An overview of Non Smooth Dynamical Systems Higher order systems, numerical methods and links with Optimization

Vincent Acary, BipOp Project, INRIA Rhône-Alpes
vincent.acary@inrialpes.fr

Oberwolfach, January 13, 2005

Activities of the BipOp Project. http: //wws. inrialpes. fr/bipop

* Team: 4 Permanent members + 5 PhD students +1 post doc
- Bernard Brogliato (Head of the Project)
- Claude Lemaréchal
- Pierre-Brice Wieber
- Vincent Acary
* The core of our activities is in the field of the Non-Smooth Analysis:
- Non smooth optimization (CL)
- Modeling of Non Smooth Dynamical Systems (NSDS) (VA, BB)
- Control of NSDS (PBW, BB)
- Simulation of NSDS (VA, PB)
* Favorite applications:
- Mechanical systems with contact and friction (Multi-body dynamics, Granular materials, Buildings made of masonry, ..) with possibly real-time constraints (Haptic feedback)
- Electrical networks with idealized components (Diodes, transistors, switch, ...)
- Walking robot and bipedal Locomotion
\% European Projects :
- FP5 project SICONOS coordinated by B. Brogliato.
\rightarrow Main outcome: Open source software platform for simulation, modeling and control of NSDS (Python, C++, F77) http: / /siconos.inrialpes.fr/software
- The FP6 Network of Excellence HyCon (Hybrid Control)
$\rightarrow \quad 1$ - Introduction on Non Smooth Dynamical systems
1.1 - What is a Non Smooth Dynamical System (NSDS)?
1.2 - Linear Complementarity Systems (LCS)
1.3 - Lagrangian systems with Contact and Coulomb’s Friction
1.4 - Optimal Control with state constraints
1.5 - Applications
- 2 - Historical background on low order systems
- 3 - Higher-order systems: Formulation and Time-discretization
- 4 - Higher-order systems: Numerical Methods, Applications and links with Optimization
- 5 - Conclusions and Perspectives

A NSDS is a dynamical system is characterized by two correlated features :
\% a non smooth evolution with the respect to time, for instance :

- Jumps in the state and/or in its derivatives wrt. time
- Generalized solutions (distributions)
\% a set of non smooth laws (Generalized equations) between the state x and a set of Lagrange multipliers λ
A typical example is the finite-dimensional unilateral dynamics :

$$
\left\{\begin{array}{l}
\dot{x}=f(x, t)+\lambda, x \in \mathbb{R}^{n} \tag{1}\\
x \geq 0, \lambda \geq 0, x \cdot \lambda=0
\end{array}\right.
$$

that can be written as a (unbounded) differential inclusion :

$$
\begin{equation*}
-\dot{x}+f(x, t)=-\lambda \in \partial \Psi_{\mathbb{R}_{+}}(x)=\mathcal{N}_{\mathbb{R}_{+}}(x) \tag{2}
\end{equation*}
$$

where $-\Psi_{\mathbb{R}_{+}}$is the indicatrix function of \mathbb{R}_{+}

- $\mathcal{N}_{\mathbb{R}_{+}}$the normal cone to \mathbb{R}_{+}, i.e, \mathbb{R}_{-}
* Linear Complementarity Systems (LCS)

$$
\left\{\begin{array}{l}
\dot{x}=A x+B \lambda, \quad x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}^{m} \tag{3}\\
y=C x+D \lambda \\
0 \leq y \perp \lambda \geq 0
\end{array}\right.
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{m \times m}$, for m constraints.

* Linear Complementarity Systems (LCS)

$$
\left\{\begin{array}{l}
\dot{x}=A x+B \lambda, \quad x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}^{m} \tag{3}\\
y=C x+D \lambda \\
0 \leq y \perp \lambda \geq 0
\end{array}\right.
$$

with $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}, D \in \mathbb{R}^{m \times m}$, for m constraints.
for m constraints.

* Piecewise linear systems

saturation

Relay with dead zone

* Lagrangian dynamical system :

$$
M(q) \ddot{q}+Q(\dot{q}, q)+F(\dot{q}, q, t)=F_{e x t}(t)+R
$$

- $q \in \mathbb{R}^{n}$: generalized coordinates vector.
- $M \in \mathbb{R}^{n \times n}$: the inertia matrix
- $Q(\dot{q}, q)$: The non linear inertial term (Coriolis)
- $F(\dot{q}, q, t)$: the internal forces
- $F_{\text {ext }}(t): \mathbb{R} \mapsto \mathbb{R}^{n}$: given external load,
- $R \in \mathbb{R}^{n}$ is the force due the non smooth law.
* Lagrangian dynamical system :

$$
M(q) \ddot{q}+Q(\dot{q}, q)+F(\dot{q}, q, t)=F_{e x t}(t)+R
$$

- $q \in \mathbb{R}^{n}$: generalized coordinates vector.
- $M \in \mathbb{R}^{n \times n}$: the inertia matrix
- $Q(\dot{q}, q)$: The non linear inertial term (Coriolis)
- $F(\dot{q}, q, t)$: the internal forces
- $F_{\text {ext }}(t): \mathbb{R} \mapsto \mathbb{R}^{n}$: given external load,
- $R \in \mathbb{R}^{n}$ is the force due the non smooth law.
* Linear relations.
- Kinematic laws from the generalized coordinates to the local coordinates at contact.

$$
y=H^{T} q+b, \dot{y}=H^{T} \dot{q}
$$

Mapping H : Restriction mapping composed with a change of frame

- By duality,

$$
R=H \lambda
$$

: Lagrangian systems with Contact and Coulomb's Friction

* Local frame at contact : $(\boldsymbol{n}, \boldsymbol{t})$

$$
\begin{gathered}
y=y_{\boldsymbol{n}} \boldsymbol{n}+y_{\boldsymbol{t}}, \quad \dot{y}=\dot{y}_{\boldsymbol{n}} \boldsymbol{n}+\dot{y}_{\boldsymbol{t}} \\
\lambda=\lambda_{\boldsymbol{n}} \boldsymbol{n}+\lambda_{\boldsymbol{t}},
\end{gathered}
$$

* Local frame at contact : ($\boldsymbol{n}, \boldsymbol{t}$)

$$
y=y_{\boldsymbol{n}} \boldsymbol{n}+y_{\boldsymbol{t}}, \quad \dot{y}=\dot{y}_{\boldsymbol{n}} \boldsymbol{n}+\dot{y}_{\boldsymbol{t}}
$$

$$
\lambda=\lambda_{\boldsymbol{n}} \boldsymbol{n}+\lambda_{\boldsymbol{t}}
$$

* Unilateral contact :

$$
0 \leq y_{\boldsymbol{n}} \perp \lambda_{\boldsymbol{n}} \geq 0 \quad \Longleftrightarrow \quad-\lambda_{\boldsymbol{n}} \in \partial \Psi_{\mathbb{R}^{+}}\left(y_{\boldsymbol{n}}\right)
$$

* Local frame at contact : ($\boldsymbol{n}, \boldsymbol{t}$)

$$
\begin{gathered}
y=y_{\boldsymbol{n}} \boldsymbol{n}+y_{\boldsymbol{t}}, \quad \dot{y}=\dot{y}_{\boldsymbol{n}} \boldsymbol{n}+\dot{y}_{\boldsymbol{t}} \\
\lambda=\lambda_{\boldsymbol{n}} \boldsymbol{n}+\lambda_{\boldsymbol{t}},
\end{gathered}
$$

* Unilateral contact :

$$
0 \leq y_{\boldsymbol{n}} \perp \lambda_{\boldsymbol{n}} \geq 0 \quad \Longleftrightarrow \quad-\lambda_{\boldsymbol{n}} \in \partial \Psi_{\mathbb{R}^{+}}\left(y_{\boldsymbol{n}}\right)
$$

