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Abstract

In this paper we study the tracking control of Lagrangian
systems subject to frictionless unilateral constraints. The
stability analysis incorporates the hybrid and nonsmooth
dynamical feature of the overall system. The difference be-
tween tracking control for unconstrained systems and uni-
laterally constrained ones, is explained in terms of closed-
loop desired trajectories and control signals. This work
provides details on the conditions of existence of a con-
troller which guarantees asymptotic stability.

1 Introduction

The focus of this paper is the tracking control of a class
of nonsmooth fully actuated Lagrangian systems subject
to frictionless unilateral constraints on the position. Such
systems may a priori evolve in three different phases of
motion : i) A free motion phase, ii) A permanently con-
strainted phase, iii) A transition phase whose goal is to
stabilize the system on some constraint surface. With
respect to the results in [3] [4] we give accurate condi-
tions under which various types of stability are assured,
which were missing in these references. For instance the
n-degree-of-freedom case with n ≥ 2 is solved in [3] only
if a certain matrix is a Jacobian, which is quite restric-
tive as simple examples show [2, §8.6]. In [4] the existence
of a specific transition phase closed-loop trajectory is as-
sumed, without proof. These two points are addressed in
this paper.

1.1 Dynamics

Let X ∈ IRn denote the vector of generalized coordinates.
The systems we study in this paper are complementar-
ity Lagrangian systems, with Lagrangian function L =
1
2ẊT M(X)Ẋ − U(X), where T (X, Ẋ) = 1

2ẊT M(X)Ẋ is
the kinetic energy, U(X) is the differentiable potential en-
ergy. The dynamics may be written as:







M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = u + ∇F (X)λX

F (X) ≥ 0, F (X)T λX = 0, λX ≥ 0
Collision rule

(1)

where M(X) = MT (X) ∈ IRn×n is the positive definite
inertia matrix, F (X) ∈ IRm represents the distance to the
constraints, λX ∈ IRm are the Lagrangian multipliers as-
sociated to the constraints, u ∈ IRn is the vector of gener-
alized torque inputs, C(X, Ẋ) is the matrix of Coriolis and
centripetal forces, G(X) contains conservative forces. ∇
denotes the Euclidean gradient. The impact times will be
denoted generically as tk in the following. The admissible
domain Φ is a closed domain in the configuration space
where the system can evolve, i.e. Φ = {X|F (X) ≥ 0}.
The boundary of Φ is denoted as ∂Φ. A collision rule is
needed to integrate the system in (1) and to render the
set Φ invariant. A collision rule is a relation between the
post-impact velocities and the pre-impact velocities. In
this work, it is chosen as in [6]:

Ẋ(t+k ) = −enẊ(t−k ) + (1 + en) arg minz∈TΦ(X(tk))
1
2 [z − Ẋ(t−k )]T M(X(tk))[z − Ẋ(t−k )]

(2)
where Ẋ(t+k ) is the post impact velocity, Ẋ(t−k ) is the pre-
impact velocity, TΦ(X(t)) the tangent cone to the set Φ at
X(t) and en is the restitution coefficient, en ∈ [0, 1]. The
restitution mapping in (2) yields a kinetic energy loss at
the impact times given by :

TL(tk) = − 1
2

1−en

1+en

[

Ẋ(t+k ) − Ẋ(t−k )
]T

M(q(tk))
[

Ẋ(t+k ) − Ẋ(t−k )
]

≤ 0
(3)

1.2 Cyclic task

In this paper we restrict ourselves to a specific task, or tra-
jectory: a succession of free and constrained phases Ωk.
During the transition between a free and a constrained
phase, the dynamic system passes into a transition phase
Ik. Transition between constrained and free motion is
direct (it suffices that the acceleration d2

dt2
(F (X(t))) cal-

culated along solutions of (1) be positive to assure detach-
ment). In the time domain one gets a representation as :

IR+ = Ω0∪I0∪Ω1∪Ω2∪I1∪ ...∪Ω2k−1∪Ω2k∪Ik∪ ... (4)

where Ω2k denotes the time intervals associated to free-
motion phases and Ω2k+1 those for constrained-motion
phases. The order of the phases is important but the ini-
tial phase may be Ω0 or I0 or Ω1.

