
III European Conference on Computational Mechanics
Solids, Structures and Coupled Problems in Engineering

C.A. Mota Soares et.al. (eds.)
Lisbon, Portugal, 5–8 June 2006

COMPARISON AND COUPLING OF ALGORITHMS FOR
COLLISIONS, CONTACT AND FRICTION IN RIGID MULTI-BODY

SIMULATIONS

Mathieu Renouf1 and Vincent Acary2

1LaMCoS - TMI team
CNRS/INSA de Lyon - UMR5514 18-20, rue des sciences F69621 VILLEURBANNE cedex - France

e-mail: Mathieu.Renouf@insa-lyon.fr
2Bipop Project, INRIA Rhone–Alpes

ZIRST Montbonnot, 655, avenue de l’Europe, 38664 Saint ISMIER, France
e-mail: Vincent.Acary@inrialpes.fr

Keywords: Frictional Contact, Block-structured algorithm, LCP, Direct method, Iterative method

Abstract. Numerous works in Computational Mechanics are dedicated tothe simulation of
multi-body systems with contact and friction. The case of dense multi-contact assemblies is one
of the more complex one: the problem have often a large numberof unknowns and the non
uniqueness of solutions is usual. Moreover this problem becomes harder when the Coulomb’s
friction or more complex laws are introduced. In this context, fast and robust solvers are re-
quired to carry out relevant mechanical studies. In a general way, these performances can
be improved if the special structure of the problem can be exploited. For multi-body systems
with contact and friction, the sparse block structured matrices involved in the time-discretised
problem is one such structure.

Our work is embedded in the Non Smooth Contact Dynamics framework introduced by J.J.
Moreau. The method is based on a time-stepping integrator without explicit event-handling
procedure and an unilateral contact/impact formulation associated with the Coulomb’s friction.
In this paper, different iterative algorithms such as Gauss–Seidel, projected conjugate gradient
and direct ones such as Lemke’s method and Quadratic Programsolvers are compared. The
efficiency of the methods is compared in terms of complexity,convergence criterion and of CPU
time.

Methods are illustrated with the simulation of granular assemblies. All of these 3D frictional
contact simulations are performed with ConF&TiS and the SICONOS/Numerics library.
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1 INTRODUCTION

Numerous works in computational mechanics are dedicated tothe simulation of multi-body
systems [1] with application fields in soil mechanics [2], civil engineering [3] and also in com-
puter graphics [4]. This multiplicity of applications and the associated specific constraints leads
to use a large panel of methods to simulate static and/or dynamic evolutions. The case of
dense multi-contact assemblies is one of the more complex one. The problem have often a
large number of unknown and the non uniqueness of solutions is usual. The first reason for
the non-uniqueness is the redundancy of unilateral constraints leading to severe hyperstaticity,
and non-definiteness of the matrices describing the system.The second reason is inherent to
the Coulomb’s friction law allowing multiple solution for the reaction forces at contact. Gran-
ular materials are typical examples of large and dense multi-body systems, where the previous
mathematical troubles are encountered. To this mathematical difficulty, a physical one must
be added. Indeed, very different behaviors which can jump from a solid one, in quasi-static
evolution or low dynamic evolution of dense assemblies [2] to a liquid behavior during surface
flows [6] have to be taken into account.

Due to the geometric structure of a multibody systems, the matrix describing the time dis-
cretized ad possibly linearized problem enjoys a block structure. This is mainly due to the fact
that the connection between two bodies is only possible between adjacent bodies. In[7], a stan-
dard block splitting method is used, called the Non Smooth Block Gauss-Seidel algorithm. The
numerical efficiency is critical (robust but slowly convergence) justifying studies and improve-
ments [8]. Projected Conjugate Gradient[9] is faster for two-dimensional problems but does not
allow in the case of three-dimensional frictional contact problems to obtain a large CPU time
gain.

Usual LCP and QP methods for the frictionless case can be alsoextended to the frictional
case using a approximation of the friction cone [5]. In this case, the block structure of the
matrices is still obtained. Direct methods such as Lemke’s method can also be used but need
special pivot research [10]. In the multi-contact case, a pivoting method appears to be slower
than iterative ones, especially for a large number of unknown [4]. Quadratic programming
solvers are also an alternative but present similar efficiency than Lemke’s algorithm. For small
systems, direct methods are often more efficient and faster than iterative ones especially for
very difficult and ill-conditioned problem.