* Coulomb's Friction, μ Coefficient of friction, $\mathcal{C}\left(\mu \lambda_{\boldsymbol{n}}\right)=\left\{\lambda_{\boldsymbol{t}},\left\|\lambda_{\boldsymbol{t}}\right\| \leq \mu \lambda_{\boldsymbol{n}}\right\}$

$$
\left\{\begin{array}{l}
\dot{y}_{t}=0,\left\|\lambda_{t}\right\| \leq \mu \lambda_{n} \\
\dot{y}_{\boldsymbol{t}} \neq 0, \lambda_{\boldsymbol{t}}=-\mu \lambda_{\boldsymbol{n}} \operatorname{sign}\left(\dot{y}_{\boldsymbol{t}}\right)
\end{array} \quad \Longleftrightarrow \dot{y}_{\boldsymbol{t}} \in \partial \Psi_{\mathcal{C}\left(\mu \lambda_{n}\right)}\left(-\lambda_{\boldsymbol{t}}\right) \Longleftrightarrow-\lambda_{\boldsymbol{t}} \in \partial \Psi_{\mathcal{C}\left(\mu \lambda_{n}\right)}^{*}\left(\dot{y}_{\boldsymbol{t}}\right)\right.
$$

* Local frame at contact : ($\boldsymbol{n}, \boldsymbol{t}$)

$$
\begin{gathered}
y=y_{\boldsymbol{n}} \boldsymbol{n}+y_{\boldsymbol{t}}, \quad \dot{y}=\dot{y}_{\boldsymbol{n}} \boldsymbol{n}+\dot{y}_{\boldsymbol{t}} \\
\lambda=\lambda_{\boldsymbol{n}} \boldsymbol{n}+\lambda_{\boldsymbol{t}},
\end{gathered}
$$

\% Unilateral contact :

$$
0 \leq y_{\boldsymbol{n}} \perp \lambda_{\boldsymbol{n}} \geq 0 \quad \Longleftrightarrow \quad-\lambda_{\boldsymbol{n}} \in \partial \Psi_{\mathbb{R}^{+}}\left(y_{\boldsymbol{n}}\right)
$$

* Coulomb's Friction, μ Coefficient of friction, $\mathcal{C}\left(\mu \lambda_{\boldsymbol{n}}\right)=\left\{\lambda_{\boldsymbol{t}},\left\|\lambda_{\boldsymbol{t}}\right\| \leq \mu \lambda_{\boldsymbol{n}}\right\}$

$$
\left\{\begin{array}{l}
\dot{y}_{\boldsymbol{t}}=0,\left\|\lambda_{\boldsymbol{t}}\right\| \leq \mu \lambda_{\boldsymbol{n}} \\
\dot{y}_{\boldsymbol{t}} \neq 0, \lambda_{\boldsymbol{t}}=-\mu \lambda_{\boldsymbol{n}} \operatorname{sign}\left(\dot{y}_{\boldsymbol{t}}\right)
\end{array} \quad \Longleftrightarrow \dot{y}_{\boldsymbol{t}} \in \partial \Psi_{\mathcal{C}\left(\mu \lambda_{n}\right)}\left(-\lambda_{\boldsymbol{t}}\right) \Longleftrightarrow-\lambda_{\boldsymbol{t}} \in \partial \Psi_{\mathcal{C}\left(\mu \lambda_{n}\right)}^{*}\left(\dot{y}_{\boldsymbol{t}}\right)\right.
$$

\% (Newton) Impact law, if necessary, e coefficient of restitution

$$
\dot{y}_{\boldsymbol{n}}\left(t^{+}\right)=-e \dot{y}_{\boldsymbol{n}}\left(t^{-}\right)
$$

: Optimal Control with state constraints

* Quadratic optimal control Problem

$$
\begin{aligned}
\min _{u} I(u) & =\frac{1}{2} \int_{0}^{T}\left(x^{T} Q x+u^{T} R u\right) d t+\frac{1}{2} x^{T}(T) F x(T) \\
(s . t .) \quad \dot{x}(t) & =A x(t)+B u(t) \\
x(0) & =x_{0}, \quad x(T)=x_{T} \\
w(t) & =C x(t)+D \geq 0
\end{aligned}
$$

Optimal Control with state constraints

* Quadratic optimal control Problem

$$
\begin{aligned}
\min _{u} I(u) & =\frac{1}{2} \int_{0}^{T}\left(x^{T} Q x+u^{T} R u\right) d t+\frac{1}{2} x^{T}(T) F x(T) \\
(s . t .) \quad \dot{x}(t) & =A x(t)+B u(t) \\
x(0) & =x_{0}, \quad x(T)=x_{T} \\
w(t) & =C x(t)+D \geq 0
\end{aligned}
$$

* Necessary conditions \Longrightarrow LCS with Boundary conditions:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\dot{\eta}
\end{array}\right] } & =\left[\begin{array}{cc}
A & B R^{-1} B^{T} \\
Q & -A^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
\eta
\end{array}\right]+\left[\begin{array}{c}
0 \\
-C^{T}
\end{array}\right] \lambda \\
0 & \leq C x(t)+D \perp \lambda \geq 0 \\
x(0) & =x_{0}, \quad x(T)=x_{T} \\
\eta(0) & =\eta_{0}, \quad \eta(T)=F x(T)+C^{T} \gamma+\beta=\eta_{T}
\end{aligned}
$$

: Applications

* Simulation, modeling and control of electrical networks with idealized components (diodes, transistors, switch, ...)

DC-DC Boost Converter with Sliding mode control

* Simulation, modeling and control of electrical networks with idealized components (diodes, transistors, switch, ...)
* Simulation, modeling and control of mechanical systems Simulation of Circuit breakers (INRIA/Schneider Electric)

: Applications
* Simulation, modeling and control of electrical networks with idealized components (diodes, transistors, switch, ...)
* Simulation, modeling and control of mechanical systems

Bipedal Robot INRIA BIPOP

: Applications

* Simulation, modeling and control of electrical networks with idealized components (diodes, transistors, switch, ...)
* Simulation, modeling and control of mechanical systems

Granular flow in a silo LMGC Montpellier

Granular Segregation

 LMGC Montpellier

* Simulation, modeling and control of electrical networks with idealized components (diodes, transistors, switch, ...)
* Simulation, modeling and control of mechanical systems

Granular flow in a silo LMGC Montpellier

Granular Segregation LMGC Montpellier

* There are also applications in biology, macro-economics, ..
\checkmark 1-Introduction on Non Smooth Dynamical systems
$\rightarrow 2$ - Historical background on low order systems
2.1 - Difficulties and Approaches
2.2 - Approaches
2.3 - Moreau's Sweeping Process of order 1
2.4 - Moreau's Sweeping Process of order 2
2.5 - Moreau's Sweeping Process. Discretization
2.6 - Summary of the algorithm
2.7 - The Bouncing ball example with time-stepping
2.7 - The Bouncing ball example with time-stepping
2.8 - Open Problems and links with optimization
2.8 - Open Problems and links with optimization
- 3 - Higher-order systems: Formulation and Time-discretization
- 4 - Higher-order systems: Numerical Methods, Applications and links with Optimization
- 5 - Conclusions and Perspectives

: Difficulties and Approaches

Two major difficulties :

* Time integration of non smooth evolution
* Solving a optimization problem together with a dynamical equilibrium constraint

Two major approaches :

* Hybrid multi-modal dynamical system : Event-Driven Approach

For a set of unilateral constraints, $y_{\alpha}=h_{\alpha}(x) \geq 0, \alpha=1 \ldots \nu$, we define the index set of active constraints as : $I=\left\{\alpha, y_{\alpha}=0\right\}$ and associated modes. An Event is a change in the index set of active constraints and a change of mode

- Advantages
- Easy to handle from the computational point of view : smooth integration between two events (ODE/DAE). At event, a optimization problem is solved without time evolution.
- Disadvantages:
- Need an accurate event detection
- Accumulation of events
- No existence or uniqueness results
- Lead to Numerical Event-Driven schemes suitable :
- Small systems with a small number of events

: Difficulties and Approaches (conimued...)

