Local analysis of dynamical systems and application to nonlinear waves

Guillaume JAMES

INRIA Grenoble Rhône-Alpes, Tripop Team

Univ. Grenoble Alpes, Grenoble INP, CNRS, LJK

Ecole thématique – DYNOLIN – 2018

Méthodes de dynamique non linéaire pour l'ingénierie des structures

IV – Modulation equations for lattices with strongly nonlinear spatial coupling Outline :

Different types of strongly nonlinear lattices and localized waves relevant to granular metamaterials

Discrete p-Schrödinger (DpS) limit in Newton's cradle, existence of stationary breathers

G.J. (2011)B. Bidégaray-Fesquet, E. Dumas, G.J. (2013)G.J., P. Kevrekidis, J. Cuevas (2013)G.J., Y. Starosvetsky (2014)

DpS limit in mass-with-mass systems, long-lived breathers

L. Liu, G.J., P. Kevrekidis, A. Vainchtein (2016)

□ Continuum limits of DpS and traveling breathers : G.J. (2018)

I – Strongly nonlinear lattices and granular metamaterials

Model 1 : Fermi-Pasta-Ulam lattice (FPU), fully nonlinear potential

$$\ddot{x}_{n} = V'(x_{n+1} - x_{n}) - V'(x_{n} - x_{n-1})$$

$$V(x) = \frac{1}{p} (-x)_{+}^{p}, \quad p > 2, \quad (a)_{+} = \operatorname{Max}(a, 0)$$

$$V(x) = \frac{1}{p} (-x)_{+}^{p} (-x)_{+}^{p$$

Hertz potential for p=5/2 :

contact force between two spherical beads : $F \approx \delta^{3/2}$

Model 2 : granular chain with local potential (Newton's cradle)

$$\ddot{x}_n + \omega^2 x_n = (x_{n-1} - x_n)_+^{3/2} - (x_n - x_{n+1})_+^{3/2}$$

Stiff attachements (plates) : ω ~1

G.J., Kevrekidis, Cuevas '13

Beads in an elastic matrix :

Hasan et al, Granular Matter '15

Model 3 : locally resonant granular chain

$$\ddot{x}_n + k(x_n - y_n) = (x_{n-1} - x_n)_+^{3/2} - (x_n - x_{n+1})_+^{3/2}$$

$$\rho \ddot{y}_n + k(y_n - x_n) = 0$$

 y_n : displacement of external ring resonator Gantzounis et al, J. Appl. Phys. 114 (2013)

Variants :
*mass-in-mass system: Bonanomi, Theocharis, Daraio, Phys Rev E 91 (2015)
*woodpile structures: Kim et al, PRL 114 (2015)

MwM interpolates between FPU-Hertz ($\rho = 0$) and Newton's cradle ($\rho = \infty$)

Model 4 : discrete p-Schrödinger equation (DpS)

G.J., Math. Models Meth. Appl. Sci. 21 (2011), Starosvetsky et al '12 (coupled chains)

$$i\partial_{\tau}A_{n} = (A_{n+1} - A_{n}) |A_{n+1} - A_{n}|^{p-2} - (A_{n} - A_{n-1}) |A_{n} - A_{n-1}|^{p-2}$$

$$p > 2$$
, Hamiltonian $\sum_{n=-\infty}^{+\infty} |A_{n+1} - A_n|^p$

Reminiscent of DNLS equation, but purely intersite nonlinearity Continuum limit : $i\partial_{\tau}A = \partial_{\varepsilon}(\partial_{\varepsilon}A | \partial_{\varepsilon}A |^{p-2}) \rightarrow p$ -Laplacian

DpS equation (p=5/2 for Hertz contact) approximates the slow modulation in time of small oscillations in :

-Newton's cradle : Bidégaray-Fesquet, Dumas, G.J. '13

-MwM with heavy secondary masses initially close to resting state :

Liu, G.J., Kevrekidis, Vainchtein '16

Different types of localized waves generated by localized perturbations :

Different types of localized waves :

II – From Newton's cradle to DpS, stationary breathers

(N.C.)
$$\ddot{x}_n + x_n = (x_{n-1} - x_n)_+^{\alpha} - (x_n - x_{n+1})_+^{\alpha}$$
 (\$\alpha > 1\$)

