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❈ Team: 4 Permanent members + 5 PhD students + 1 post doc
• Bernard Brogliato (Head of the Project)

• Claude Lemaréchal

• Pierre–Brice Wieber

• Vincent Acary

❈ The core of our activities is in the field of the Non-Smooth Analysis :
• Non smooth optimization (CL)

• Modeling of Non Smooth Dynamical Systems (NSDS) (VA, BB)

• Control of NSDS (PBW, BB)

• Simulation of NSDS (VA, PB)

❈ Favorite applications :
• Mechanical systems with contact and friction (Multi-body dynamics, Granular materials,

Buildings made of masonry, ..) with possibly real-time constraints (Haptic feedback)

• Electrical networks with idealized components (Diodes, transistors, switch, ...)

• Walking robot and bipedal Locomotion

❈ European Projects :
• FP5 project SICONOS coordinated by B. Brogliato.

➜ Main outcome : Open source software platform for simulation, modeling and control

of NSDS (Python, C++, F77) http://siconos.inrialpes.fr/software

• The FP6 Network of Excellence HyCon (Hybrid Control)
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What is a Non Smooth Dynamical System (NSDS) ?

A NSDS is a dynamical system is characterized by two correlated features :

❈ a non smooth evolution with the respect to time, for instance :
• Jumps in the state and/or in its derivatives wrt. time

• Generalized solutions (distributions)

❈ a set of non smooth laws (Generalized equations) between the state x and a set of
Lagrange multipliers λ

A typical example is the finite-dimensional unilateral dynamics :

8

<

:

ẋ = f(x, t) + λ, x ∈ IRn

x ≥ 0, λ ≥ 0, x.λ = 0
(1)

that can be written as a (unbounded) differential inclusion :

− ẋ + f(x, t) = −λ ∈ ∂ΨIR+
(x) = NIR+

(x) (2)

where - ΨIR+
is the indicatrix function of IR+

- NIR+
the normal cone to IR+, i.e, IR−
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Typical examples

❈ Linear Complementarity Systems (LCS)

8

>

<

>

:

ẋ = Ax+Bλ, x ∈ IRn, λ ∈ IRm

y = Cx+Dλ

0 ≤ y ⊥ λ ≥ 0

(3)

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×n, D ∈ IRm×m,
for m constraints.

λ

y0
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Typical examples

❈ Linear Complementarity Systems (LCS)

8
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>

:

ẋ = Ax+Bλ, x ∈ IRn, λ ∈ IRm

y = Cx+Dλ

0 ≤ y ⊥ λ ≥ 0

(3)

with A ∈ IRn×n, B ∈ IRn×m, C ∈ IRm×n, D ∈ IRm×m,
for m constraints.

λ

y0

❈ Piecewise linear systems

λ

y0

1

−1

λ

y0

1

−1

λ

y0

1

−1

saturation Relay Relay with dead zone
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Lagrangian systems with Contact and Coulomb’s Friction

❈ Lagrangian dynamical system :

M(q)q̈ + Q(q̇, q) + F (q̇, q, t) = Fext(t) + R

• q ∈ R
n : generalized coordinates vector.

• M ∈ IRn×n : the inertia matrix

• Q(q̇, q) : The non linear inertial term (Coriolis)

• F (q̇, q, t) : the internal forces

• Fext(t) : R 7→ R
n : given external load,

• R ∈ R
n is the force due the non smooth law.
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Lagrangian systems with Contact and Coulomb’s Friction

❈ Lagrangian dynamical system :

M(q)q̈ + Q(q̇, q) + F (q̇, q, t) = Fext(t) + R

• q ∈ R
n : generalized coordinates vector.

• M ∈ IRn×n : the inertia matrix

• Q(q̇, q) : The non linear inertial term (Coriolis)

• F (q̇, q, t) : the internal forces

• Fext(t) : R 7→ R
n : given external load,

• R ∈ R
n is the force due the non smooth law.

❈ Linear relations.
• Kinematic laws from the generalized coordinates to the local coordinates at contact.

y = HT q + b, ẏ = HT q̇

Mapping H : Restriction mapping composed with a change of frame

• By duality,

R = Hλ
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Lagrangian systems with Contact and Coulomb’s Friction

❈ Local frame at contact : (n, t)

y = ynn+yt, ẏ = ẏnn+ẏt

λ = λnn + λt,

� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �
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n

t
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Lagrangian systems with Contact and Coulomb’s Friction

❈ Local frame at contact : (n, t)

y = ynn+yt, ẏ = ẏnn+ẏt

λ = λnn + λt,
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� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

n

t

❈ Unilateral contact :

0 ≤ yn ⊥ λn ≥ 0 ⇐⇒ −λn ∈ ∂ΨIR+(yn)
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Lagrangian systems with Contact and Coulomb’s Friction

❈ Local frame at contact : (n, t)

y = ynn+yt, ẏ = ẏnn+ẏt

λ = λnn + λt,
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n

t

❈ Unilateral contact :

0 ≤ yn ⊥ λn ≥ 0 ⇐⇒ −λn ∈ ∂ΨIR+(yn)

❈ Coulomb’s Friction, µ Coefficient of friction, C(µλn) = {λt, ‖λt‖ ≤ µλn}

(

ẏt = 0, ‖λt‖ ≤ µλn

ẏt 6= 0, λt = −µλnsign(ẏt)
⇐⇒ ẏt ∈ ∂ΨC(µλn)(−λt) ⇐⇒ −λt ∈ ∂Ψ∗

C(µλn)(ẏt)
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❈ Local frame at contact : (n, t)

y = ynn+yt, ẏ = ẏnn+ẏt

λ = λnn + λt,
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n

t

❈ Unilateral contact :