* Unbounded Differential inclusion and Sweeping process

- Advantages
- Compact formulation which allow existence and uniqueness results
- Dissipativity and monotonicity properties
- Disadvantages:
- More difficult mathematical framework
- Low order accuracy
- Lead to Time-stepping integration schemes (without event-handling) suitable :
- Large systems with a large number of events
- Accumulation of events in finite time
- Convergence results and Existence proofs

The Moreau's Sweeping Process is a kind of unbounded differential inclusion (Moreau 1971, 1977, Brezis 1973) :

$$
\left\{\begin{array} { l }
{ x (0) \in K (0) \subset \mathbb { R } ^ { n } } \\
{ \dot { x } \in \mathcal { N } _ { K (t) } (x (t)) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x(0) \in K(0) \subset \mathbb{R}^{n} \\
\dot{x}=\lambda \\
K \ni x \perp \lambda \in N_{K(t)}(x(t))
\end{array}\right.\right.
$$

where $K(t)$ is a convex set

Major results :

\% If $K(t)$ is bounded and a Lipschitz-continuous multi-function (Hausdorff distance) then there exists a unique solution, which is Lipschitz-continuous with the respect to time.

* If $K(t)$ is a multi-function with right continuous bounded variation then there exists a unique solution, which is of bounded variation and right continuous (Monteiro-Marques, 1987)
References on seminal works :
- Moreau, J.J. (1971) Rafle par un convexe variable, Séminaire d'analyse convexe
- Moreau, J.J. (1977) Evolution problem associated with a moving convex set in a Hilbert space, J. of Differential Equation, pp. 347-374
- Brezis, H. (1973) Maximal Monotone operators, North-Holland Publishing.

Equivalent Formulations

Other equivalent formulations with Projected dynamical system, Differential inclusion and variational inequalities may be found in: V.Acary, B. Brogliato, C. Lemaréchal and A. Daniilidis, Inria Research Report, RR-5107 to appear Systems and Control Letters, 2005
The Time discretization is given by the Catching up algorithm for instance for $K=\mathbb{R}^{+}$:

$$
\left\{\begin{array}{l}
x_{k+1}-x_{k}=h \lambda_{k+1} \tag{1}\\
0 \leq x_{k+1} \perp \lambda_{k+1} \geq 0
\end{array}\right.
$$

* Remarks:
- Implicit type scheme (necessary for the unilateral constraints) but low order =1
- Resolution of a LCP at each time step
- Convergence Proofs => Existence of solution due to the monotonicity of the operator

This algorithm may be used for LCS system for which D is P-matrix.

Moreau's Sweeping Process of order 2

* The velocity is no longer a smooth function of time but a function of bounded variations. This is the case of Lagrangian systems
* Lagrangian dynamical system is reformulated as a measure differential equation.

$$
M(q) d v+(Q(v, q)+F(v, q, t)) d t=F_{e x t}(t) d t+R
$$

where

- $d t$ is the Lebesgue measure on \mathbb{R}
- $d v$ is the Stieltjes measure (Differential measure) associated with the right continuous function $v(t)$ of bounded variations, such that :

$$
d v((a, b])=\int_{(a, b]} d v=v\left(b^{+}\right)-v\left(a^{+}\right)
$$

- R is a measure due to the non smooth law
- $q(t)$ is the absolutely continuous displacement given by :

$$
q(t)=q\left(t_{0}\right)+\int_{t_{0}}^{t} v(s) d s
$$

: Moreau's Sweeping Process of order 2 (conifinued...)

Reformulation of the constraints as a measure inclusion

* Reformulation of the unilateral constraints in terms of derivatives:

$$
-\lambda \in \partial \Psi_{V(y)}(\dot{y})
$$

where $V(y)$ is the tangent cone of K at y which can be stated equivalently for $K=\mathbb{R}^{+}$as for

$$
\begin{equation*}
\text { If } y(t)=0 \text {, then } 0 \leq \dot{y} \perp \lambda \geq 0 \tag{2}
\end{equation*}
$$

It's noteworthy that the (switched off) constraints is now on the velocity \dot{y} and depend on the value of $y(t)=0$

Reformulation of the constraints as a measure inclusion

* Reformulation of the unilateral constraints in terms of derivatives:

$$
-\lambda \in \partial \Psi_{V(y)}(\dot{y})
$$

where $V(y)$ is the tangent cone of K at y which can be stated equivalently for $K=\mathbb{R}^{+}$as for

$$
\begin{equation*}
\text { If } y(t)=0, \text { then } 0 \leq \dot{y} \perp \lambda \geq 0 \tag{2}
\end{equation*}
$$

It's noteworthy that the (switched off) constraints is now on the velocity \dot{y} and depend on the value of $y(t)=0$

* If λ is a measure, the inclusion is extended considering the Radon-Nykodym derivative

$$
\lambda^{\prime}(t)=\frac{d \lambda}{d \nu} \in \partial \Psi_{V(y)}(\dot{y})
$$

where $d \nu$ is a nonnegative measure and λ is absolutely continuous with respect to $d \nu$
: Moreau's Sweeping Process. Discretization

* Given a subdivision of a time interval, $\left\{t_{0}, t_{1}, \ldots, t_{i}, \ldots, t_{N}\right\}$, we evaluate of the measure differential equation on a time interval $\left(t_{i}, t_{i+1}\right]$ of length h :

$$
M d v\left(\left(t_{i}, t_{i+1}\right]\right)=\int_{\left(t_{i}, t_{i+1}\right]} M d v=M\left(v\left(t_{i+1}^{+}\right)-v\left(t_{i}^{+}\right)\right)=\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t+\int_{\left(t_{i}, t_{i+1}\right]} R
$$

: Moreau's Sweeping Process. Discretization

* Given a subdivision of a time interval, $\left\{t_{0}, t_{1}, \ldots, t_{i}, \ldots, t_{N}\right\}$, we evaluate of the measure differential equation on a time interval $\left(t_{i}, t_{i+1}\right]$ of length h :

$$
M d v\left(\left(t_{i}, t_{i+1}\right]\right)=\int_{\left(t_{i}, t_{i+1}\right]} M d v=M\left(v\left(t_{i+1}^{+}\right)-v\left(t_{i}^{+}\right)\right)=\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t+\int_{\left(t_{i}, t_{i+1}\right]} R
$$

* Evaluation of the displacement $q\left(t_{i+1}\right)=q\left(t_{i}\right)+\int_{t_{i}}^{t_{i+1}} v(s) d s$
: Moreau's Sweeping Process. Discretization
* Given a subdivision of a time interval, $\left\{t_{0}, t_{1}, \ldots, t_{i}, \ldots, t_{N}\right\}$, we evaluate of the measure differential equation on a time interval $\left(t_{i}, t_{i+1}\right]$ of length h :

$$
M d v\left(\left(t_{i}, t_{i+1}\right]\right)=\int_{\left(t_{i}, t_{i+1}\right]} M d v=M\left(v\left(t_{i+1}^{+}\right)-v\left(t_{i}^{+}\right)\right)=\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t+\int_{\left(t_{i}, t_{i+1}\right]} R
$$