Leading order solutions (small amplitude ε) : $x_n^{A,\varepsilon}(t) = \varepsilon A_n(\varepsilon^{\alpha-1} t)e^{it} + \varepsilon \overline{A}_n(\varepsilon^{\alpha-1} t)e^{-it}$ slow time : $\tau = \varepsilon^{\alpha-1} t$

Collect terms $O(\varepsilon^{\alpha}) \times e^{it} \Rightarrow DpS$ equation (G.J. '11)

$$2\tau_0 i \partial_\tau A_n = (A_{n+1} - A_n) |A_{n+1} - A_n|^{\alpha - 1} - (A_n - A_{n-1}) |A_n - A_{n-1}|^{\alpha - 1}$$

 $(\tau_0 \approx 1.5 \text{ for } \alpha = 3/2)$

 \Rightarrow phase invariance, conservation of ℓ_2 norm, scale invariance

Formal derivation of the DpS equation :

$$\ddot{x}_n + x_n = V'(x_{n+1} - x_n) - V'(x_n - x_{n-1}) \qquad -V'(x) = (-x)_+^{\alpha}$$

$$\alpha > 1$$

Small amplitude ε , slowly modulated time-periodic solutions :

$$x_n(t) = \varepsilon X_n(\tau, t) \qquad \tau = \varepsilon^{\alpha - 1} t \text{ slow time } : \int_0^{\varepsilon^{1 - \alpha}} |V'(-\varepsilon)| dt = \varepsilon$$
$$X_n(\tau, t + 2\pi) = X_n(\tau, t)$$

$$\left[(\varepsilon^{\alpha - 1} \partial_{\tau} + \partial_{t})^{2} + 1 \right] X = \varepsilon^{\alpha - 1} \delta^{+} V'(\delta^{-} X)$$

$$X = (X_n)_n, \qquad (\delta^+ X)_n = X_{n+1} - X_n, \qquad (\delta^- X)_n = X_n - X_{n-1}$$

Formal derivation of the DpS equation :

$$\left[\left(\varepsilon^{\alpha-1}\partial_{\tau}+\partial_{t}\right)^{2}+1\right]X=\varepsilon^{\alpha-1}\delta^{+}V'(\delta^{-}X)$$

Expansion : $X = X^0 + \varepsilon^{\alpha - 1} X^1 + o(\varepsilon^{\alpha - 1})$

$$\Rightarrow$$
 order ε^0 : $\left[\partial_t^2 + 1\right]X^0 = 0 \Rightarrow X_n^0(\tau, t) = A_n(\tau)e^{it} + \text{c.c.}$

$$\Rightarrow \text{ order } \varepsilon^{\alpha - 1} : \quad \left[\partial_t^2 + 1\right] X^1 = -2i\partial_\tau A(\tau) e^{it} + \text{c.c.} + \delta^+ V'(\delta^- X^0)$$

$$X^{1} 2\pi - \text{periodic in } t \Rightarrow \text{solvability condition } \int_{0}^{2\pi} e^{-it} \times \text{RHS } dt = 0$$

$$\Rightarrow 2i \partial_{\tau} A_{n} = f(A_{n+1} - A_{n}) - f(A_{n} - A_{n-1})$$

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{-it} V'(ze^{it} + \overline{z}e^{-it}) dt = \frac{1}{\tau_0} z |z|^{\alpha - 1}$$

Newton's cradle vs discrete p-Schrödinger : error bounds

Infinite lattice ($n \in \mathbb{Z}$), phase space = sequence space ℓ_p with $p \in [1,\infty]$

The DpS equation approximates true $O(\varepsilon)$ solutions of N.C. up to an error $O(\varepsilon^{\alpha})$, over long times $O(\varepsilon^{1-\alpha})$:

Theorem (Bidégaray-Fesquet, Dumas, G.J. '13)

Fix a solution of DpS: $A_n(\tau)$: $[0,T] \rightarrow \ell_p(\mathbb{Z})$ For all ε small enough, the solutions of N.C. with initial conditions $(x_n(0), \dot{x}_n(0))_n = (x_n^{A,\varepsilon}(0), \dot{x}_n^{A,\varepsilon}(0))_n + O(\varepsilon^{\alpha})$ in $\ell_p^2(\mathbb{Z})$ satisfy : $(x_n(t), \dot{x}_n(t))_n = (x_n^{A,\varepsilon}(t), \dot{x}_n^{A,\varepsilon}(t))_n + O(\varepsilon^{\alpha})$ in $\ell_p^2(\mathbb{Z})$ uniformly in $t \in [0, T\varepsilon^{1-\alpha}]$