0 ≤ yn ⊥ λn ≥ 0 ⇐⇒ −λn ∈ ∂ΨIR+(yn)

❈ Coulomb’s Friction, µ Coefficient of friction, C(µλn) = {λt, ‖λt‖ ≤ µλn}

(

ẏt = 0, ‖λt‖ ≤ µλn

ẏt 6= 0, λt = −µλnsign(ẏt)
⇐⇒ ẏt ∈ ∂ΨC(µλn)(−λt) ⇐⇒ −λt ∈ ∂Ψ∗

C(µλn)(ẏt)

❈ (Newton) Impact law, if necessary, e coefficient of restitution

ẏn(t+) = −eẏn(t−)
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Optimal Control with state constraints

❈ Quadratic optimal control Problem

min
u
I(u) =

1

2

Z T

0
(xTQx+ u

T
Ru) dt+

1

2
x
T (T )Fx(T )

(s.t.) ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, x(T ) = xT

w(t) = Cx(t) +D ≥ 0
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Optimal Control with state constraints

❈ Quadratic optimal control Problem

min
u
I(u) =

1

2

Z T

0
(xTQx+ u

T
Ru) dt+

1

2
x
T (T )Fx(T )

(s.t.) ẋ(t) = Ax(t) +Bu(t)

x(0) = x0, x(T ) = xT

w(t) = Cx(t) +D ≥ 0

❈ Necessary conditions =⇒ LCS with Boundary conditions :

"

ẋ

η̇

#

=

"

A BR−1BT

Q −AT

# "

x

η

#

+

"

0

−CT

#

λ

0 ≤ Cx(t) +D ⊥ λ ≥ 0

x(0) = x0, x(T ) = xT

η(0) = η0, η(T ) = Fx(T ) + C
T
γ + β = ηT

Optimization and its applications. Oberwohlfach, January 10–15, 2005 – p.8/44



Vincent ACARY
BipOp project. INRIA Rhône–Alpes

Introduction Low order systems Higher order systems Numerical Methods Conclusions

Applications

❈ Simulation, modeling and control of electrical networks with idealized components
(diodes, transistors, switch, ...)

VoutS

L
D

R
C

t

Vin
+

−

DC-DC Boost Converter with Sliding mode control
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Applications

❈ Simulation, modeling and control of electrical networks with idealized components
(diodes, transistors, switch, ...)

❈ Simulation, modeling and control of mechanical systems
Simulation of Circuit breakers (INRIA/Schneider Electric)

•
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Applications

❈ Simulation, modeling and control of electrical networks with idealized components
(diodes, transistors, switch, ...)

❈ Simulation, modeling and control of mechanical systems

Bipedal Robot INRIA BIPOP
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Applications

❈ Simulation, modeling and control of electrical networks with idealized components
(diodes, transistors, switch, ...)

❈ Simulation, modeling and control of mechanical systems

Granular flow in a silo
LMGC Montpellier

Granular Segregation
LMGC Montpellier
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Applications

❈ Simulation, modeling and control of electrical networks with idealized components
(diodes, transistors, switch, ...)

❈ Simulation, modeling and control of mechanical systems

Granular flow in a silo
LMGC Montpellier

Granular Segregation
LMGC Montpellier

❈ There are also applications in biology, macro-economics, ..
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Outline

✔ 1 – Introduction on Non Smooth Dynamical systems

➜ 2 – Historical background on low order systems

2.1 – Difficulties and Approaches

2.2 – Approaches

2.3 – Moreau’s Sweeping Process of order 1

2.4 – Moreau’s Sweeping Process of order 2

2.5 – Moreau’s Sweeping Process. Discretization

2.6 – Summary of the algorithm

2.7 – The Bouncing ball example with time–stepping

2.7 – The Bouncing ball example with time–stepping

2.8 – Open Problems and links with optimization

2.8 – Open Problems and links with optimization

• 3 – Higher-order systems: Formulation and Time-discretization

• 4 – Higher-order systems: Numerical Methods, Applications and links with Optimization

• 5 – Conclusions and Perspectives
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Difficulties and Approaches

Two major difficulties :

❈ Time integration of non smooth evolution

❈ Solving a optimization problem together with a dynamical equilibrium constraint

Two major approaches :

❈ Hybrid multi-modal dynamical system : Event–Driven Approach
For a set of unilateral constraints, yα = hα(x) ≥ 0, α = 1 . . . ν, we define the index set of

active constraints as : I = {α, yα = 0} and associated modes. An Event is a change in the

index set of active constraints and a change of mode

• Advantages

− Easy to handle from the computational point of view : smooth integration between

two events (ODE/DAE). At event, a optimization problem is solved without time

evolution.

• Disadvantages :

− Need an accurate event detection
− Accumulation of events
− No existence or uniqueness results

• Lead to Numerical Event–Driven schemes suitable :
− Small systems with a small number of events

Optimization and its applications. Oberwohlfach, January 10–15, 2005 – p.11/44
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Difficulties and Approaches (continued ...)