* Evaluation of the displacement $q\left(t_{i+1}\right)=q\left(t_{i}\right)+\int_{t_{i}}^{t_{i+1}} v(s) d s$
* The measure $R\left(\left(t_{i}, t_{i+1}\right]\right)$ of the time-interval $\left(t_{i}, t_{i+1}\right]$ is kept as primary unknown :

$$
R_{i+1}=R\left(\left(t_{i}, t_{i+1}\right]\right)
$$

Moreau's Sweeping Process. Discretization

* Given a subdivision of a time interval, $\left\{t_{0}, t_{1}, \ldots, t_{i}, \ldots, t_{N}\right\}$, we evaluate of the measure differential equation on a time interval $\left(t_{i}, t_{i+1}\right]$ of length h :

$$
M d v\left(\left(t_{i}, t_{i+1}\right]\right)=\int_{\left(t_{i}, t_{i+1}\right]} M d v=M\left(v\left(t_{i+1}^{+}\right)-v\left(t_{i}^{+}\right)\right)=\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t+\int_{\left(t_{i}, t_{i+1}\right]} R
$$

* Evaluation of the displacement $q\left(t_{i+1}\right)=q\left(t_{i}\right)+\int_{t_{i}}^{t_{i+1}} v(s) d s$
* The measure $R\left(\left(t_{i}, t_{i+1}\right]\right)$ of the time-interval $\left(t_{i}, t_{i+1}\right]$ is kept as primary unknown :

$$
R_{i+1}=R\left(\left(t_{i}, t_{i+1}\right]\right)
$$

Interpretation : The measure R may be decomposed as follows :

$$
R=R_{a} d t+R_{s}
$$

where $R_{a} d t$ is the abs. continuous part of the measure R and R_{s} the singular part.

- Impulse : If $R_{a}=0$ and $R_{s}=P \delta_{t_{i+1}}$ then $R_{i+1}=P$
- Continuous multiplier : If $R_{a}(t)=f(t)$ and $R_{s}=0$ then $R_{i+1}=\int_{t_{i}}^{t_{i+1}} f(t) d t$
: Discretization of the Dynamics conitued
\% Notations:

$$
v_{i} \approx v\left(t_{i}^{+}\right), \quad q_{i} \approx q\left(t_{i}\right)
$$

* Notations :

$$
v_{i} \approx v\left(t_{i}^{+}\right), \quad q_{i} \approx q\left(t_{i}\right)
$$

\% Approximation of the integral of functions: θ-method

$$
\begin{gathered}
\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t \approx h\left[\theta F_{e x t}\left(t_{i+1}\right)+(1-\theta) F_{e x t}\left(t_{i}\right)\right] \\
q_{i+1}=q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{gathered}
$$

\% Notations:

$$
v_{i} \approx v\left(t_{i}^{+}\right), \quad q_{i} \approx q\left(t_{i}\right)
$$

\% Approximation of the integral of functions: θ-method

$$
\begin{gathered}
\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t \approx h\left[\theta F_{e x t}\left(t_{i+1}\right)+(1-\theta) F_{e x t}\left(t_{i}\right)\right] \\
q_{i+1}=q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{gathered}
$$

* Complete set of discrete equations:

$$
\left\{\begin{array}{l}
M\left(v_{i+1}-v_{i}\right)=h\left[\theta F_{\text {ext }}\left(t_{i+1}\right)+(1-\theta)\left(F_{\text {ext }}\left(t_{i}\right)\right]+R_{i+1}\right. \\
q_{i+1}=q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{array}\right.
$$

* Notations:

$$
v_{i} \approx v\left(t_{i}^{+}\right), \quad q_{i} \approx q\left(t_{i}\right)
$$

\% Approximation of the integral of functions: θ-method

$$
\begin{gathered}
\int_{t_{i}}^{t_{i+1}} F_{e x t}(t) d t \approx h\left[\theta F_{e x t}\left(t_{i+1}\right)+(1-\theta) F_{e x t}\left(t_{i}\right)\right] \\
q_{i+1}=q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{gathered}
$$

* Complete set of discrete equations:

$$
\left\{\begin{array}{l}
M\left(v_{i+1}-v_{i}\right)=h\left[\theta F_{\text {ext }}\left(t_{i+1}\right)+(1-\theta)\left(F_{\text {ext }}\left(t_{i}\right)\right]+R_{i+1}\right. \\
q_{i+1}=q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{array}\right.
$$

* One step linear system : $v_{i+1}=v_{f r e e}+h W R_{i+1}$ with

$$
W=M^{-1}, \quad v_{\text {free }}=v_{i}+W\left[h\left[\theta F_{\text {ext }}\left(t_{i+1}\right)+(1-\theta) F_{\text {ext }}\left(t_{i}\right)\right]\right]
$$

: Discretization of the Dynamics coninued

* Relations at t_{k+1} :

$$
\begin{aligned}
y_{i+1} & =H^{T} q_{i+1}+b \\
\dot{y}_{i+1} & =H^{T} v_{i+1} \\
R_{i+1} & =H \lambda_{i+1}
\end{aligned}
$$

* Relations at t_{k+1} :

$$
\begin{aligned}
y_{i+1} & =H^{T} q_{i+1}+b \\
\dot{y}_{i+1} & =H^{T} v_{i+1} \\
R_{i+1} & =H \lambda_{i+1}
\end{aligned}
$$

\% Discretization of an unilateral constraint :
A natural way :

$$
0 \leq y_{i+1} \perp \lambda_{i+1} \geq 0
$$

in terms of velocity

$$
\text { If } y^{p} \leq 0 \text {, then } 0 \leq \dot{y}_{i+1} \perp \lambda_{i+1} \geq 0
$$

where y^{p} is a prediction of the position at time t_{i+1}, for instance, $y^{p}=y_{i}+\frac{h}{2} \dot{y}_{i}$.

* Relations at t_{k+1} :

$$
\begin{aligned}
y_{i+1} & =H^{T} q_{i+1}+b \\
\dot{y}_{i+1} & =H^{T} v_{i+1} \\
R_{i+1} & =H \lambda_{i+1}
\end{aligned}
$$

\% Discretization of an unilateral constraint :
A natural way :

$$
0 \leq y_{i+1} \perp \lambda_{i+1} \geq 0
$$

in terms of velocity

$$
\text { If } y^{p} \leq 0 \text {, then } 0 \leq \dot{y}_{i+1} \perp \lambda_{i+1} \geq 0
$$

where y^{p} is a prediction of the position at time t_{i+1}, for instance, $y^{p}=y_{i}+\frac{h}{2} \dot{y}_{i}$.

* Newton Impact law $\dot{y}_{i+1}^{e}=\dot{y}_{i+1}+e \dot{y}_{i}$

One step linear problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{i+1}=v_{\text {free }}+h W R_{i+1} \\
q_{i+1}=q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{y}_{i+1}=H^{T} v_{i+1} \\
R_{i+1}=H \lambda_{i+1}
\end{array}\right. \\
& \left\{\begin{array}{l}
\text { If } y^{p}=y_{i}+\frac{h}{2} \dot{y}_{i} \\
\text { then } 0 \leq \dot{y}_{i+1}^{e} \perp \lambda_{i+1} \geq 0
\end{array}\right.
\end{aligned}
$$

One step linear problem

$$
\left\{\begin{aligned}
v_{i+1} & =v_{f r e e}+h W R_{i+1} \\
q_{i+1} & =q_{i}+h\left[\theta v_{i+1}+(1-\theta) v_{i}\right]
\end{aligned}\right.
$$

$$
\text { Relations } \quad\left\{\begin{array}{l}
\dot{y}_{i+1}=H^{T} v_{i+1} \\
R_{i+1}=H \lambda_{i+1}
\end{array}\right.
$$

$$
\text { Non Smooth Law } \quad\left\{\begin{array}{l}
\text { If } y^{p}=y_{i}+\frac{h}{2} \dot{y}_{i} \\
\text { then } 0 \leq \dot{y}_{i+1}^{e} \perp \lambda_{i+1} \geq 0
\end{array}\right.
$$

