surface
bz2+ c =0 occurs, if and only if,bż2(td) >0 at some
time td, i.e., bu(td) + b2�(td) = bu(td) >0 (indeed
�(td) = 0 from the complementarity conditions).
(iii) If b=0 (and consequentlya �= 0) the dynamics

on �K is given by

z1(t) = − c

a
,

ż2(t) = u(t),

z2(t) + a� = 0 and ��0 ⇒ az2(t)�0. (10)

The results stated in Lemma 2 (iii) are a direct conse-
quence of (10). �

Lemma 3. The unilateral constraint{x|x2�0} in (1)
can be activated or deactivated with a continuous in-
put signalu(·).

Proof. Let us consider (1) or equivalently (4). The
contact phases, or active constraint, are characterized
by ��0 andx2 = 0 whereas the non-contact phases,
or inactive constraint, correspond to�=0 andx2>0.
When steering the state insideK (i.e., in K\�K) it
is always possible to attain the boundary�K, and to
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remain on�K, with a continuous input. Indeed this
amounts to finding a path in the phase plane (z1, z2),
parameterized byt, linking two pointsz0 ∈ Int(K)

andz1 ∈ �K, such that its second derivative with re-
spect tot satisfies the inequality in (7) on�K. De-
tachment can also be forced with a continuous control
input. Indeed one sees from (5) that as soon as�K is
attained� is the solution of a linear complementarity
problem (LCP) with matrixa2 + b2>0 (a scalar in
this case) and consequently depends continuously on
u(·) (see e.g. [5, Example 4.8.15]). One can speak of
a controlled LCPin (5) which can be controlled with
a continuous input. Consequently the controllability
result holds with input signalsu(·) which are continu-
ous and piecewise differentiable. This guarantees the
existence of a unique solution of (1) or (4) as a result
of Lemma 1. It is noteworthy that these results still
hold if the codimension of�K is �2 (activation or
detachment at corners of�K). �

Proof of Proposition 1. The proof is done by observ-
ing that under the stated conditions, and from Lem-
mas 2 and 3, then any point inK can be steered by
a continuousu(·) to any other point inK. Indeed if
a statezf cannot be attained fromzi via a trajectory
in K\�K, then a portion of path can be tracked on
�K. Concatenating paths in the interior ofK and on
�K allows one to construct a path linkingzi to zf .
The conditions of Proposition 1 are sufficient but can
also be seen to be necessary, for if one of them fails
then there exist couples of states inK which cannot
be joined by a controlled trajectory.�

Examples. From the results of Lemma 2, one sees
that the boundary of the domainK3 in Fig. 1 can be
tracked clockwise. Consequently any pointzf on the
right of the line (l) can be attained from any point
zi on the left of (l). There has to be a portion of the
trajectory that evolves on�K3 to reachzf from zi . Let
us consider the setK1 in Fig. 1. The system is notK1-
controllable because the only way to attain a point on
the left of the vertical line (l) from a point on the right
of (l), is to follow the boundary�K1. However once
the pointA has been reached, it is impossible to move
on �K1 towardA′. The system can be steered on the
line AA′ only in the direction ofB. Consequently all
points ofK1 which are situated on the left of (l), cannot
be attained from points inK1 on the right of (l). It is

noteworthy that even small-time local controllability
[14] may fail. For instance two arbitrarily close states
zi and zf in K1, with zi on the right of (l) and zf

on the left of (l), cannot be joined by a solution of
(1) with some controlu(·). Consider nowK2. Then
trajectories can be controlled fromE toC, thoughC is
reachable in infinite time only. Assume thatC is just
below the axis{z|z2 = 0}. It follows from Lemma 2
that�K2 can be tracked clock-wise by applying some
suitable control input. Thus, the points on the right of
the vertical line (l′) can be steered to anywhere inK2
by first moving onFE. One may say that the dynamics
is suitably modified on the boundaryFE so thatz1
can decrease in the first quadrant. In the same way the
system isK5-controllable, but it is notK4-controllable
(the states on the left of the line (l) cannot be reached
from the states inK2). The system isK5-controllable
since as illustrated a statezf that cannot be attained
from zi via a trajectory which remains inK\�K, can
be attained via a pathziABzf .

Remark 1. As we said after Definition 1, including
infinite timeT in the controllability allows us to disre-
gard some isolated points ofK that may not be reach-
able in finite time. This is the case for the domainK2
where the pointC can be attained asymptotically only.

4. An example

Let us consider the simple electrical circuit in Fig. 4,
whereR is a resistor,L is an inductor,C is a capacitor,
and the diode is supposed to be ideal. Its dynamics is
given by

ż1(t) = z2(t),

ż2(t) = −R

L
z2(t) + u(t)

L
− 1

LC
z1(t) − 1

L
�,

0�� ⊥ −z2(t)�0, (11)

wherez1(·) is the time integral of the current across
the capacitor,z2(·) is the current across the circuit
and−� is the voltage of the diode,u(·) is a voltage
control. One hasK = {z|z2�0}. One sees that this
system is not controllable by simple application of
Proposition 1. One may transform the system in (11)
into the canonical form in (1), by applying a pre-
feedbacku(z1, z2) = Lv(t) + (R/L)z2 + (1/LC)z1.
In fact the statez1(·) can only decrease, or be
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Fig. 4. A simple electrical circuit.

controlled to a constant value on�K. Consequently
the system in (11) is notK-controllable. This is intu-
itively sound since it corresponds to having the capac-
itor loaded with a non-positive current at all times.

5. Conclusion

In this note, we have proposed a characterization of
the controllability properties of planar evolution vari-
ational inequalities with control input. These systems
are a subclass of complementarity dynamical systems.
They are nonsmooth and nonlinear. The material in
this note relies heavily on the properties of the system
on the boundary of the constraint set and on the be-
haviour of the trajectories of planar systems in their
phase plane. Consequently an extension of this work
should rely on the analytical tools in [3] that character-
ize the control capabilities of a system, on the bound-
ary of its admissible domain. The class of systems that
is considered is a narrow class of complementarity
dynamical systems. However the results show that the
controllability of complementarity dynamical systems

differs significantly from that of unconstrained
systems.
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