❈ Unbounded Differential inclusion and Sweeping process
• Advantages

− Compact formulation which allow existence and uniqueness results

− Dissipativity and monotonicity properties

• Disadvantages :

− More difficult mathematical framework
− Low order accuracy

• Lead to Time–stepping integration schemes (without event-handling) suitable :

− Large systems with a large number of events

− Accumulation of events in finite time
− Convergence results and Existence proofs
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Vincent ACARY
BipOp project. INRIA Rhône–Alpes

Introduction Low order systems Higher order systems Numerical Methods Conclusions

Moreau’s Sweeping Process of order 1

The Moreau’s Sweeping Process is a kind of unbounded differential inclusion
(Moreau 1971, 1977, Brezis 1973) :

(

x(0) ∈ K(0) ⊂ IRn

ẋ ∈ NK(t)(x(t))
⇐⇒

8

>

<

>

:

x(0) ∈ K(0) ⊂ IRn

ẋ = λ

K 3 x ⊥ λ∈NK(t)(x(t))

where K(t) is a convex set
Major results :

❈ If K(t) is bounded and a Lipschitz-continuous multi-function (Hausdorff distance) then there

exists a unique solution, which is Lipschitz-continuous with the respect to time.

❈ If K(t) is a multi-function with right continuous bounded variation then there exists a unique

solution, which is of bounded variation and right continuous (Monteiro–Marques, 1987)

References on seminal works :

- Moreau, J.J. (1971) Rafle par un convexe variable, Séminaire d’analyse convexe

- Moreau, J.J. (1977) Evolution problem associated with a moving convex set in a Hilbert space, J. of

Differential Equation, pp. 347–374

- Brezis, H. (1973) Maximal Monotone operators, North–Holland Publishing.
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Moreau’s Sweeping Process of order 1 (Continued...)

Equivalent Formulations
Other equivalent formulations with Projected dynamical system, Differential inclusion and

variational inequalities may be found in : V.Acary, B. Brogliato, C. Lemaréchal and A. Daniilidis, Inria

Research Report, RR-5107 to appear Systems and Control Letters, 2005

The Time discretization is given by the Catching up algorithm for instance for K = IR+:

(

xk+1 − xk = hλk+1

0 ≤ xk+1 ⊥ λk+1 ≥ 0
(1)

❈ Remarks :
• Implicit type scheme (necessary for the unilateral constraints) but low order =1
• Resolution of a LCP at each time step
• Convergence Proofs => Existence of solution due to the monotonicity of the

operator

This algorithm may be used for LCS system for which D is P-matrix.
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Moreau’s Sweeping Process of order 2

❈ The velocity is no longer a smooth function of time but a function of bounded
variations. This is the case of Lagrangian systems

❈ Lagrangian dynamical system is reformulated as a measure differential equation.

M(q)dv + (Q(v, q) + F (v, q, t)) dt = Fext(t) dt + R

where

• dt is the Lebesgue measure on IR

• dv is the Stieltjes measure (Differential measure) associated with the right continuous

function v(t) of bounded variations, such that :

dv((a, b]) =

Z

(a,b]

dv = v(b+) − v(a+)

• R is a measure due to the non smooth law

• q(t) is the absolutely continuous displacement given by :

q(t) = q(t0) +

Z

t

t0

v(s) ds
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Moreau’s Sweeping Process of order 2 (Continued ...)

Reformulation of the constraints as a measure inclusion

❈ Reformulation of the unilateral constraints in terms of derivatives :

−λ ∈ ∂ΨV (y)(ẏ)

where V (y) is the tangent cone of K at y which can be stated equivalently for
K = IR+ as for

If y(t) = 0, then 0 ≤ ẏ ⊥ λ ≥ 0 (2)

It’s noteworthy that the (switched off) constraints is now on the velocity ẏ and
depend on the value of y(t) = 0
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Moreau’s Sweeping Process of order 2 (Continued ...)

Reformulation of the constraints as a measure inclusion

❈ Reformulation of the unilateral constraints in terms of derivatives :

−λ ∈ ∂ΨV (y)(ẏ)

where V (y) is the tangent cone of K at y which can be stated equivalently for
K = IR+ as for

If y(t) = 0, then 0 ≤ ẏ ⊥ λ ≥ 0 (2)

It’s noteworthy that the (switched off) constraints is now on the velocity ẏ and
depend on the value of y(t) = 0

❈ If λ is a measure, the inclusion is extended considering the Radon-Nykodym
derivative

λ
′(t) =

dλ

dν
∈ ∂ΨV (y)(ẏ)

where dν is a nonnegative measure and λ is absolutely continuous with respect to
dν
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Moreau’s Sweeping Process. Discretization

❈ Given a subdivision of a time interval, {t0, t1, . . . , ti, . . . , tN}, we evaluate of the
measure differential equation on a time interval (ti, ti+1] of length h :

Mdv((ti, ti+1]) =

Z

(ti,ti+1]
M dv = M(v(t

+
i+1) − v(t

+
i )) =

Z

ti+1

ti

Fext(t) dt+

Z

(ti,ti+1]
R
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Moreau’s Sweeping Process. Discretization

❈ Given a subdivision of a time interval, {t0, t1, . . . , ti, . . . , tN}, we evaluate of the
measure differential equation on a time interval (ti, ti+1] of length h :

Mdv((ti, ti+1]) =

Z

(ti,ti+1]
M dv = M(v(t

+
i+1) − v(t

+
i )) =

Z

ti+1

ti

Fext(t) dt+

Z

(ti,ti+1]
R

❈ Evaluation of the displacement q(ti+1) = q(ti) +

Z

ti+1

ti

v(s) ds
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Moreau’s Sweeping Process. Discretization

❈ Given a subdivision of a time interval, {t0, t1, . . . , ti, . . . , tN}, we evaluate of the
measure differential equation on a time interval (ti, ti+1] of length h :

Mdv((ti, ti+1]) =

Z

(ti,ti+1]
M dv = M(v(t

+
i+1) − v(t

+
i )) =

Z

ti+1

ti

Fext(t) dt+

Z

(ti,ti+1]
R

❈ Evaluation of the displacement q(ti+1) = q(ti) +

Z

ti+1

ti

v(s) ds

❈ The measure R((ti, ti+1]) of the time-interval (ti, ti+1] is kept as primary unknown :