\rightarrow One step Quasi-LCP in terms of \dot{y}_{i+1}^{e} and λ_{i+1} :

$$
\begin{aligned}
\dot{y}_{i+1}^{e} & =H^{T} \dot{q}_{f r e e}+h H^{T} W H \lambda_{i+1}+e \dot{y}_{i} \\
y^{p} & =y_{i}+\frac{h}{2} \dot{y}_{i} \\
\text { If } & y^{p} \leq 0, \text { then } 0 \leq \dot{y}_{i+1}^{e} \perp \lambda_{i+1} \geq 0
\end{aligned}
$$

: A simple example : A bouncing ball

The Bouncing ball example with time-stepping

$$
\left\{\begin{array}{l}
m \ddot{q}=-m g+\lambda \\
\text { if } q(t)=0 \\
0 \leq \dot{q}\left(t^{+}\right)+e \dot{q}\left(t^{-}\right) \perp \lambda \geq 0
\end{array}\right.
$$

Position of the ball vs. Time

Reaction due to the contact force vs. Time

Velocity of the ball vs. Time

Energy balance vs.time

Open Problems and links with optimization

* Efficient algorithm for the LCP with a switched-off constraints :

$$
\begin{aligned}
y & =A \lambda+b \\
v & =h(y) \\
\text { If } y & \leq 0, \text { then } 0 \leq v \perp \lambda \geq 0
\end{aligned}
$$

- Issue ? : Reformulation in terms of QP with a additional slack variable (MIP)?
\rightarrow Good BVP solvers for which a prediction of y is not reasonable
* Efficient algorithm for the LCP with a switched-off constraints :

$$
\begin{aligned}
y & =A \lambda+b \\
v & =h(y) \\
\text { If } y & \leq 0, \text { then } 0 \leq v \perp \lambda \geq 0
\end{aligned}
$$

- Issue ? : Reformulation in terms of QP with a additional slack variable (MIP)?
\rightarrow Good BVP solvers for which a prediction of y is not reasonable
* Efficient algorithm for the 3D Frictional contact problem with or without switched-off constraints :

$$
\begin{aligned}
y & =A \lambda+b \\
y & =\left[y_{n}, y_{t}\right], \quad \lambda=\left[\lambda_{n}, \lambda_{t}\right] \\
v & =h(y)=\left[\lambda_{n}, \lambda_{t}\right] \\
\text { (If } y_{n} & \leq 0, \text { then) }\left\{\begin{array}{c}
0 \leq v_{n} \perp \lambda_{n} \geq 0 \\
-\lambda_{t} \in \partial \Psi_{C\left(\mu \lambda_{n}\right)}^{*}\left(v_{n}\right)
\end{array}\right.
\end{aligned}
$$

We use basic and robust iterative scheme (Gauss-Seidel like) and (Non smooth) Generalized Newton Method (Alart and Curnier, 1990)

- Issue ? : - Try to find a good potential to minimize and/or a good Lagrangian relaxation?
- NLCP solvers? Bundle Methods?
- Good line searches/trust regions for Generalized Newton Method ?
* Energetic coefficient of restitution e and multiple impact law

* Energetic coefficient of restitution e and multiple impact law

Find $(u, v, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}$ giving $M \succ 0, H, \Theta, b:$

$$
\begin{aligned}
M(u-b) & =H \lambda \\
u^{T} M u & =e b^{T} M b^{T}, \quad \text { (Energy dissipation) } \\
v & =H^{T} u \geq 0 \\
\lambda & \geq 0 \\
\Theta \lambda & =0, \quad \text { (Multiple Impact Law at distance) }
\end{aligned}
$$

We can also add friction : Find $\left(u, v, \lambda \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}\right.$ giving $M \succ 0, H, \Theta, b$:

$$
\begin{aligned}
M(u-b) & =H\left[\lambda_{n}, \lambda_{t}\right]^{T} \\
u^{T} M u & =e b^{T} M b^{T}, \quad \text { Energy dissipation } \\
v & =\left[v_{n}, v_{t}\right]^{T}=H^{T} u \geq 0, \\
\lambda_{n} & \geq 0 \\
\Theta \lambda_{n} & =0 \quad \text { (Multiple Impact Law at distance) } \\
-\lambda_{t} & \in \partial \Psi_{C\left(\mu \lambda_{n}\right)}^{*}\left(v_{t}\right)
\end{aligned}
$$

* Energetic coefficient of restitution e and multiple impact law

Find $(u, v, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}$ giving $M \succ 0, H, \Theta, b:$

$$
\begin{aligned}
M(u-b) & =H \lambda \\
u^{T} M u & =e b^{T} M b^{T}, \quad \text { (Energy dissipation) } \\
v & =H^{T} u \geq 0 \\
\lambda & \geq 0 \\
\Theta \lambda & =0, \quad \text { (Multiple Impact Law at distance) }
\end{aligned}
$$

We can also add friction : Find $\left(u, v, \lambda \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}\right.$ giving $M \succ 0, H, \Theta, b$:

$$
\begin{aligned}
M(u-b) & =H\left[\lambda_{n}, \lambda_{t}\right]^{T} \\
u^{T} M u & =e b^{T} M b^{T}, \quad \text { Energy dissipation } \\
v & =\left[v_{n}, v_{t}\right]^{T}=H^{T} u \geq 0, \\
\lambda_{n} & \geq 0 \\
\Theta \lambda_{n} & =0 \quad \text { (Multiple Impact Law at distance) } \\
-\lambda_{t} & \in \partial \Psi_{C\left(\mu \lambda_{n}\right)}^{*}\left(v_{t}\right)
\end{aligned}
$$

* Extension to Non linear mechanical behavior $y=f(\lambda)$ We use only outer linearization with Newton-Raphson scheme
\checkmark 1-Introduction on Non Smooth Dynamical systems
$\checkmark 2$ - Historical background on low order systems
$\rightarrow 3$ - Higher-order systems: Formulation and Time-discretization
3.1 - Introduction
3.2 - Preliminary example on LCS
3.3 - Notion of relative degree
3.4 - Issues to be fixed
3.5 - Canonical form : The Zero Dynamical form
3.6 - Distributional Dynamics
3.7 - Measure differential dynamics
3.8 - Reinitialization mapping
3.9 - Well posedness results
3.10 - Time-discretization
3.11 - Properties of Time-discretization
- 4 - Higher-order systems: Numerical Methods, Applications and links with Optimization
- 5 - Conclusions and Perspectives

Joint Work with :

- Bernard Brogliato, Head of the Bipop Project, INRIA Rhône-Alpes
- Daniel Goeleven, IREMIA, University of La Réunion

References:

- V. Acary and B. Brogliato, Higher Order Moreau's sweeping process, Colloquium in the honor of the 80th Birthday of J.J. Moreau, to appear in "Non smooth Mechanics and Analysis: theoretical and numerical advances", Kluwer, 2005
- V. Acary, B. Brogliato and D. Goeleven, Higher Order Moreau's sweeping process: Mathematical formulation and numerical simulation, INRIA Research Report RR-5236, submitted to MPA
- J.S Pang and D. Stewart, Differential Variational Inequalities, preprint, submitted to MPA
- Elegant Formulations of Unbounded Differential inclusion as Variational Inequalities
- IVP and BVP
- New proof of convergence for time-stepping scheme
- But only for low order systems (≤ 1)

: Preliminary example on LCS

* Linear complementarity system :

$$
\left\{\begin{array}{l}
\dot{x}=A x+B \lambda, \quad x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}^{m} \\
y=C x+D \lambda \\
0 \leq y \perp \lambda \geq 0
\end{array}\right.
$$

* Let us consider the very simple example :

$$
\left\{\begin{array}{l}
\dddot{x}=\lambda, \quad x \in \mathbb{R}, \lambda \in \mathbb{R} \tag{-8}\\
0 \leq y=x \perp \lambda \geq 0
\end{array}\right.
$$

Naive Remarks:

- If $x(t)=0$ and $\dot{x}\left(t^{-}\right)<0, \ddot{x}\left(t^{-}\right)<0, \dddot{x}\left(t^{-}\right)<0$ then all of the derivatives must jump.
- If \dot{x} have a jump, \ddot{x} is a measure (Dirac) and \dddot{x} a derivative (in the sense of distribution) of a Dirac.
- In this case, λ is also a derivative of a Dirac and then there is no sense to require that $\lambda \geq 0$

Notion of Relative degree

** Definition: Defining the Markov Parameters as ($D, C B, C A B, C A^{2} B, \ldots$), the relative degree r is the rank of the first non zero Markov Parameter.