The items i) and ii) in the introduction imply that the
orbit of the desired set X i,nc(·) of the unconstrained sys-
tem possess the generic form shown in figure 1. It is clear
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Figure 1: Unconstrained trajectory.

that in particular item ii) implies that F (X i,nc(t)) < 0
for some t(∈ Ω2k+1), otherwise there would be a zero con-
tact force when the system perfectly tracks the desired
motion. Consequently there exists a point A in the con-
figuration space, at which contact is made with ∂Φ. This
gives rise to a transition phase. The central issue in the
present control problem, is the design of such transition
phases. A first idea is to impose a tangential contact, i.e.
with ∇F (X∗

d )T Ẋ∗
d = 0, where X∗

d (·) is a signal entering
the control input and playing the role of the desired tra-
jectory during some parts of the motion (the difference
between X∗

d (·), and Xi,nc(·) will be made clear below).
However

• α) Due to non-zero initial tracking errors X(0) −
X∗

d (0) 6= 0, Ẋ(0) − Ẋ∗
d (0) 6= 0, impacts may occur.

• β) This is not a robust strategy since a bad estimation
of the constraint position, may result to no stabilisa-
tion at all on ∂Φ. Consequently it is a much better
strategy to impose collisions for stabilisation on ∂Φ.

• γ) In any case, collisions have to be incorporated into
the stability analysis.

• δ) The best strategy for stabilisation on ∂Φ is
to impose closed-loop dynamics which mimics the
bouncing-ball dynamics Ẍ = −g, X ≥ 0:
δ1) This is very robust with respect to the constraint
position uncertainties.
δ2) It lends itself very well to Lyapunov stability of
some closed-loop Poincaré map.

Secondly, we will see in the next section that the type
of stability we desire is based on a single Lyapunov-like
function V (X, Ẋ, t). Then difficulties arise due to the fol-
lowing:

• a) There are non-zero couplings between “tangential”
and“normal” coordinates in the inertia matrix M(X)
(this will be formulated more rigorously later).

• b) This unique function V (X, Ẋ, t) has to work for all
phases, i.e. for Ω2k (ODE), Ω2k+1 (DAE), and Ik (the
dynamics may then be seen as a Measure Differential
Equation [2]).

• c) If V ≡ 0 then any velocity jump q̇(t+k ) 6= q̇(t−k )
implies a positive jump V (t+k ) − V (t−k ) > 0 in the
Lyapunov function. This means that impacts will

generally preclude asymptotic stability (1), except in
very particular cases of no inertia couplings, in which
case things greatly simplify.

• d) The function V has to satisfy V = 0 when the
desired trajectory of the closed-loop system is per-
fectly tracked, according to the definition of a Lya-
punov function. This implies that the desired set of
the complete (constrained) system must be used in
the definition of V .

One therefore realises that the control problem is itself
subject to many constraints. The proposed strategy has
to cope with these various and sometime antagonist facts
(like β) and c)). Item c) hampers the use as time goes
to infinity of any controller that would switch at time ts

between a free-motion feedback input with F (X∗
d (t−s )) >

0 to a transition phase controller with a “bouncing-ball”
dynamics (i.e. such that F (X i,nc(t+s )) < 0). However such
a discontinuous input can be used during the transient
period. In order to clarify these various notions let us
consider a one degree-of-freedom system:







(Ẍ − Ẍ∗
d ) + γ2(Ẋ − Ẋ∗

d ) + γ1(X − X∗
d ) = λ

0 ≤ X ⊥ λ ≥ 0

Ẋ(t+k ) = −enẊ(t−k )