Ri+1 = R((ti, ti+1])
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Moreau’s Sweeping Process. Discretization

❈ Given a subdivision of a time interval, {t0, t1, . . . , ti, . . . , tN}, we evaluate of the
measure differential equation on a time interval (ti, ti+1] of length h :

Mdv((ti, ti+1]) =

Z

(ti,ti+1]
M dv = M(v(t

+
i+1) − v(t

+
i )) =

Z

ti+1

ti

Fext(t) dt+

Z

(ti,ti+1]
R

❈ Evaluation of the displacement q(ti+1) = q(ti) +

Z

ti+1

ti

v(s) ds

❈ The measure R((ti, ti+1]) of the time-interval (ti, ti+1] is kept as primary unknown :

Ri+1 = R((ti, ti+1])

Interpretation : The measure R may be decomposed as follows :

R = Ra dt+ Rs

where Ra dt is the abs. continuous part of the measure R and Rs the singular part.

• Impulse : If Ra = 0 and Rs = Pδti+1
then Ri+1 = P

• Continuous multiplier : If Ra(t) = f(t) and Rs = 0 then Ri+1 =
R ti+1

ti
f(t) dt
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Discretization of the Dynamics Continued

❈ Notations :
vi ≈ v(t+i ), qi ≈ q(ti)
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Discretization of the Dynamics Continued

❈ Notations :
vi ≈ v(t+i ), qi ≈ q(ti)

❈ Approximation of the integral of functions : θ-method

Z ti+1

ti

Fext(t) dt ≈ h [θFext(ti+1) + (1 − θ)Fext(ti)]

qi+1 = qi + h [θvi+1 + (1 − θ)vi]
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Discretization of the Dynamics Continued

❈ Notations :
vi ≈ v(t+i ), qi ≈ q(ti)

❈ Approximation of the integral of functions : θ-method

Z ti+1

ti

Fext(t) dt ≈ h [θFext(ti+1) + (1 − θ)Fext(ti)]

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

❈ Complete set of discrete equations:

(

M(vi+1 − vi) = h [θFext(ti+1) + (1 − θ)(Fext(ti)] +Ri+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]
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Discretization of the Dynamics Continued

❈ Notations :
vi ≈ v(t+i ), qi ≈ q(ti)

❈ Approximation of the integral of functions : θ-method

Z ti+1

ti

Fext(t) dt ≈ h [θFext(ti+1) + (1 − θ)Fext(ti)]

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

❈ Complete set of discrete equations:

(

M(vi+1 − vi) = h [θFext(ti+1) + (1 − θ)(Fext(ti)] +Ri+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

❈ One step linear system : vi+1 = vfree + hWRi+1 with

W = M
−1
, vfree = vi +W [h [θFext(ti+1) + (1 − θ)Fext(ti)]]
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Discretization of the Dynamics Continued

❈ Relations at tk+1:

yi+1 = H
T
qi+1 + b

ẏi+1 = H
T
vi+1

Ri+1 = Hλi+1
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Discretization of the Dynamics Continued

❈ Relations at tk+1:

yi+1 = H
T
qi+1 + b

ẏi+1 = H
T
vi+1

Ri+1 = Hλi+1

❈ Discretization of an unilateral constraint :
A natural way :

0 ≤ yi+1 ⊥ λi+1 ≥ 0

in terms of velocity
If yp ≤ 0, then 0 ≤ ẏi+1 ⊥ λi+1 ≥ 0

where yp is a prediction of the position at time ti+1, for instance, yp = yi +
h

2
ẏi.
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Discretization of the Dynamics Continued

❈ Relations at tk+1:

yi+1 = H
T
qi+1 + b

ẏi+1 = H
T
vi+1

Ri+1 = Hλi+1

❈ Discretization of an unilateral constraint :
A natural way :

0 ≤ yi+1 ⊥ λi+1 ≥ 0

in terms of velocity
If yp ≤ 0, then 0 ≤ ẏi+1 ⊥ λi+1 ≥ 0

where yp is a prediction of the position at time ti+1, for instance, yp = yi +
h

2
ẏi.

❈ Newton Impact law ẏei+1 = ẏi+1 + eẏi
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Summary

One step linear problem

(

vi+1 = vfree + hWRi+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

Relations

(

ẏi+1 = HT vi+1

Ri+1 = Hλi+1

Non Smooth Law

8

<

:

If yp = yi +
h

2
ẏi

then 0 ≤ ẏei+1 ⊥ λi+1 ≥ 0
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Summary

One step linear problem

(

vi+1 = vfree + hWRi+1

qi+1 = qi + h [θvi+1 + (1 − θ)vi]

Relations

(

ẏi+1 = HT vi+1

Ri+1 = Hλi+1

Non Smooth Law

8

<

:

If yp = yi +
h

2
ẏi

then 0 ≤ ẏei+1 ⊥ λi+1 ≥ 0

➜ One step Quasi-LCP in terms of ẏei+1 and λi+1 :

ẏ
e
i+1 = H

T
q̇free + hH

T
WHλi+1 + eẏi

y
p = yi +

h

2
ẏi

If yp ≤ 0, then 0 ≤ ẏ
e
i+1 ⊥ λi+1 ≥ 0
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A simple example : A bouncing ball

The Bouncing ball example with time–stepping

                                                                                                                                                                                                                                       

! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! !

q

0

g

8

>

<

>

:

mq̈ = −mg + λ

if q(t) = 0,

0 ≤ q̇(t+) + eq̇(t−) ⊥ λ ≥ 0
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A simple example : A bouncing ball
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Open Problems and links with optimization

❈ Efficient algorithm for the LCP with a switched-off constraints :
y = Aλ + b

v = h(y)

If y ≤ 0, then 0 ≤ v ⊥ λ ≥ 0

• Issue ? : Reformulation in terms of QP with a additional slack variable (MIP)?