* Remarks
- the Relative degree r is the number of differentiation of y to obtain explicitly y in function of λ.
- Clear Analogy with the differential index in DAE $(\delta=r+1)$
: Notion of Relative degree(coninued...)
* Relative degree $r=0, D \succ 0$, Trivial case
- The multiplier $\lambda=\max \left(0,-D^{-1} C x\right)$ is a Lipschitz continuous function of x
- The numerical integration may be performed with any standard ODE solvers.

Notion of Relative degree(coninued...)

* Relative degree $r=0, D \succ 0$, Trivial case
- The multiplier $\lambda=\max \left(0,-D^{-1} C x\right)$ is a Lipschitz continuous function of x
- The numerical integration may be performed with any standard ODE solvers.
\% Relative degree $r=1, D=0, C B \succ 0$
- The multiplier λ is a function of time t, not necessarily continuous, for instance, of bounded variations (BV).
- The numerical integration have to be performed with specific solvers (Event-Driven or Moreau's Catching up algorithm)

: Notion of Relative degree(coninued...)

* Relative degree $r=0, D \succ 0$, Trivial case
- The multiplier $\lambda=\max \left(0,-D^{-1} C x\right)$ is a Lipschitz continuous function of x
- The numerical integration may be performed with any standard ODE solvers.
* Relative degree $r=1, D=0, C B \succ 0$
- The multiplier λ is a function of time t, not necessarily continuous, for instance, of bounded variations (BV).
- The numerical integration have to be performed with specific solvers (Event-Driven or Moreau's Catching up algorithm)
* Relative degree $r=2, D=0, C B=0, C A B \succ 0$
- The system is not self-consistent : Need a re-initialization mapping
- The multiplier λ is a real measure.
- Specific solvers (Event-Driven or Moreau's Time-stepping) as for Lagrangian dynamical system with constraints

: Notion of Relative degree(coninued...)

* Relative degree $r=0, D \succ 0$, Trivial case
- The multiplier $\lambda=\max \left(0,-D^{-1} C x\right)$ is a Lipschitz continuous function of x
- The numerical integration may be performed with any standard ODE solvers.
\% Relative degree $r=1, D=0, C B \succ 0$
- The multiplier λ is a function of time t, not necessarily continuous, for instance, of bounded variations (BV).
- The numerical integration have to be performed with specific solvers (Event-Driven or Moreau's Catching up algorithm)
* Relative degree $r=2, D=0, C B=0, C A B \succ 0$
- The system is not self-consistent : Need a re-initialization mapping
- The multiplier λ is a real measure.
- Specific solvers (Event-Driven or Moreau's Time-stepping) as for Lagrangian dynamical system with constraints
* Higher Relative degree $r \geq 3 D=0, C B=0, C A^{r-2}=0, \ldots, C A^{r-1} B \succ 0$
- The multiplier λ is a distribution of order $r-1$.
- Dedicated time-stepping scheme and nested complementarity problems
* Reformulation of the problem as:
- Canonical form (Zero-Dynamics)
- Distributional dynamical systems
- Measure differential equations (also possibly Measure variational Inequalities)
- "Good" Reinitialization mapping (Monotone mapping)
* Characterization of solutions
* Mathematical results Existence and uniqueness
* Time-stepping scheme for IVP and BVP
\% Efficient Algorithm for Nested Complementarity Problems
Assumptions:
\% Autonomous and linear time invariant systems
* Homogeneous relative degree

Let us consider the following LTI system :

$$
\left\{\begin{array}{l}
\dot{x}=A x+B \lambda, \quad x \in \mathbb{R}^{n}, \lambda \in \mathbb{R}^{m} \\
w=C x+D \lambda
\end{array}\right.
$$

We perform a state-space transformation $z=W x, z^{T}=\left(w, \dot{w}, \ldots, w^{(r-1)}, \xi\right)$ such that :

$$
\left\{\begin{array}{l}
\dot{z}_{1}(t)=z_{2}(t) \quad(t \geq 0) \\
\dot{z}_{2}(t)=z_{3}(t) \quad(t \geq 0) \\
\dot{z}_{3}(t)=z_{4}(t) \quad(t \geq 0) \\
\vdots \\
\dot{z}_{r-1}(t)=z_{r}(t) \quad(t \geq 0) \\
\dot{z}_{r}(t)=C A^{r} W^{-1} z(t)+C A^{r-1} B \lambda(t) \quad(t \geq 0) \\
\dot{\xi}(t)=A_{\xi} \xi(t)+B_{\xi} z_{1}(t) \quad(t \geq 0) \\
w(t)=z_{1}(t) \quad(t \geq 0)
\end{array}\right.
$$

This transformation always exists for controllable systems

: Distributional Dynamics

Let us consider a system of equality distributions of Class, $\cup_{n \in \mathbb{N}} \mathcal{T}_{n}(I)$,

$$
\left\{\begin{array} { l }
{ D z _ { 1 } = z _ { 2 } } \\
{ D z _ { 2 } = z _ { 3 } } \\
{ D z _ { 3 } = z _ { 4 } } \\
{ \vdots } \\
{ D z _ { r - 1 } = z _ { r } } \\
{ D z _ { r } = C A ^ { r } W ^ { - 1 } z + C A ^ { r - 1 } B \lambda } \\
{ D \xi = A _ { \xi } \xi + B _ { \xi } z _ { 1 } . }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
D z_{1}=\left\{z_{2}\right\}+\nu_{1} \\
D z_{2}=\left\{z_{3}\right\}+D \nu_{1}+\nu_{2} \\
D z_{3}=\left\{z_{4}\right\}+D^{2} \nu_{1}+D \nu_{2}+\nu_{3} \\
\vdots \\
D z_{i}=\left\{z_{i+1}\right\}+D^{(i-1)} \nu_{1}+D^{(i-2)} \nu_{2}+\ldots+D \nu_{i-1}+\nu_{i} \\
\vdots \\
D z_{r-1}=\left\{z_{r}\right\}+D^{(r-2)} \nu_{1}+\ldots+\nu_{r-1} \\
D z_{r}=C A^{r} W^{-1}\{z\}+C A^{r-1} B \lambda .
\end{array}\right.\right.
$$

where ν_{i} the measure part of the distribution $D z_{i}$
This now possible to give a meaning to the positivity of λ :

$$
\lambda=\left(C A^{r-1} B\right)^{-1}\left[D^{(r-1)} \nu_{1}+\ldots+D \nu_{r-1}\right]+\nu_{r}
$$

by imposing some constraints of positivity to ν_{i}

Stronger Assumption("weaker" formalism) : requiring that the solutions z_{i} of the distributional dynamics are regular distributions z_{i} generated by right continuous functions of special locally bounded variation.
More precisely, $\xi_{1}, \ldots, \xi_{n-r} \in \mathcal{F}_{\infty}\left(\mathbb{R}^{+} ; \mathbb{R}\right)$ such that

$$
\left\{\begin{array}{l}
d z_{1}=z_{2}(t) d t+d \nu_{1} \\
d z_{2}=z_{3}(t) d t+d \nu_{2} \\
d z_{3}=z_{4}(t) d t+d \nu_{3} \\
\vdots \\
d z_{i}=z_{i+1}(t) d t+d \nu_{i} \\
\vdots \\
d z_{r-1}=z_{r}(t) d t+d \nu_{r-1} \\
d z_{r}=C A^{r} W^{-1} z(t) d t+C A^{r-1} B d \nu_{r} \\
\dot{\xi}(t)=A_{\xi} \xi(t)+B_{\xi} z_{1}(t)
\end{array}\right.
$$