Method :

Consistency : $x^{A,\varepsilon} + O(\varepsilon^{\alpha})$ correction solves N.C. up to an error $O(\varepsilon^{2\alpha-1})$, Gronwall estimates for large times $t = O(\varepsilon^{1-\alpha})$

Error bound for DpS approximation : SKETCH OF PROOF

Known approximate solution : $x_{app}(t) = (\varepsilon X^0 + \varepsilon^{\alpha} X^1)(\varepsilon^{\alpha-1}t, t) = x^{A,\varepsilon}(t) + O(\varepsilon^{\alpha})$

Residual:
$$R(x_{app}) := \left(\frac{d^2}{dt^2} + 1 - \delta^+ V'(\delta^-)\right)(x_{app}) = O(\varepsilon^{2\alpha-1}) + \varepsilon^{3\alpha-2}\partial_\tau^2 X^1$$

No terms $O(\varepsilon)$ and $O(\varepsilon^{\alpha})$ in $R(x_{app})$ with the choice of X^0 (solution of DpS) and X^1 Singular term $\partial_{\tau}^2 X^1$ (distribution !) must be eliminated:

N.C. equivalent to:
$$\frac{du}{dt} = J u + G(u), \quad u = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}, \quad J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \quad G = \begin{pmatrix} 0 \\ \delta^+ V'(\delta^-) \end{pmatrix}$$

with $u(t) \in (\ell_p(Z))^2$. Modified C^1 approximate solution $u_{app} := \begin{pmatrix} x_{app} \\ \dot{x}_{app} - \varepsilon^{2\alpha-1}\partial_{\tau}X^1 \end{pmatrix}$
Residual $E(u_{app}) := \left(\frac{d}{dt} - J - G\right)(u_{app}) = \begin{pmatrix} 0 \\ R(x_{app}) - \varepsilon^{3\alpha-2}\partial_{\tau}^2X^1 \end{pmatrix} + O(\varepsilon^{2\alpha-1}) = O(\varepsilon^{2\alpha-1})$
Error $r := u - u_{app}$ satisfies $\frac{dr}{dt} = Jr + G(u_{app} + r) - G(u_{app}) - E(u_{app})$. By Gronwall:
 $\|r(t)\| \le \|r(0)\| + \int_0^t \|E(u_{app})(s)\| ds + C\varepsilon^{\alpha-1} \int_0^t \|r(s)\| ds = O(\varepsilon^{\alpha})$ for $t = O(\varepsilon^{1-\alpha})$

Breather solutions of DpS (time-periodic) and long-lived breathers in Newton's cradle

DpS:
$$i \partial_{\tau} A_n = (A_{n+1} - A_n) |A_{n+1} - A_n|^{\alpha - 1} - (A_n - A_{n-1}) |A_n - A_{n-1}|^{\alpha - 1}$$

Time-periodic solutions to DpS : $A_n(\tau) = a_n$

$$a_n(\tau) = a_n e^{i\tau} \quad a_n \in \mathbb{R}$$

Breathers : $\lim_{n \to \pm \infty} a_n = 0$

Stationary (real) DpS equation : $-a_{n} = (a_{n+1} - a_{n}) |a_{n+1} - a_{n}|^{\alpha - 1} - (a_{n} - a_{n-1}) |a_{n} - a_{n-1}|^{\alpha - 1}$ b_{n}

Spatial dynamics : stationary real DpS \Leftrightarrow 2D mapping $(a_{n+1}, b_{n+1}) = G(a_n, b_n)$ G reversible, area - preserving, not differentiable at the origin

Stationary Dps equation : some orbits of the « spatial map » G

Zoom towards (0,0)

DpS breathers ⇒ long-lived breathers in Newton's cradle (Bidégaray et al '13)

$$x_n(t) = 2\varepsilon a_n \cos\left[\left(1 + \frac{\varepsilon^{\alpha - 1}}{2\tau_0}\right)t\right] + O(\varepsilon^{\alpha})$$

over long times $t \approx \varepsilon^{1 - \alpha}$

Numerical computation of breathers in Newton's cradle

$$\ddot{x}_n + x_n = (x_{n-1} - x_n)_+^{3/2} - (x_n - x_{n+1})_+^{3/2}$$

Breather solution : $x_n(t+T) = x_n(t)$, $\lim_{n \to \pm \infty} x_n(t) = 0$

Computation by Newton's method : (G.J., Kevrekidis, Cuevas '13)