(5)

where X∗
d (·) is some twice differentiable function, γ2 > 0,

γ1 > 0. The ′′ ⊥′′ means that X and λ are orthogonal,
i.e. Xλ = 0. It is clear that X i,nc ≡ X∗

d . If X∗
d (t) < 0 on

some interval of time I, then the desired trajectory of the
constrained system cannot be X∗

d (·). Rather, this is going
to be simply 0 on I. Item d) means that the function
V used for stability purpose (e.g. a quadratic function of
the tracking error) is zero on Ω2k+1 (constrained-motion
phases). Therefore the Lyapunov function will be defined
such that on Ik and on Ω2k+1 one has V (X, Ẋ, t) = 0.
Since this is a tracking control problem and since the
desired trajectory is equal to 0 on such phases (even
the rebound phase), we conclude that the tracking er-
ror X̃(·) entering V (·) has to satisfy X̃(·) = 0, so that

V (X̃ = 0, ˙̃
X = 0) = 0. Thus X̃(·) cannot be defined from

X∗
d (·) neither from X i,nc but from a third signal which we

shall denote as Xd(·). Let us again clarify the difference
between X∗

d (·) and Xd(·). Let us take a constant X∗
d < 0

in (5). Then Xi,nc = X∗
d but since the fixed point of the

complementarity system is (X, Ẋ) = (0, 0), we must have
V (X = 0, Ẋ = 0) = 0 so that the restriction of V to the
Poincaré section Σ+ = {X|X = 0, Ẋ > 0} is a Lyapunov
function for the corresponding Poincaré impact mapping
PΣ. Consequently we shall define Xd = 0 during these pe-
riods of time. In the following we shall denote X̃ = X−Xd

and X̄ = X −X∗
d . Finally in general X i,nc 6= X∗

d because
Xi,nc is the desired set of the closed-loop unconstrained

1This is mainly due to the fact that the controllers used on phases
Ωk assure asymptotic convergence of the tracking errors towards
zero, but do not possess any finite-time convergence properties.



system whereas X∗
d may be chosen to evolve from one

transition phase Ik to the next one Ik+1.

Such conditions appear quite stringent. Actually we are
looking for the most direct extension of Lyapunov’s second
method for complementarity systems as in (1) evolving as
in (4). If the task is less complex than (4) and/or the
dynamics possess some strong properties (see [2, chapter
8]) then the stability analysis may simplify.

The control strategy which is developed in the sequel,
takes all these features into account and especially im-
poses an desired trajectory X i,nc as depicted in figure 2.
The orbits of the trajectories are depicted. Tangential
contact is made at A′′ when force control starts so that
Xi,nc jumps at B. In addition item β) is taken into ac-
count by imposing a“bouncing-ball”dynamics only during
the transient period, i.e. on Ik with k < +∞. In other
words the trajectory X i,nc(t) makes a tangential contact
with ∂Φ because if initial data satisfy X(0) − X∗

d (0) = 0

and Ẋ(0) − Ẋ∗
d (0) = 0 on Ω2k, then X(t) ≡ Xi,nc(t) for

t ∈ Ω2k, but during the transient period the controller as-
sures the existence of collisions on phases Ik. Therefore
between points A and B′ on figure 2, one may have X∗

d (·)
which violates the constraint during the transient period,
and converges towards a tangential approach trajectory
after a finite or infinite number of transition phases (or
cycles Ω2k ∪ Ik ∪ Ω2k+1). Between B and C the phase
Ω2k+1 occurs during which objective ii) is fulfilled. The
dashed orbit AA′B′ on figure 2 represents X∗

d (·) during
a transition phase with impacts. The system stabilizes
on ∂Φ between A and B′ when the controller is switched
to a force control so that X i,nc(·) and X∗

d (·) may jump
to B. In the control scheme described later, the point
B′ will converge (in a finite or infinite number of cycles)
towards A′′. We finally define the closed-loop desired tra-
jectory of the complementarity system as X i,c(·). On fig-
ure 2, Xi,c(·) is the curve (CAA′′C) and Xi,c(·) ∈ ∂Φ
on (A′′C). It is an impactless trajectory. Let us assume
that the ultimate goal is to obtain a periodic trajectory to
be tracked asymptotically. Then on figure 2 only the or-
bits of Xi,nc(·) (i.e. AA′′BCA) and Xi,c(·) (i.e. AA′′CA)
are fixed. The other two orbits may vary from one cycle
Ω2k ∪ Ik ∪ Ω2k+1 to the next. But on a single phase Ik

the fixed point of the closed-loop system may indeed be a
signal Xd ∈ ∂Φ (A′A′′) which differs from X∗

d 6∈ Φ (A′B′).
The pieces of orbits (AA′B′) and the point A′ generally
vary from one cycle Ω2k ∪ Ik ∪ Ω2k+1 to the next cycle
Ω2k+2 ∪ Ik+1 ∪ Ω2k+3.