: Reinitialization mapping

茪 Definition of tangent cone to Φ : Let Φ be a nonempty closed convex subset of \mathbb{R}. We denote by $T_{\Phi}(x)$ the tangent cone of Φ at $x \in \mathbb{R}$ defined by

$$
\begin{equation*}
T_{\Phi}(x)=\overline{\operatorname{cone}}(\Phi-\{x\}) \tag{-6}
\end{equation*}
$$

where cone $(\Phi-\{x\})$ denotes the cone generated by $\Phi-\{x\}$. This definition allows us to take into account constraints violations. Note that

$$
T_{\mathbb{R}^{+}}(x)=\left\{\begin{array}{lll}
\mathbb{R} & \text { if } & x>0 \\
\mathbb{R}^{+} & \text {if } & x \leq 0
\end{array} \text { and } T_{\mathbb{R}}(x)=\mathbb{R} .\right.
$$

* Definition of nested tangent cones : Let us now set $\Phi:=\mathbb{R}^{+}$. For $z \in \mathbb{R}^{r}$, we set $Z_{i}=\left(z_{1}, z_{2}, \ldots, z_{i}\right), \quad(1 \leq i \leq r)$. We define

$$
T_{\Phi}^{0}\left(Z_{1}\right)=\Phi, \quad T_{\Phi}^{1}\left(Z_{1}\right)=T_{\Phi}\left(z_{1}\right), \quad T_{\Phi}^{2}\left(Z_{2}\right)=T_{T_{\Phi}^{1}\left(Z_{1}\right)}\left(z_{2}\right), \ldots T_{\Phi}^{i}\left(Z_{i}\right)=T_{T_{\Phi}^{i-1}\left(Z_{i-1}\right)}\left(z_{i}\right) .
$$

* Definition of the Reinitialization mapping :

$$
\begin{equation*}
d \nu_{i} \in-\partial \psi_{T_{\Phi}^{i-1}\left(\left\{z_{i-1}\right\}\left(t^{-}\right)\right)}\left(\left\{z_{i}\right\}\left(t^{+}\right)\right) \quad \text { on } \tilde{I}, \quad(1 \leq i \leq r) \tag{-5}
\end{equation*}
$$

: Reinitialization mapping conifued

* Interpretation of this inclusion

If $T_{\Phi}^{i-1}\left(\left\{Z_{i-1}\right\}\left(t^{-}\right)\right)=\mathbb{R}^{+}$, i.e, if $z_{1} \leq 0, z_{2} \leq 0, \ldots, z_{i} \leq 0$ then one gets a complementarity condition:

$$
0 \leq d \nu_{i} \perp\left\{z_{i}\right\}\left(t^{+}\right) \geq 0
$$

otherwise

$$
d \nu_{i}=0
$$

\rightarrow we obtain a set of nested complementarity conditions (Generalization of $r=2$):

$$
\begin{gathered}
0 \leq d \nu_{1} \perp\left\{z_{1}\right\}\left(t^{+}\right) \geq 0 \\
\text { if } z_{1} \leq 0 \text { then } 0 \leq d \nu_{2} \perp\left\{z_{2}\right\}\left(t^{+}\right) \geq 0 \\
\text { if } z_{1} \leq 0 \text { and } z_{2} \leq 0 \text { then } 0 \leq d \nu_{3} \perp\left\{z_{3}\right\}\left(t^{+}\right) \geq 0 \\
\text { if } z_{1} \leq 0 \text { and } z_{2} \leq 0 \text { and } z_{3} \leq 0 \text { then } 0 \leq d \nu_{4} \perp\left\{z_{4}\right\}\left(t^{+}\right) \geq 0
\end{gathered}
$$

Well posedness results

* Definition of Regular solution:

Let $0 \leq a<b \in \mathbb{R} \cup\{+\infty\}$ be given. We say that a solution $z \in\left(\mathcal{T}_{r-1}\left(\mathbb{R}^{+}\right)\right)^{n}$ of Measure differential Inclusions is regular on $[a, b)$ if for each $t \in[a, b)$, there exists a right neighborhood $[t, \sigma)(\sigma>0)$ such that the restriction of $\{z\}$ to $[t, \sigma)$ is analytic.

* Global Existence and Uniqueness of a Regular Solution

Suppose that $C A^{r-1} B \succ 0$. For each $z_{0} \in \mathbb{R}^{n}$, the system of Measure differential Inclusions has at least one regular solution.
Moreover:
i) $z_{1} \equiv\left\{z_{1}\right\} \geq 0$ on \mathbb{R}^{+}
ii) $\{\bar{z}\}\left(0^{+}\right)=\bar{z}_{0}^{\prime}$
iii) $\|\{z\}(t)\| \leq e^{\left\|W A W^{-1}\right\| t}\left\|z_{0}\right\|, \quad \forall t \in \mathbb{R}^{+}$
iv) If z^{1} and z^{2} are two regular solutions then $\left\langle z^{1}, \varphi\right\rangle=\left\langle z^{2}, \varphi\right\rangle, \quad \forall \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{+} ; \mathbb{R}^{n}\right)$.

: Time-discretization

\% Summary of the Measure Differential inclusion :

$$
\left\{\begin{array}{l}
d z_{i}-z_{i+1}(t) d t=d \nu_{i}, 1 \leq i \leq r-1 \\
d z_{r}-C A^{r} W^{-1} z(t) d t=\left(C A^{r-1} B\right)^{-1} d \nu_{r} \\
d \nu_{i} \in-\partial \psi_{T_{\Phi}^{i-1}\left(z_{1}\left(t^{-}\right), \ldots, z_{i-1}\left(t^{-}\right)\right)}\left(z_{i}\left(t^{+}\right)\right) \\
\dot{\xi}(t) d t=A_{\xi} \xi(t)+B_{\xi} z_{1}(t) d t
\end{array}\right.
$$

* Time discretization:

We denote by $0=t_{0}<t_{1}<\ldots<t_{k}<t_{N}=T$ a finite partition (or a subdivision) of the time interval $[0, T], T>0$ and the time step is $h=t_{k+1}-t_{k}$
The values of the measures $d z_{i}\left(\left(t_{k}, t_{k+1}\right]\right)$ and $\mu_{i, k+1}=d \nu_{i}\left(\left(t_{k}, t_{k+1}\right]\right)$ are kept as primary variables and this fact is crucial for the consistency of the method for the non smooth evolutions.

$$
\left\{\begin{array}{l}
z_{i, k+1}-z_{i, k}-h z_{i+1, k+1}=\mu_{i, k+1} \\
z_{r, k+1}-z_{r, k}-h C A^{r} W^{-1} z_{k+1}=C A^{r-1} B \mu_{r, k+1} \\
\mu_{i, k+1} \in-\partial \psi_{T_{\Phi}^{i-1}\left(z_{1, k}, \ldots, z_{i-1, k}\right)}\left(z_{i, k+1}\right) \\
\xi_{k+1}-\xi_{k}=h A_{\xi} \xi_{k+1}+h B_{\xi} z_{1, k+1}
\end{array}\right.
$$