Small perturbation (energy +0.01%) of a stable breather (bond-centered) ⇒traveling breather :

More on localized solutions of DpS : absence of complete scattering

DpS equation $(\alpha > 1)$:

$$i\partial_{\tau}A_{n} = (A_{n+1} - A_{n})|A_{n+1} - A_{n}|^{\alpha - 1} - (A_{n} - A_{n-1})|A_{n} - A_{n-1}|^{\alpha - 1}$$

Theorem (Bidégaray-Fesquet, Dumas, G.J. '13) :

$$(\delta^{+}A)_{n} = A_{n+1} - A_{n}, \qquad ||A||_{p} = \left(\sum_{n=-\infty}^{+\infty} |A_{n}|^{p}\right)^{1/p}, \qquad ||A||_{\infty} = \sup_{n} |A_{n}|$$

Proof of the theorem use two conserved quantities :

energy
$$H = \sum_{n=-\infty}^{+\infty} |A_{n+1} - A_n|^{\alpha+1}$$
 and $||A||_2^2 = \sum_{n=-\infty}^{+\infty} |A_n|^2$ (Kopidakis et al, '08)
 $||\delta^+ A(0)||_{\alpha+1} = H^{\frac{1}{\alpha+1}} = ||\delta^+ A(\tau)||_{\alpha+1}$ (energy conservation)
 $\leq 2||A(\tau)||_{\alpha+1}$ (triangular inequality)
 $\leq 2(||A(\tau)||_{\infty})^{1-\frac{2}{1+\alpha}} (||A(\tau)||_2)^{\frac{2}{1+\alpha}}$ (interpolation inequality)
 $\leq 2(||A(\tau)||_{\infty})^{1-\frac{2}{1+\alpha}} (||A(0)||_2)^{\frac{2}{1+\alpha}}$ (conserved ℓ_2 norm)

$$\Rightarrow \|A(\tau)\|_{\infty} \ge \left(\frac{1}{2} \|\delta^{+}A(0)\|_{\alpha+1}\right)^{\frac{\alpha+1}{\alpha-1}} \left(\|A(0)\|_{2}\right)^{\frac{2}{1-\alpha}} = \left(\frac{\left\|\frac{1}{2}\delta^{+}A(0)\right\|_{\alpha+1}^{\alpha+1}}{\|A(0)\|_{2}^{2}}\right)^{\frac{\alpha-1}{\alpha-1}}$$

III – DpS limit and breathers in MwM (heavy secondary mass)

$$\ddot{x}_{n} + x_{n} = (x_{n-1} - x_{n})_{+}^{\alpha} - (x_{n} - x_{n+1})_{+}^{\alpha} + y_{n}$$
$$\ddot{y}_{n} = \gamma (x_{n} - y_{n})$$
(MwM)

$$\gamma := 1 / \rho = O(\varepsilon^{2(\alpha-1)})$$

 $\alpha > 1$

 ε small parameter

Theorem (Liu et al '16) phase space = $\ell_p^4(\mathbb{Z})$ with $p \in [1,\infty]$ Fix a solution of DpS: $A_n(\tau)$: $[0,T] \rightarrow \ell_p(\mathbb{Z})$ For all ε small enough, the solutions of MwM with initial conditions $(x_n(0), \dot{x}_n(0))_n = (x_n^{A,\varepsilon}(0), \dot{x}_n^{A,\varepsilon}(0))_n + O(\varepsilon^{\alpha}), \quad (y_n(0), \varepsilon^{1-\alpha} \dot{y}_n(0))_n = O(\varepsilon^{\alpha})$ satisfy uniformly in $t \in [0, T\varepsilon^{1-\alpha}]$: $(x_n(t), \dot{x}_n(t))_n = (x_n^{A,\varepsilon}(t), \dot{x}_n^{A,\varepsilon}(t))_n + O(\varepsilon^{\alpha}), \quad (y_n(t), \varepsilon^{1-\alpha} \dot{y}_n(t))_n = O(\varepsilon^{\alpha})$

DpS breathers \Rightarrow MwM breathers over long times $t \approx \varepsilon^{1-\alpha}$:

$$x_n(t) = 2\varepsilon a_n \cos\left[\left(1 + \frac{\varepsilon^{\alpha - 1}}{2\tau_0}\right)t\right] + O(\varepsilon^{\alpha})$$
$$y_n(t) = O(\varepsilon^{\alpha}), \quad \dot{y}_n(t) = O(\varepsilon^{2\alpha - 1})$$