➜ Good BVP solvers for which a prediction of y is not reasonable
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Open Problems and links with optimization

❈ Efficient algorithm for the LCP with a switched-off constraints :
y = Aλ + b

v = h(y)

If y ≤ 0, then 0 ≤ v ⊥ λ ≥ 0

• Issue ? : Reformulation in terms of QP with a additional slack variable (MIP)?

➜ Good BVP solvers for which a prediction of y is not reasonable

❈ Efficient algorithm for the 3D Frictional contact problem with or without switched-off
constraints :

y = Aλ + b

y = [yn, yt], λ = [λn, λt]

v = h(y) = [λn, λt]

(If yn ≤ 0, then)



0 ≤ vn ⊥ λn ≥ 0
−λt ∈ ∂Ψ∗

C(µλn)(vn)

We use basic and robust iterative scheme (Gauss-Seidel like) and (Non smooth) Generalized

Newton Method (Alart and Curnier, 1990)

• Issue ? : - Try to find a good potential to minimize and/or a good Lagrangian relaxation ?

- NLCP solvers ? Bundle Methods ?
- Good line searches/trust regions for Generalized Newton Method ?
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Open Problems and links with optimization (Continued)

❈ Energetic coefficient of restitution e and multiple impact law

" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
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Open Problems and links with optimization (Continued)

❈ Energetic coefficient of restitution e and multiple impact law
Find (u, v, λ) ∈ IRn × IRm × IRm giving M � 0, H, Θ, b :

M(u − b) = Hλ

uT Mu = e bT MbT , (Energy dissipation)

v = HT u ≥ 0

λ ≥ 0

Θλ = 0, (Multiple Impact Law at distance)

We can also add friction : Find (u, v, λ ∈ IRn × IRm × IRm giving M � 0, H, Θ, b :

M(u − b) = H[λn, λt]
T

uT Mu = e bT MbT , Energy dissipation

v = [vn, vt]
T = HT u ≥ 0,

λn ≥ 0

Θλn = 0 (Multiple Impact Law at distance)

−λt ∈ ∂Ψ∗
C(µλn)(vt)
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Open Problems and links with optimization (Continued)

❈ Energetic coefficient of restitution e and multiple impact law
Find (u, v, λ) ∈ IRn × IRm × IRm giving M � 0, H, Θ, b :

M(u − b) = Hλ

uT Mu = e bT MbT , (Energy dissipation)

v = HT u ≥ 0

λ ≥ 0

Θλ = 0, (Multiple Impact Law at distance)

We can also add friction : Find (u, v, λ ∈ IRn × IRm × IRm giving M � 0, H, Θ, b :

M(u − b) = H[λn, λt]
T

uT Mu = e bT MbT , Energy dissipation

v = [vn, vt]
T = HT u ≥ 0,

λn ≥ 0

Θλn = 0 (Multiple Impact Law at distance)

−λt ∈ ∂Ψ∗
C(µλn)(vt)

❈ Extension to Non linear mechanical behavior y = f(λ) We use only outer linearization

with Newton-Raphson scheme
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Outline

✔ 1 – Introduction on Non Smooth Dynamical systems

✔ 2 – Historical background on low order systems

➜ 3 – Higher-order systems: Formulation and Time-discretization
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3.2 – Preliminary example on LCS

3.3 – Notion of relative degree

3.4 – Issues to be fixed

3.5 – Canonical form : The Zero Dynamical form

3.6 – Distributional Dynamics

3.7 – Measure differential dynamics

3.8 – Reinitialization mapping

3.9 – Well posedness results

3.10 – Time-discretization
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• 4 – Higher-order systems: Numerical Methods, Applications and links with Optimization

• 5 – Conclusions and Perspectives
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Introduction

Joint Work with :

- Bernard Brogliato, Head of the Bipop Project, INRIA Rhône-Alpes

- Daniel Goeleven, IREMIA, University of La Réunion

References :
- V. Acary and B. Brogliato, Higher Order Moreau’s sweeping process, Colloquium in the honor

of the 80th Birthday of J.J. Moreau, to appear in “Non smooth Mechanics and Analysis:
theoretical and numerical advances”, Kluwer, 2005

- V. Acary, B. Brogliato and D. Goeleven, Higher Order Moreau’s sweeping process:

Mathematical formulation and numerical simulation, INRIA Research Report RR-5236 ,
submitted to MPA

- J.S Pang and D. Stewart, Differential Variational Inequalities, preprint, submitted to MPA

- Elegant Formulations of Unbounded Differential inclusion as Variational Inequalities

- IVP and BVP

- New proof of convergence for time-stepping scheme

- But only for low order systems (≤ 1)
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Preliminary example on LCS

❈ Linear complementarity system :

8

>

<

>

:

ẋ = Ax+Bλ, x ∈ IRn, λ ∈ IRm

y = Cx+Dλ

0 ≤ y ⊥ λ ≥ 0

❈ Let us consider the very simple example :

(...
x = λ, x ∈ IR, λ ∈ IR

0 ≤ y = x ⊥ λ ≥ 0
(-8)

Naive Remarks:
• If x(t) = 0 and ẋ(t−) < 0, ẍ(t−) < 0,

...
x(t−) < 0 then all of the derivatives must

jump.
• If ẋ have a jump, ẍ is a measure (Dirac) and

...
x a derivative (in the sense of

distribution) of a Dirac.
• In this case, λ is also a derivative of a Dirac and then there is no sense to

require that λ ≥ 0
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Notion of Relative degree

❈ Definition : Defining the Markov Parameters as (D,CB,CAB,CA2B, . . .), the
relative degree r is the rank of the first non zero Markov Parameter.