The aim of this paper is to present a combination of algorithms which takes benefit from the
block structure of three-dimensional frictional contact problem. This combination is performed
using different local algorithms for each blocks (direct oriterative methods) within a global
standard block splitting method. After a presentation in Section 2 of the framework used for
our three-dimensional frictional contact problem, the block structure formulation is presented
in details in Section 3 with and without an approximation of the friction cone. Section 4 gives
an overview of the different algorithms. Several results are presented in Section 5 on granular
materials samples and Section 6 concludes the paper.

2 FORMULATION OF THE FRICTIONAL CONTACT PROBLEMS

In Computational Mechanics, among well-suited approachesfor the rigid body dynamics
with contact, friction and impact, two opposite approachesare found: compliant versus uni-
lateral contact model and event-driven versus time-stepping schemes. In the context of gran-
ular materials, where large collections of bodies are encountered, Cundall [11] was the first
to propose a numerical tool based on an Euler scheme and wherecontacts are governed by a
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compliant model. With a definitely different approach, Moreau [12] and Jean [7] exposed a nu-
merical treatment of rigid and deformable body collectionswith unilateral contact, Coulomb’s
dry friction and impact in the framework of the Nonsmooth Mechanics and Convex Analysis.
This framework yields a time-stepping scheme (without explicit event-handling) where veloc-
ities and impulses are the primary variables. Still in a nonsmooth framework, Pfeiffer and
Glocker [1] and Stewart and Trinkle [13] designed event-driven algorithms for the time inte-
gration and proposed a general formulation for the dynamicsat the acceleration-force level.
The resolution of the time-discretized problem is performed using a direct method for LCP [5],
a quadratic programing solver [14] or a MCP solver [15]. Focusing on the resolution of the
time-discretized problem, the choice of the time integration scheme is out the scope of this
paper.

The method used in this work to simulate our multi-body systems is based on theNon Smooth
Contact Dynamics(NSCD) framework previously evoked. This time-stepping scheme is a very
efficient numerical tool for a great number of applications that are well-known for theirs dif-
ficulties [3, 2]. The headlines of the method are presented and we refer to [12, 7] for detailed
explanations.

2.1 Discretization of the equations of motion

The formalism of the NSCD method relies on a special formulation of the equation of mo-
tion. When multi-contact systems are considered, shocks may be expected during the evolution
of the system. These shocks lead to velocity discontinuities and preclude to define the ac-
celeration as the usual second time derivative of the configuration parameter, denoted in this
paper byq. Consequently the equations of motion must be formulated interms of a measure
differential equation,

Mdq̇ = F(t,q, q̇)dt + dR, (1)

wheredt is the Lebesgue measure onR, dq̇ is a differential measure representing the accel-
eration measure anddR is a non-negative real measure, representing the reaction forces and
impulses. In the equation (1), the matrixM represents the mass matrix andF(t,q, q̇) the in-
ternal and external forces acting on the system. For the sakeof readability,F is only given by
external loads depending on time. The general case can be easily tackled through a linearizing
procedure such as a Newton’s method.

In this way, the equation (1) is integrated on each time interval ]ti, ti+1] and approximated
using aθ method, an implicit first-order scheme, using the configuration parameter and its first
derivative [7]. A stability condition implies thatθ must remain between1/2 and1. Successive
approximations of equation (1) lead to the following system

{
q̇i+1 = q̇

free
i + (M−1)Ri+1

qi+1 = qi + hθq̇i+1 + h(1 − θ)q̇i

(2)

with
q̇

free
i = q̇i + M

−1h(θFi+1 + (1 − θ)Fi).