* Proposition 1: Boundedness of the sequences of approximation $\left(z_{k}, \xi_{k}\right)$:

$$
\left\|z_{n}\right\| \leq \alpha, \quad\left\|\mu_{k}\right\| \| \leq M
$$

* Proposition 2: Local Bounded Variation of step function $Z_{i}(t)$ generated by the approximation z_{i} on a interval $[0, T]$

$$
\begin{aligned}
& \operatorname{var}\left(z_{i}^{N},[0, T]\right) \leq \frac{1}{2 R}\left(\left|z_{i, 0}-a\right|+h \alpha\right)^{2}+\frac{\alpha^{2}}{2 R} T^{2}+\alpha T\left(1+\frac{1}{R}\left|z_{i, 0}-a\right|\right) \quad \text { for all } 1 \leq i \leq r-1 \\
& \operatorname{var}\left(z_{r}^{N},[0, T]\right) \leq \frac{1}{2 R}\left(\left|z_{r, 0}-a\right|+h \beta \alpha\right)^{2}+\frac{\beta^{2} \alpha^{2}}{2 R} T^{2}+\beta \alpha T\left(1+\frac{1}{R}\left|z_{1,0}-a\right|\right) \\
& \operatorname{var}\left(\xi^{N},[0, T]\right) \leq(\gamma+\delta) \alpha T
\end{aligned}
$$

\rightarrow Helly's Theorem : There is a subsequence of $\left(z_{k}, \xi_{k}\right)$ that converges point-wisely towards to some function $z(t), \xi(t)$ which is of Local Bounded variations

* Still to be done:
- Prove that this limit is a solution of Measure differential inclusion
- Choose and define a correct topology to measure convergence between two filled in graphs of BV functions. (Hausdorff distance)
- After that, the convergence of the scheme and the order are straightforward corollaries due to the existence and uniqueness properties of the problem
\checkmark 1-Introduction on Non Smooth Dynamical systems
$\checkmark 2$ - Historical background on low order systems
$\checkmark 3$ - Higher-order systems: Formulation and Time-discretization
$\rightarrow 4$ - Higher-order systems: Numerical Methods, Applications and links with Optimization
4.1 - A simple example
4.2 - Applications
4.3 - Empirical Order
4.4 - Open Problems
- 5 - Conclusions and Perspectives
: A simple example

A simple example with a non trivial zero-dynamics:

$$
\left\{\begin{array}{l}
z(0)=(1,0,0,0,0)^{T} \\
\dot{z}_{1}(t)=z_{2}(t) \\
\dot{z}_{2}(t)=z_{3}(t) \\
\dot{z}_{3}(t)=-z_{1}(t)-z_{2}(t)-z_{3}(t)-d_{\xi}^{T} \xi(t)+\lambda(t) \\
\dot{\xi}_{1}(t)=\alpha \xi_{2}(t) \\
\dot{\xi}_{2}(t)=-\omega \xi_{1}(t)+z_{1}(t) \\
w(t)=z_{1}(t) \geq 0
\end{array}\right.
$$

: A simple example

A simple example with a non trivial zero-dynamics:

$$
\left\{\begin{array}{l}
z(0)=(1,0,0,0,0)^{T} \\
\dot{z}_{1}(t)=z_{2}(t) \\
\dot{z}_{2}(t)=z_{3}(t) \\
\dot{z}_{3}(t)=-z_{1}(t)-z_{2}(t)-z_{3}(t)-d_{\xi}^{T} \xi(t)+\lambda(t) \\
\dot{\xi}_{1}(t)=\alpha \xi_{2}(t) \\
\dot{\xi}_{2}(t)=-\omega \xi_{1}(t)+z_{1}(t) \\
w(t)=z_{1}(t) \geq 0
\end{array}\right.
$$

: A simple example

A simple example with a non trivial zero-dynamics:

$$
\left\{\begin{array}{l}
z(0)=(1,0,0,0,0)^{T} \\
\dot{z}_{1}(t)=z_{2}(t) \\
\dot{z}_{2}(t)=z_{3}(t) \\
\dot{z}_{3}(t)=-z_{1}(t)-z_{2}(t)-z_{3}(t)-d_{\xi}^{T} \xi(t)+\lambda(t) \\
\dot{\xi}_{1}(t)=\alpha \xi_{2}(t) \\
\dot{\xi}_{2}(t)=-\omega \xi_{1}(t)+z_{1}(t) \\
w(t)=z_{1}(t) \geq 0
\end{array}\right.
$$

: A simple example

A simple example with a non trivial zero-dynamics:

$$
\left\{\begin{array}{l}
z(0)=(1,0,0,0,0)^{T} \\
\dot{z}_{1}(t)=z_{2}(t) \\
\dot{z}_{2}(t)=z_{3}(t) \\
\dot{z}_{3}(t)=-z_{1}(t)-z_{2}(t)-z_{3}(t)-d_{\xi}^{T} \xi(t)+\lambda(t) \\
\dot{\xi}_{1}(t)=\alpha \xi_{2}(t) \\
\dot{\xi}_{2}(t)=-\omega \xi_{1}(t)+z_{1}(t) \\
w(t)=z_{1}(t) \geq 0
\end{array}\right.
$$

For $d_{\xi}=(0,-1)$ A non trivial active interval is observed $\alpha=1$ and $\omega=$ 1.

Applications

* Electrical and Mechanical systems with feedback Control Loop
- The Feedback loop may increase the relative degree of the system
* Indirect Methods for Optimal control with state constraints : Finite difference BVP solvers
- We can prove that the relative degree of the Necessary condition system is twice the original one of the system to be controlled.
For a mechanical system ($r=2$), the necessary conditions for Optimality leads to a dynamical system of relative equal to $r=4$.
* Advantages of the approach :
- Take into account accumulation of events.
- Do not need any first guess for the algorithm
- Theoretical results

Empirical Order

* This error is measure using the l_{∞} norm between the step function generated by the sequences of approximation

Empirical Order

* This error is measure using the l_{∞} norm between the step function generated by the sequences of approximation

Empirical Order

* This error is now measure using a Hausdorff distance between filled-in graph of BV function.

Empirical Order

* This error is now measure using a Hausdorff distance between filled-in graph of BV function.

Open Problems

* Efficient Algorithms for the Multi-level nested Complementarity problem

$$
\begin{gathered}
d \nu_{i} \in-\partial \psi_{T_{\Phi}^{i-1}\left(\left\{Z_{i-1}\right\}\left(t^{-}\right)\right)}\left(\left\{z_{i}\right\}\left(t^{+}\right)\right) \quad \text { on } \tilde{I}, \quad(1 \leq i \leq r) \\
\Downarrow \\
0 \leq d \nu_{1} \perp\left\{z_{1}\right\}\left(t^{+}\right) \geq 0 \\
\text { if } z_{1} \leq 0 \text { then } 0 \leq d \nu_{2} \perp\left\{z_{2}\right\}\left(t^{+}\right) \geq 0 \\
\text { if } z_{1} \leq 0 \text { and } z_{2} \leq 0 \text { then } 0 \leq d \nu_{3} \perp\left\{z_{3}\right\}\left(t^{+}\right) \geq 0 \\
\text { if } z_{1} \leq 0 \text { and } z_{2} \leq 0 \text { and } z_{3} \leq 0 \text { then } 0 \leq d \nu_{4} \perp\left\{z_{4}\right\}\left(t^{+}\right) \geq 0
\end{gathered}
$$

* Non linear and Non autonomous systems
* Higher order Time integration scheme
\checkmark 1-Introduction on Non Smooth Dynamical systems
$\checkmark 2$ - Historical background on low order systems
$\checkmark 3$ - Higher-order systems: Formulation and Time-discretization
\checkmark 4-Higher-order systems: Numerical Methods, Applications and links with Optimization
\rightarrow 5-Conclusions and Perspectives

There is a lot of stuff to do in the field of Non Smooth Dynamical systems

I would be very grateful if
someone could provide some advises and references which come from the optimization community
vincent.acary@inrialpes.fr