❈ Remarks
• the Relative degree r is the number of differentiation of y to obtain explicitly y in

function of λ.
• Clear Analogy with the differential index in DAE (δ = r + 1)
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Notion of Relative degree(Continued ... )

❈ Relative degree r = 0 , D � 0, Trivial case
• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.
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Notion of Relative degree(Continued ... )

❈ Relative degree r = 0 , D � 0, Trivial case
• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.

❈ Relative degree r = 1, D = 0, CB � 0

• The multiplier λ is a function of time t, not necessarily continuous, for instance, of
bounded variations (BV).

• The numerical integration have to be performed with specific solvers (Event–Driven or

Moreau’s Catching up algorithm)
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Notion of Relative degree(Continued ... )

❈ Relative degree r = 0 , D � 0, Trivial case
• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.

❈ Relative degree r = 1, D = 0, CB � 0

• The multiplier λ is a function of time t, not necessarily continuous, for instance, of
bounded variations (BV).

• The numerical integration have to be performed with specific solvers (Event–Driven or

Moreau’s Catching up algorithm)

❈ Relative degree r = 2, D = 0, CB = 0, CAB � 0

• The system is not self-consistent : Need a re-initialization mapping

• The multiplier λ is a real measure.

• Specific solvers (Event–Driven or Moreau’s Time–stepping) as for Lagrangian dynamical

system with constraints
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Notion of Relative degree(Continued ... )

❈ Relative degree r = 0 , D � 0, Trivial case
• The multiplier λ = max(0,−D−1Cx) is a Lipschitz continuous function of x

• The numerical integration may be performed with any standard ODE solvers.

❈ Relative degree r = 1, D = 0, CB � 0

• The multiplier λ is a function of time t, not necessarily continuous, for instance, of
bounded variations (BV).

• The numerical integration have to be performed with specific solvers (Event–Driven or

Moreau’s Catching up algorithm)

❈ Relative degree r = 2, D = 0, CB = 0, CAB � 0

• The system is not self-consistent : Need a re-initialization mapping

• The multiplier λ is a real measure.

• Specific solvers (Event–Driven or Moreau’s Time–stepping) as for Lagrangian dynamical

system with constraints

❈ Higher Relative degree r ≥ 3 D = 0, CB = 0, CAr−2 = 0, . . . , CAr−1B � 0

• The multiplier λ is a distribution of order r − 1.

• Dedicated time-stepping scheme and nested complementarity problems
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Issues to be fixed

❈ Reformulation of the problem as :
• Canonical form (Zero-Dynamics)
• Distributional dynamical systems
• Measure differential equations (also possibly Measure variational Inequalities)
• “Good” Reinitialization mapping (Monotone mapping)

❈ Characterization of solutions

❈ Mathematical results Existence and uniqueness

❈ Time–stepping scheme for IVP and BVP

❈ Efficient Algorithm for Nested Complementarity Problems

Assumptions :

❈ Autonomous and linear time invariant systems

❈ Homogeneous relative degree
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Canonical form: The Zero Dynamical form (ZD)

Let us consider the following LTI system :

(

ẋ = Ax+Bλ, x ∈ IRn, λ ∈ IRm

w = Cx+Dλ

We perform a state-space transformation z = Wx, zT = (w, ẇ, . . . , w(r−1), ξ) such that :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ż1(t) = z2(t) (t ≥ 0)

ż2(t) = z3(t) (t ≥ 0)

ż3(t) = z4(t) (t ≥ 0)
...
żr−1(t) = zr(t) (t ≥ 0)

żr(t) = CArW−1z(t) + CAr−1Bλ(t) (t ≥ 0)

ξ̇(t) = Aξξ(t) +Bξz1(t) (t ≥ 0)

w(t) = z1(t) (t ≥ 0)

This transformation always exists for controllable systems
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Distributional Dynamics

Let us consider a system of equality distributions of Class, ∪n∈INTn(I),

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

Dz1 = z2

Dz2 = z3

Dz3 = z4

.

.

.

Dzr−1 = zr

Dzr = CArW−1z + CAr−1Bλ

Dξ = Aξξ + Bξz1.

⇐⇒

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Dz1 = {z2} + ν1

Dz2 = {z3} + Dν1 + ν2

Dz3 = {z4} + D2ν1 + Dν2 + ν3

.

.

.

Dzi = {zi+1} + D(i−1)ν1 + D(i−2)ν2 + . . . + Dνi−1 + νi

.

.

.

Dzr−1 = {zr} + D(r−2)ν1 + . . . + νr−1

Dzr = CArW−1{z} + CAr−1Bλ.

Dξ = Aξξ + Bξz1.