The vectorq̇free denotes the free velocity (computed velocities without contact forces). Index
i (resp.i + 1) refers to timeti (resp.ti+1). Global quantities such as the sum of contact forces
R and the body velocitẏq are related to local variables via two linear mappings denote H and
its transposeH∗. The local forces vectorr, expressed in the local frame, are related toR by the
relation

R = H(q)r. (3)
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In the same way, the velocity of the bodiesq̇ is related to the contact relative velocities vector
v by the relation,

v = H
∗(q)q̇, (4)

Using the equations (3) and (4), the discretization of the equation of motion and the contact law
can be summarized in the following system:

{
Wri+1 − vi+1 = −vfree

lawα[vα,i+1, rα,i+1] = .true., α = 1, . . . , nc
(5)

whereW (= H∗M−1H) is the Delassus operator andα is the index over the contact set. The
right-hand-side of the first equation in (5) represents the free relative velocity. The second
equation in (5) denotes the contact law which must be satisfied by each component of the couple
(v, r)α. The contact law used in the context of this paper is a classical Signorini condition
coupled with Coulomb’s friction. An extension of the Newtonimpact law to multi-contact
assemblies [12] is coupled to the friction law.

3 BLOCK STRUCTURE FORMULATION OF THE DELASSUS OPERATOR

Within the NSCD framework, the Delassus operator enjoys a block structure. When this
theoretical structure is linked to the physical structure of a granular material, each block on
the diagonal of the operator contains the local informationof each contact, and the blocks out
of the diagonal represent the connectivity between coupledcontacts. The explicit formulation
of the Delassus operator used in the problem (5) is presentedin this section. This explicit
formulation is addressed first for a one contact case in a non approximated problem and after
for an approximated one and then for the multi-contact case.

3.1 The one-contact case

3.1.1 Standard Delassus operator

The linear mappingH introduced in section 2 can be decomposed in a normal partHN and
a tangential oneHT and expressed asH =

[
HT HN

]
. Using the definition ofW one obtain

W =

[
WTT WTN

WNT WNN

]
=

[
H∗

T M−1HT H∗

T M−1HN

H∗

nM−1HT H∗

NM−1HN

]

Here the contact index is omitted to keep a pleasant reading.

3.1.2 Inner approximation of the friction cone

To use direct resolution methods such as Lemke or Quadratic Programming solvers [16, 17]
to solve the frictional contact problem, an approximation of the friction cone must be made.
with such an approximation, some existence of solutions canbe exhibited [13].

Different kinds of approximations can be performed: uniform or not, inner or outer. The
global form of the matrix is described, using an regular inner approximation as it may be repre-
sented on Figure 1. First the approximated friction cone is defined as

F̂C = {rNn + Dβ | rN ≥ 0, β ≥ 0, e∗β ≤ µrN}

with
D =

[
d1 ... dν

]
.
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Figure 1: Inner approximation

Each vectordi, ∀i ∈ {1, ..., ν} (see Figure 1) and the dimension of vectorβ are related to
the approximation by theν-gon.

Using the previous definition of the approximation of the friction cone and the definition of
W, the matrixW̃ and the right hand sidẽvfree of the approximated frictional contact are built
as follows

W̃ =




D
∗
WTT D D

∗
WTN e

WNT D WNN 0
−e∗ µ 0


 and ṽfree =




D
∗vfree,T

vfree,N

0


 .

Note that this kind of approximation leads to increase the number of unknowns due to the
introduction of slack variables. On the behavioral point ofview, such approximation may gen-
erate some problems with a strong impact in special applications such as haptic control [4] due
to the introduction of an anisotropy of the approximated friction cone.

3.2 Multi-contact strategy

When multi-contact assemblies are considered,W presents a block structure (nc×nc blocks,
if nc denotes the contact number). This structure is a concatenation of both null andWα,β

matrices where the last ones are defined as

Wαβ =

[
H

∗

T,αM
−1

HT,β H
∗

T,αM
−1

HN,β

H∗

N,αM−1HT,β H∗

N,αM−1HN,β

]
.

When α = β, the Wαβ are equal to matrices defined in the one contact case. Using this
definition, the global matrix is equal to

W =




W11 W12 W13 . . . O

W21 W22 O . . . W2nc

W31 O W33 . . . W3nc

...
...

...
. . .

...
O Wnc2 Wnc3 . . . Wncnc




.

Non null matrices on each block line represent the connectivity between the set of contacts.
When approximation of the friction cone is used, the size is related to the accuracy of the
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approximation, i.e. to the dimension of the matrix,D. Usually when pivoting methods are used
to solve the problem the whole matrix must be considered at each operation. The idea here is to
keep the structure found in [7] and to extend it towards combinations using LCP or QP solvers.
Consequently if an approximated problem is considered, theapproximation is performed at the
local level only. The size of the problem is reduced by considering only the approximation of
the local Delassus operator and not of the whole matrix. Furthermore, if only small problems
are considered , problems where pivoting methods can be efficient. Moreover the construction
of eachW̃ can be performed only one times to preserve CPU time. Only theright hand side of
problem (5) has to be updated to take into account the evolution of the system. From this point
of view, this method is different from the theoretical results and the methodology presented
in [19].