In summary the control strategy and stability analysis
are led with four different trajectories: X∗

d (·) in the con-
trol input, Xd(·) in the Lyapunov function, X i,c(·) and
Xi,nc(·). Still referring to figure 2: when the system is
initialised on X i,c(·) between C and A (i.e. on Ω0), then
Xd(t) = Xi,c(t) on (A′′C) and Xd(t) ∈ ∂Φ on (A′′C).
If initially X(0) 6= X i,c(0) and/or Ẋ(0) 6= Ẋi,c(0), then
Xd(·) differs and is set to zero in the Lyapunov function
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Xi,nc(t) = X∗

d (t) = Xd(t)

B

C

Xd(t)

Xi,nc(t) = X∗

d (t)

A

B′

A′′

Φ

A′

Xd(t)

= Xi,c(t) Xi,c(t)

Figure 2: The closed-loop desired trajectories.

at a time corresponding to A′. This is the major discrep-
ancy compared to unconstrained motion control in which
all four trajectories are the same, usually denoted as Xd(·).

2 Stability framework

The stability criterion used in this paper is an extension of
the Lyapunov second method adapted to closed loop me-
chanical system with unilateral constraints and has been
proposed in [3] and [4]. Let x(·) denote the state of the
closed-loop system in (1) with some feedback controller
u(X, Ẋ, t).

Definition 1 (Ω-weakly stable system) The closed-
loop system is Ω-weakly stable if for each ε > 0, there
exists δ(ε) > 0 such that ‖ x(0) ‖≤ δ(ε) ⇒‖ x(t) ‖≤ ε for
all t ≥ 0, t ∈ Ω = ∪k≥0Ωk. Asymptotic weak stability
holds if in addition x(t) −→ 0 as t −→ +∞, t ∈ Ω.
Practical weak stability holds if there is a ball centered at
x = 0, with radius R > 0, and such that x(t) ∈ B(0, R)
for all t ≥ T ; T < +∞, t ∈ Ω, R < +∞.

Let us define the closed-loop impact Poincaré map
that corresponds to the section Σ−

I = {x|Fi(X) =

0, ẊT∇Fi(X) < 0, i ∈ I}, which is a hypersurface of codi-
mension α = card(I). The pre-impact velocities are cho-
sen to define PΣI

for a reason given after claim 3. We
define:

PΣI
: Σ−

I → Σ−
I

xΣI
(k) 7→ xΣI

(k + 1).
(6)

where xΣI
is the state of PΣI

. Let us introduce the posi-
tive definite function V (·) that will serve in the subsequent
analysis. Let VΣI

denote the restriction of V to ΣI .

Definition 2 (Strongly stable system) The system is
said strongly stable if: (i) it is Ω-weakly stable, (ii) on
phases Ik, PΣI

is Lyapunov stable with Lyapunov function
VΣI

, and (iii) the sequence {tk}k∈N has a finite accumu-
lation point t∞ < +∞.



Clearly PΣI
has a fixed point x∗

ΣI
∈ ∂Φ. Let us define

the jump function σf (t) = f(t+) − f(t−) and λ[.] is the
Lebesgue measure. Let V (·) satisfy β(||x||) ≥ V (x, t) ≥
α(||x||), α(0) = 0, β(0) = 0, α(·) and β(·) strictly increas-
ing. Let Ik = [τk

0 , tkf ].