(-7)

where νi the measure part of the distribution Dzi

This now possible to give a meaning to the positivity of λ :

λ = (CAr−1
B)−1[D(r−1)

ν1 + . . .+Dνr−1] + νr

by imposing some constraints of positivity to νi
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Measure differential dynamics

Stronger Assumption("weaker" formalism) : requiring that the solutions zi of the
distributional dynamics are regular distributions zi generated by right continuous
functions of special locally bounded variation.
More precisely, ξ1, ..., ξn−r ∈ F∞(IR+; IR) such that

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

dz1 = z2(t)dt+ dν1

dz2 = z3(t)dt+ dν2

dz3 = z4(t)dt+ dν3
...
dzi = zi+1(t)dt+ dνi
...
dzr−1 = zr(t)dt+ dνr−1

dzr = CArW−1z(t)dt+ CAr−1Bdνr

ξ̇(t) = Aξξ(t) +Bξz1(t)
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Reinitialization mapping

❈ Definition of tangent cone to Φ : Let Φ be a nonempty closed convex subset of IR. We denote by

TΦ(x) the tangent cone of Φ at x ∈ IR defined by

TΦ(x) = cone(Φ − {x}) (-6)

where cone(Φ − {x}) denotes the cone generated by Φ − {x}. This definition allows us to take into

account constraints violations. Note that

TIR+ (x) =



IR if x > 0

IR+ if x ≤ 0
andTIR(x) = IR.

❈ Definition of nested tangent cones : Let us now set Φ := IR+. For z ∈ IRr , we set

Zi = (z1, z2, ..., zi), (1 ≤ i ≤ r). We define

T
0
Φ(Z1) = Φ, T

1
Φ(Z1) = TΦ(z1), T

2
Φ(Z2) = T

T1
Φ

(Z1)
(z2), . . . T

i
Φ(Zi) = T

T
i−1
Φ

(Zi−1)
(zi).

❈ Definition of the Reinitialization mapping :

dνi ∈ −∂ψ
T

i−1
Φ

({Zi−1}(t−))
({zi}(t

+)) on Ĩ, (1 ≤ i ≤ r) (-5)
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Reinitialization mapping Continued ...

❈ Interpretation of this inclusion
If T i−1

Φ ({Zi−1}(t−)) = IR+ , i.e, if z1 ≤ 0, z2 ≤ 0, ..., zi ≤ 0 then one gets a complementarity

condition :

0 ≤ dνi ⊥ {zi}(t
+) ≥ 0

otherwise
dνi = 0

➜ we obtain a set of nested complementarity conditions (Generalization of r = 2) :

0 ≤ dν1 ⊥ {z1}(t+) ≥ 0

if z1 ≤ 0 then 0 ≤ dν2 ⊥ {z2}(t+) ≥ 0

if z1 ≤ 0 and z2 ≤ 0 then 0 ≤ dν3 ⊥ {z3}(t+) ≥ 0

if z1 ≤ 0 and z2 ≤ 0 and z3 ≤ 0 then 0 ≤ dν4 ⊥ {z4}(t+) ≥ 0

.

.

.
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Well posedness results

❈ Definition of Regular solution :
Let 0 ≤ a < b ∈ IR ∪ {+∞} be given. We say that a solution z ∈ (Tr−1(IR+))n of Measure

differential Inclusions is regular on [a, b) if for each t ∈ [a, b), there exists a right neighborhood

[t, σ) (σ > 0) such that the restriction of {z} to [t, σ) is analytic.

❈ Global Existence and Uniqueness of a Regular Solution
Suppose that CAr−1B � 0. For each z0 ∈ IRn, the system of Measure differential Inclusions
has at least one regular solution.

Moreover:

i) z1 ≡ {z1} ≥ 0 on IR+

ii) {z̄}(0+) = z̄′
0

iii) ‖{z}(t)‖ ≤ e‖W AW−1‖t‖z0‖, ∀ t ∈ IR+

iv) If z1 and z2 are two regular solutions then 〈z1, ϕ〉 = 〈z2, ϕ〉, ∀ϕ ∈ C∞
0 (IR+; IRn).
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Time-discretization

❈ Summary of the Measure Differential inclusion :

8

>

>

>

<

>

>

>

:

dzi − zi+1(t)dt = dνi, 1 ≤ i ≤ r − 1

dzr − CArW−1z(t)dt = (CAr−1B)−1dνr

dνi ∈ −∂ψ
T i−1

Φ (z1(t−),...,zi−1(t−))(zi(t
+))

ξ̇(t) dt = Aξξ(t) +Bξz1(t) dt

❈ Time discretization :
We denote by 0 = t0 < t1 < . . . < tk < tN = T a finite partition (or a subdivision) of the time

interval [0, T ], T > 0 and the time step is h = tk+1 − tk

The values of the measures dzi((tk, tk+1]) and µi,k+1 = dνi((tk, tk+1]) are kept as primary

variables and this fact is crucial for the consistency of the method for the non smooth
evolutions.

8

>

>

>

<

>

>

>

:

zi,k+1 − zi,k − hzi+1,k+1 = µi,k+1.

zr,k+1 − zr,k − hCArW−1zk+1 = CAr−1B µr,k+1

µi,k+1 ∈ −∂ψ
T i−1

Φ (z1,k,...,zi−1,k)(zi,k+1)

ξk+1 − ξk = hAξξk+1 + hBξz1,k+1
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Properties of the Time-discretization

❈ Proposition 1: Boundedness of the sequences of approximation (zk, ξk) :

‖zn‖ ≤ α, ||µk|‖ ≤M

❈ Proposition 2: Local Bounded Variation of step function Zi(t) generated by the
approximation zi on a interval [0, T ]

var(zN
i , [0, T ]) ≤ 1

2R
(|zi,0 − a| + hα)2 + α2

2R
T 2 + αT (1 + 1

R
|zi,0 − a|) for all 1 ≤ i ≤ r − 1

var(zN
r , [0, T ]) ≤ 1

2R
(|zr,0 − a| + hβα)2 + β2α2

2R
T 2 + βαT (1 + 1

R
|z1,0 − a|)

var(ξN , [0, T ]) ≤ (γ + δ)αT

➜ Helly’s Theorem : There is a subsequence of (zk, ξk) that converges point-wisely
towards to some function z(t), ξ(t) which is of Local Bounded variations