4 BLOCK SPLITTING METHOD AND LOCAL ALGORITHMS PANEL

4.1 Block Splitting method

To solve problem (5) a general Block Splitting Method (BSM) is applied on matrixW or W̃.
The idea is to solve the local frictional contact problem using an algorithm such as generalized
Newton methods [20], Lemke’s method [10] and to use a block splitting method to solve contact
by contact each local problems. Method such as CPG algorithm[9] or solvers based on NCP
formulation [21] will be not considered here.
Using the notation of system (5), the global splitting scheme is written down as follows

vk+1

α − Wααr
k+1

α = vα,free +
∑

β<α Wαβr
k+1

β +
∑

β>α Wαβr
k
β

= bk
α

(6)

where the indexk refers to the splitting method iterations. The time index isomitted to make
pleasant reading. Using the global scheme to propagate the information, the algorithm used to
solve the local frictional contact problem must be defined.

Combined Block Splitting Scheme

Step 0 : Initialization
Compute block matricesWαα, Wαβ, α = 1, .., n, β = 1, .., n

Step 1 : CBSM iteration (indexk)
Start block iteration (indexα)∣∣∣∣

Compute bk
α right hand side of equation (6)

Solve Frictional Contact Problem(Wαα,bk
α)

Step 2 : Check convergence
If convergence ork = kmax Stop else go toStep 1

4.2 Lexicographic Lemke

Pivoting methods are often used to solve LCP [10], but obtaining good results in terms of effi-
ciency with such methods depends strongly on the propertiesof the matrixW. In multi-contact
assemblies (of rigid bodies), the matrixW is almost always a positive but only semi-definite
(PSD) matrix. Especially, The redundancy of constraints leads to degenerate problems. In this
case, classical pivoting methods cannot be used and some adaptation in pivoting algorithms
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must be taken into account to avoid cycling during the pivoting process.
To face this problem with the Lemke’s method, a solution is tobase the choice of the pivot and
the minimum ratio on a lexicographic ordering [10, 22]. Thusthe choice of the pivot variable is
unique and allows to obtain a solution when the problem is degenerated.

4.3 Quadratic Programming Solver

The interest of Quadratic Programming solver relies on the minimization principle and the
descent method which ensures a strong stability to the algorithm. Moreover, reliable modifica-
tions of such algorithms are usual to overcome the non-definiteness of the matrix. To face this
problem a QP solver based on the generalized Fletcher’s method [23] is used. These improve-
ments ensure an algorithm termination extending to the caseof round-off error. However, to
guarantee that the solution of the LCP is also a solution of the QP, the matrix of the LCP need to
be monotone. Especially, for frictional simulation, the non symmetry of the Delassus operator
leads to double the number of constraints and the monotonicity of the Delassus operator is not
ensured.

4.4 Dedicated Local Newton Method

The non smooth frictional contact problem can also be solvedby a Newton method [20].
Resolution of system (5) may be formulated as a root finding problem for a non smooth function
F(v, r) defined as

F(v, r) = 0 ⇔

{
v − vfree − Wr = 0,
r − γ+

n n− proj(γt; C(γ+
n ))t = 0,

(7)

with γ = r − ρu = γnn + γt, ρ > 0 et γ+
n = proj(γn; R

+) et γt ∈ R2. The principle of the
Newton’s method is to determine the coupleX = (ṽ, r̃) which satisfiedF(X) = 0. For that,
the different iterate(Xp)p are defined as

∂F(Xp)∆X = −F(Xp), (8)

where∂F(Xp) is one of the Jacobian matrices, element of the Jacobian baseof F(Xp). Then
the iteration indexp is introduced to obtain

∇F =

[
I −W

Ap Bp

]
, (9)

whereI, Ap et Bp ∈ R3. Using a formulation based on the definition of Newton iterations, the
equation (9) is introduced in an iterative scheme function of A

p andB
p.