Claim 1 (Weak Stability [3]) Assume that the task is
as in (4), and that

(a) - λ[Ω] = +∞,

(b) - for each k ∈ N, λ[Ik] < +∞,

(c) - V (x(tkf ), tkf ) ≤ V (x(τk
0 ), τk

0 ),

(d) - V (x(.), .) uniformly bounded on each Ik.

If on Ω, V̇ (x(t), t) ≤ 0 and σV (tk) ≤ 0 for all k ≥ 0, then
the closed-loop system is Ω-weakly stable. If V̇ (x(t), t) ≤
−γ(‖ x(t) ‖), γ(0) = 0, γ(·) strictly increasing, then the
system is asymptotically Ω-weakly stable.

This accomodates for other types of motions than the one
as in (4), see [3]. Let us assume that t∞ < +∞. It
is noteworthy that from [1, proposition 4.11] this implies
en < 1 (because if en = 1 impact times satisfy tk+1 − tk ≥
βk > 0 with

∑

k≥0 βk unbounded, so that t∞ = +∞).

Claim 2 (Weak Stability) Let us assume that (a) and
(b) in claim (1) and that, in addition

(a) - outside Ik one has V̇ (t) ≤ −γV (t) for some γ > 0,

(b) - inside Ik one has V (t−k+1)−V (t+k ) ≤ 0, for all k ≥ 0,

(c) - the system is initialized on Ω0 with V (τ0
0 ) ≤ 1,

(d) -
∑

k≥0 σV (tk) ≤ KV κ(τk
0 ) + ε for some κ ≥ 0, K ≥ 0

and ε ≥ 0.

Then there exists a constant N < +∞ such that
λ[tk∞, tkf ] = N , for all k ≥ 0 (the cycle index), and such
that:

(i) - If κ ≥ 1, ε = 0 and N = 1
γ

ln( 1+K
δ

) for some

0 < δ < 1, then V (τk+1
0 ) ≤ δV (τk

0 ). The system
is asymptotically weakly stable.

(ii) - If κ < 1, then V (τk
0 ) ≤ δ(γ), where δ(γ) is a function

which can be made arbitrarily small by increasing γ.
The system is practically Ω-weakly stable with R =
α−1(δ(γ)).

Proof. The proof is omitted for the sake of paper brevity.

Claim 3 (Strong Stability [3]) The system is strongly
stable if in addition to the conditions in claim 1 one has:

- V (t−k+1) ≤ V (t−k );

- V is uniformly bounded and time continuous on Ik −
∪k{tk}.

3 Tracking controller framework

3.1 Controller Structure

To make the controller design easier the dynamical equa-
tions (1) are considered in the generalized coordinates in-
troduced in [5]. After transformation in the new coordi-

nates q =

[

q1

q2

]

, q1 =







q1
1
...

qm
1






, q = Q(X) ∈ IRn, the

dynamic system is as follows :














M11(q)q̈1 + M12(q)q̈2 + C1(q, q̇)q̇ + g1(q) = T1(q)u + λ

M21(q)q̈1 + M22(q)q̈2 + C2(q, q̇)q̇ + g2(q) = T2(q)u
qi
1 ≥ 0, qi

1λi = 0, λi ≥ 0, 1 ≤ i ≤ m

Collision rule
(7)

where the set of complementarity relations can be writ-
ten more compactly as 0 ≤ λ ⊥ Dq ≥ 0 with D =

[Im

...0] ∈ IRm×n, Im is the identity matrix. Clearly

M21(q) = MT
12(q) ∈ IR(n−m)×m, M11(q) ∈ IRm×m,

M22(q) ∈ IR(n−m)×(n−m). In the new coordinates q

one therefore has Φ = {q|Dq ≥ 0}. The tangent cone
TΦ(q1 = 0) = {v|Dv ≥ 0} is the space of admissible veloc-
ities on the boundary of Φ.