Breakdown of DpS approximation over long times

No nontrivial T-periodic breather solutions
satisfying
$$\lim_{n \to \pm \infty} ||x_n - x_{n-1}||_{L^{\infty}(0,T)} = 0$$
 (Liu et al '16)
average interaction force : $f_n = \frac{1}{T} \int_0^T (x_{n-1} - x_n)_+^{\alpha} dt \to 0$ as $n \to \infty$ (localization)
MwM yields : $\ddot{x}_n + \rho \ddot{y}_n = (x_{n-1} - x_n)_+^{\alpha} - (x_n - x_{n+1})_+^{\alpha}$
 $\Rightarrow f_n$ independent of $n \Rightarrow f_n = 0$
 $\Rightarrow (x_{n-1}(t) - x_n(t))_+^{\alpha} = 0 \quad \forall t$ (beads not interacting) \Rightarrow only trivial breathers
with $\ddot{x}_n = y_n - x_n$, $\rho \ddot{y}_n = x_n - y_n$ (freq. $\omega = \sqrt{1+\gamma}$)

Numerical simulation of MwM for $\rho = 1000 \ (\alpha = 3/2)$ Initial condition at t = 0: approximate DpS breather with $\varepsilon = 0.01$ (black) Blue : evolution at t = 36 breather periods, red : t = 80 periods

IV – Continuum limits of DpS and traveling breathers

$$i\frac{d}{dt}a_n = (\Delta_p a)_n, \quad n \in \mathbb{Z}, \qquad p = \alpha + 1 > 2$$

 $(\Delta_p a)_n = (a_{n+1} - a_n) |a_{n+1} - a_n|^{p-2} - (a_n - a_{n-1}) |a_n - a_{n-1}|^{p-2}$

Small perturbation of an unstable breather (site-centered) leading to translational motion, for p=5/2 :

Idea to describe traveling breathers : use p-2 as small parameter for a « weakly nonlinear » analysis

See also : G.J. and Starosvetsky '14 (stationary breathers in DpS), Chatterjee '99, G.J. and Pelinovsky '14 (solitary waves in granular chains) Formal derivation of generalized NLS equations (G.J., '18)

$$i\frac{d}{dt}a_n = (\Delta_p a)_n, \quad n \in \mathbb{Z}, \qquad p \approx 2$$

scale invariance : $a_n(t) \to R a_n(|R|^{p-2} t)$

Ansatz:
$$a_n^{\text{app}}(t) = \frac{R}{\sqrt{\Omega}} \phi_n(t) A(\xi, \tau)$$
 $\phi_n(t) = e^{i (\Omega |R|^{p-2} t - q n)}$
 $\Omega(q) = 4 \sin^2(q/2), \quad q \in (0,\pi]$

*Exact periodic traveling wave for A=1 (wavenumber q, amplitude R)

*Slow modulation in time and space for $p \approx 2$

$$\xi = \sqrt{p-2} (n - c_q |R|^{p-2} t) \qquad c_q = \Omega'(q) = 2 \sin q$$

$$\tau = (p-2) |R|^{p-2} t$$

Formal derivation of generalized NLS equations

Evaluation of residual error : $E := (i \frac{d}{dt} - \Delta_p)(a^{app})$

$$= (p-2) \frac{R|R|^{p-2}}{\sqrt{\Omega}} \phi \left(i\partial_{\tau} A + \Omega N_{p}(A) - \cos q \left(\partial_{\xi}^{2} A \right) |A|^{p-2} + \mathcal{O}(\sqrt{p-2}) \right)$$
$$N_{p}(A) = A \frac{|A|^{p-2} - 1}{p-2} = A \ln|A| + O(p-2)$$

Amplitude equations yielding $E = O((p-2)^{3/2})$:

logarithmic NLS equation :

(Bialynicki-Birula and Mycielski '76, Cazenave and Haraux '80, ...)

$$i\partial_{\tau}A = \cos q \,\partial_{\xi}^2 A - \Omega \,A \,\ln|A|$$
 (log-NLS)

fully-nonlinear Schrödinger equations :

$$i\partial_{\tau}A = \cos q \left(\partial_{\xi}^{2}A\right) |A|^{p-2} - \Omega N_{p}(A)$$
 (FNLS-I)
$$i\partial_{\tau}A = \cos q \,\partial_{\xi}^{2}(A |A|^{p-2}) - \Omega N_{p}(A)$$
 (FNLS-II)