❈ Still to be done:
• Prove that this limit is a solution of Measure differential inclusion

• Choose and define a correct topology to measure convergence between two filled in

graphs of BV functions. (Hausdorff distance)

• After that, the convergence of the scheme and the order are straightforward corollaries

due to the existence and uniqueness properties of the problem
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Outline

✔ 1 – Introduction on Non Smooth Dynamical systems

✔ 2 – Historical background on low order systems

✔ 3 – Higher-order systems: Formulation and Time-discretization

➜ 4 – Higher-order systems: Numerical Methods, Applications and links with Optimization

4.1 – A simple example

4.2 – Applications

4.3 – Empirical Order

4.4 – Open Problems

• 5 – Conclusions and Perspectives
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A simple example

A simple example with a non trivial zero-dynamics:
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

z(0) = (1, 0, 0, 0, 0)T

ż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = −z1(t) − z2(t) − z3(t) − dT

ξ ξ(t) + λ(t)

ξ̇1(t) = αξ2(t)

ξ̇2(t) = −ωξ1(t) + z1(t)
w(t) = z1(t) ≥ 0
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A simple example

A simple example with a non trivial zero-dynamics:
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

z(0) = (1, 0, 0, 0, 0)T

ż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = −z1(t) − z2(t) − z3(t) − dT

ξ ξ(t) + λ(t)

ξ̇1(t) = αξ2(t)

ξ̇2(t) = −ωξ1(t) + z1(t)
w(t) = z1(t) ≥ 0

For dξ = (0, 0), the zero dynamic

does not play any role α = 1 and
ω = 1.
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A simple example

A simple example with a non trivial zero-dynamics:
8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

z(0) = (1, 0, 0, 0, 0)T

ż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = −z1(t) − z2(t) − z3(t) − dT

ξ ξ(t) + λ(t)

ξ̇1(t) = αξ2(t)

ξ̇2(t) = −ωξ1(t) + z1(t)
w(t) = z1(t) ≥ 0

For dξ = (0, 1) the zero dynamic

plays role in the global dynamics

α = 1 and ω = 1.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  2  4  6  8  10

V
al

ue
s 

of
 z

Time t

z(1)
z(2)
z(3)
xi(1)
xi(2)

Optimization and its applications. Oberwohlfach, January 10–15, 2005 – p.39/44



Vincent ACARY
BipOp project. INRIA Rhône–Alpes

Introduction Low order systems Higher order systems Numerical Methods Conclusions

A simple example

A simple example with a non trivial zero-dynamics:
8
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>

>

>

>

>

>

>
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>

>

>

>

>

>

>

>

>

:

z(0) = (1, 0, 0, 0, 0)T

ż1(t) = z2(t)
ż2(t) = z3(t)
ż3(t) = −z1(t) − z2(t) − z3(t) − dT

ξ ξ(t) + λ(t)

ξ̇1(t) = αξ2(t)

ξ̇2(t) = −ωξ1(t) + z1(t)
w(t) = z1(t) ≥ 0

For dξ = (0,−1) A non trivial active

interval is observed α = 1 and ω =
1.
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Applications

❈ Electrical and Mechanical systems with feedback Control Loop
• The Feedback loop may increase the relative degree of the system

❈ Indirect Methods for Optimal control with state constraints : Finite difference BVP
solvers
• We can prove that the relative degree of the Necessary condition system is

twice the original one of the system to be controlled.
For a mechanical system (r=2), the necessary conditions for Optimality leads to
a dynamical system of relative equal to r = 4.

❈ Advantages of the approach :
• Take into account accumulation of events.
• Do not need any first guess for the algorithm
• Theoretical results
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Empirical Order

❈ This error is measure using the l∞ norm between the step function generated by
the sequences of approximation
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Empirical Order

❈ This error is measure using the l∞ norm between the step function generated by
the sequences of approximation
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Empirical Order

❈ This error is now measure using a Hausdorff distance between filled-in graph of BV
function.
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Empirical Order

❈ This error is now measure using a Hausdorff distance between filled-in graph of BV
function.
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Open Problems

❈ Efficient Algorithms for the Multi-level nested Complementarity problem

dνi ∈ −∂ψ
T i−1

Φ ({Zi−1}(t−))({zi}(t
+)) on Ĩ , (1 ≤ i ≤ r)

⇓

0 ≤ dν1 ⊥ {z1}(t
+) ≥ 0

if z1 ≤ 0 then 0 ≤ dν2 ⊥ {z2}(t
+) ≥ 0

if z1 ≤ 0 and z2 ≤ 0 then 0 ≤ dν3 ⊥ {z3}(t
+) ≥ 0

if z1 ≤ 0 and z2 ≤ 0 and z3 ≤ 0 then 0 ≤ dν4 ⊥ {z4}(t
+) ≥ 0

...

❈ Non linear and Non autonomous systems

❈ Higher order Time integration scheme
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Outline

✔ 1 – Introduction on Non Smooth Dynamical systems

✔ 2 – Historical background on low order systems

✔ 3 – Higher-order systems: Formulation and Time-discretization

✔ 4 – Higher-order systems: Numerical Methods, Applications and links with Optimization

➜ 5 – Conclusions and Perspectives
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Conclusion

There is a lot of stuff to do in the field of
Non Smooth Dynamical systems

....
I would be very grateful if

someone could provide some advises and references
which come from the optimization community

vincent.acary@inrialpes.fr
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