To determineAp, Bp and to solve our problem, the different components ofF as well as their
partial subgradients must be defined in regards ofrn, vn, rt andvt.

4.5 About granular dedicated solver

When granular assemblies are considered, it is possible to take benefit of the geometry of
particles to simplify the problem. When spherical particles are considered, it is not necessary
to used a complex solver because the resolution become explicit with or without friction. These
dedicated strategies, well known in the granular materialscommunity, have been presented in
[4] where more details can be obtained. It’s noteworthy thatfor more complex systems such
as masonry or complex rigid body structure, this kind of explicit resolution cannot be used.
Therefore previous methods present a large interest in the case of more general multi-body
simulations.
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5 SIMULATION RESULTS

To start our comparisons, a sphere packing is simulated. Although the geometry of particles
is simple and smooth, the process of packing is interesting form a numerical point of view
because of the transition from a dynamic flow to a static equilibrium. Moreover the contact
number increases quickly during the simulation.

Figure 2 depicts results obtained with a dedicated solver (as a reference result), QP solver,
Lemke and Newton algorithm during a sphere settling. The time of BSM resolution is displayed
in function of the size ofW i.e. the contact number.
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Figure 2: Evolution of time of BSM resolution in regard of thecontact number

For this sample, the combination with the generalized Newton method appears to be the
more efficient. The Lemke’s method is the worse in terms of CPUtime. QP solver provides
us with correct results but is less efficient than the Newton’s method. It’s noteworthy that
for pivoting methods the maximal number of pivots is crucial. Indeed, direct methods must
complete all pivoting steps before giving a solution. Otherwise, the result do not have any
physical sense. This value is difficult to size because no result of convergence exists for PSD
matrices. Nevertheless, reasonable precautions assure tofind a proper solution reducing the
CPU time.

The different methods are also compared on the simulation ofa well-known mechanical
phenomenon: the Brazil nut effect (See Figure 5). To check the validity of the results, several
simulations with the different algorithms presented in Section 4 are performed and comparisons
in terms of CPU time as well as mechanical behavior are done.

The sample is composed of800 spheres of radius equal to1 and a big sphere of radius2.
All particles are in a box and small particles lay on the big one. A periodic displacement is
prescribed to the floor and generate fluctuations in the sample. The motion of the big particle is
tracked during the simulation.

Figure 4 depicts the evolution of the BSM resolution time during the simulation process.
As the obtained results with the Lemke’s method are too much expensive in CPU time, their
evolution is not plotted. Results obtain with the QP solver are more expensive that the ones
obtained with Newton or dedicated solver. However, in each case the mechanical behavior is
reproduced.
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Figure 3: Reproduction of the Brazil nut effect
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Figure 4: Evolution of the time take by the resolution of the BSM during the simulation process.

As mention in Section 4, spherical assemblies do not need complex algorithms due to the
specific simplification induced by their geometry. Then masonry [3] or assemblies composed
of more complex shape [2] for which this simplification is notrelevant are considered.

The example of masonry simulations as shown on figure 5 is verysensitive. The result
must be the most accurate possible to ensure the stability ofthe structure. Figure 5 depicts the
numerical reproduction of the experiment performed by M. Jean [3]. The ground is composed
of two separate part and one of the part settles vertically. Block detachments and fractures in
specific area of the wall are observed. Experiment and simulation give similar results.

The block splitting method combined to the Newton algorithmallow us to perform the sim-
ulation in 1200s. Lemke’s method and QP solver are slower than Newton method but results
keep a correct physical behavior.

6 CONCLUSION

A brief overview of combined algorithms has been presented and tested for the simulation
of granular materials. In a previous work the authors have presented results underlining the

9



M. Renouf and V. Acary

Figure 5: Numerical reproduction of Chateau Gombert experiment

efficiency of iterative methods for the simulation of multi-body systems. The conclusions of
this short study are similar. Although direct methods appear to be efficient on small systems,
their integration in a iterative system does not lead to improve efficiency. If the result keeps a
physical meaning, the CPU time of simulation is not reasonable. Perhaps, such method may
be interesting in very ill-conditioned problem. The Newton’s method appears to be the most
well-suited algorithm for a coupling with a general splitting method. The CPU time as well as
mechanical behavior are satisfying. To complete the study,combinations with the PATH solver
[15] and NCP [21] will be performed.
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