NLS approximations of traveling breathers

Stationary equations FNLS-I and FNLS-II (Ahnert-Pikovsky '09) admit compactons for $q \in (\pi/2,\pi]$:

$$A_{c}(\xi) = \begin{cases} A_{1} |\cos(\lambda\xi)|^{\frac{2}{p-2}}, & |\xi| \leq \frac{\pi}{2\lambda}, \\ 0, & |\xi| \geq \frac{\pi}{2\lambda}, \end{cases}$$

constant coefficients $A_{1}(p), \ \lambda(p,q) = O(\sqrt{p-2})$

with

→ approximate traveling breathers for DpS with compact support :

$$a_n^{\text{app}}(t) = \frac{R}{\sqrt{\Omega}} e^{i(\Omega |R|^{p-2} t - qn)} A_c[\sqrt{p-2}(n-2\sin q |R|^{p-2} t)]$$

log-NLS equation admits Gaussian solutions for $q \in (\pi/2,\pi]$: $A_{\rm g}(\xi) = \sqrt{e} \exp\left(\frac{\Omega}{4\cos q} \xi^2\right) = \lim_{p \to 2} A_{\rm c}(\xi)$

Traveling breather solutions of the DpS equation : numerical computation

We compute localized initial conditions $a_n(0)$ in DpS such that :

$$e^{i\theta} a_{n+1}(1/v) = a_n(0), \quad \forall n \in \mathbb{Z} \Rightarrow a_n(t) = a_0(t - n/v) e^{-i\theta n}$$

Parameters v, θ : traveling breather velocity and phase

Numerical tools : time-integration and Newton's method

Ansatz (compacton or Gaussian) :

$$a_n^{\text{app}}(t) = \frac{R}{\sqrt{\Omega}} e^{i(\Omega |R|^{p-2} t - qn)} A_c[\sqrt{p-2}(n-2\sin q |R|^{p-2} t)]$$

Wavenumber q and amplitude R must satisfy :

$$q - \tan \left(\frac{q}{2} \right) = \theta \left(2\pi \right)$$
$$2 \sin q \left| R \right|^{p-2} = v$$

Numerical validation of NLS approximations

Relative error between Ansatz ($q = 3\pi / 4$, R = 1) and a numerically exact traveling breather $a_n(t) = a_0(t - n / v) e^{-i\theta n}$ (velocity $v = \sqrt{2}$, phase shift $\theta \approx -0.06$)

Numerical validation of NLS approximations

Dynamical simulation for p=2.1 (initial perturbation of first particle)

Conclusion

Nonlinear lattices modeling 1D granular metamaterials :

FPU (Hertz type potential, p>2) + local potential or attached masses

- Time-periodic or transient (long-lived) breathers and traveling breathers obtained numerically
- asymptotic model : discrete p-Schrödinger equation (DpS)
 -approximates small oscillations over long (but finite) times
 -existence of time-periodic breathers
 - -traveling breathers approximated through formal continuum limits

Works in progress :

- error bounds in the multiscale analysis for $p \approx 2$
- dissipative impacts

References :

G.J., Math. Models Meth. Appl. Sci. 21 (2011), 2335-2377

G.J., P. Kevrekidis, J. Cuevas, Physica D 251 (2013), 39-59 + proceedings of NOLTA 2012, arXiv:1301.1769

Bidégaray-Fesquet, Dumas, G.J., SIAM J. Math. Anal. 45 (2013), 3404-3430

G.J., Y. Starosvetsky, in « Localized Excitations in Nonlinear Complex Systems », Nonlinear Systems and Complexity 7, Springer, 2014

L. Liu, G.J., P. Kevrekidis, A. Vainchtein, Nonlinearity 29 (2016), 3496-3527.

G.J., Traveling breathers and solitary waves in strongly nonlinear lattices, to appear in Phil. Trans. Royal Soc. London A (2018).

Starosvetsky, Hasan, Vakakis, Manevitch, SIAM J. Appl. Math. 72 (2012), 337-361.

I. Daumont, T. Dauxois, M. Peyrard, Nonlinearity 10 (1997), 617-630. L.I. Manevitch, Nonlinear Dynamics 25 (2001), 95-109. Morgante, Johansson, Kopidakis, Aubry, Physica D 162 (2002), 53-94.