Let us choose:

V (t, q̃, ˙̃q) =
1

2
˙̃qT M(q) ˙̃q +

1

2
γ1q̃

T q̃ (8)

with q̃(·) = q(·) − qd(·). The control law used in this
scheme is based on the controller presented in [7], origi-
nally designed for free-motion position and velocity global
asymptotic tracking. Let us propose:

T (q)u =























Unc = M(q)q̈∗d + C(q, q̇)q̇∗d + g(q) − γ1(q − q∗d)
−γ2(q̇ − q̇∗d)
Ut = Unc before the first impact
Ut = g(q) − γ1q̄ − γ2q̇ after the first impact
Uc = Unc − Pd + Kf (Pq − Pd)

(9)
where T (q) = (T1(q), T2(q))

T ∈ IRn×n, γ1 > 0, γ2 > 0,
Kf > 0, Pd is the desired force we want for the perma-
nently constraint motion. The signals q∗d, qd and q̄ will be
defined later, as well as the switching conditions between
the controllers in (9). The interest for choosing this con-
troller is that the function V (t, q̃, ˙̃q) in (8) is very close to
the total energy of the system. Notice that u is indepen-
dent of the restitution coefficient en. From (9) the third
condition in claim 1 can be replaced by V (tk

f ) ≤ V (t−0 )

since V (t−0 ) ≤ V (τk
0 ).

3.2 Design of the desired trajectory

During the transition phase the control signal q∗d(t) is de-
fined as follows (see figure 3 for q∗1d(·), where A,A′, B′, B

and C correspond to figure 2):



t0 > τk
1

t0 < τk
1

B′ B CA B′A B CA′ A′

t1
0

q1(t)

q∗1d
(t)

−αV (τk
0 )

tt∞ tk
f tk

d

τk
1

t0

Ik Ω2k+1 Ω2k+2Ω2k

τk
0

t2

tk0

q∗1d
(t)

0

q1(t)

−αV (τk
0 )

ttk
f tk

d

Ω2k+1 Ω2k+2Ω2k

t1

t2

t∞
t0

τk
0

τk
1

Ik

Figure 3: Trajectory q∗1d(t)

Let us note that the indices k for the phases Ωk and Ik

and for the impact times tk, are not related. They are
dummy variables. Let us define:

- τk
0 is chosen by the designer as the start of the tran-

sition phase,

- tk0 is the time corresponding to q∗1d(t
k
0)=0,

- t0 corresponds to the first impact,

- t∞ corresponds to the finite accumulation point of the
sequence {tk}k≥0,

- tkf is the end of the transition phase,

- τk
1 is such that q∗1d(τ

k
1 ) = −αV (τk

0 ) and q̇∗1d(τ
k
1 ) = 0

(2).

- Ω2k+1 = [tkf , tkd].

On [τk
0 , t0), we impose that q∗d(t) is twice differentiable,

and q∗1d(t) decreases towards −αV (τk
0 ) on [τk

0 , τk
1 ]. In or-

der to cope with the coupling between q1 and q2 (M12 6=
0), the signal q∗2d(t) ∈ C2(IR+) is frozen during the tran-
sition phase, i.e.:

• q∗2d(t) = q∗2d, q̇∗2d(t) = 0 on [τk
0 , t∞]

• q∗2d(t) is defined on [τk
0 , tk0 ] such that q̇∗2d(t

k
0) = 0.

On (t0, tf ], we define qd and q∗d as follows :

qd = (0, q∗2d)
T , q∗d = (−αV (τk

o ), q∗2d)
T (10)

On [tkf , tkd] we set qd = [0, q2d(t)]
T . The purpose of q∗d is

to create a “virtual” potential force which stabilizes the
system on ∂Φ even if the position of the constraint is un-
certain. Consequently the fixed point(qd, q̇d) of the com-
plementarity system is used in the expression of the Lya-
punov fonction (q̃ = q−qd), whereas the unreachable fixed
point q∗d is used in the control law (in (9) q̄ = q − q∗d with
q∗d as in (10)). In Unc in (9) we have q∗d(·) = qd(·) since
q∗d(t) = qd(t) for t ∈ Ω2k ∪ [τk

0 , t0]. In summary, after the
first impact at t0, q1d(·) is set to zero while in case τk

1 > t0,

2In [2] [4] it is implicitly assumed in the stability proofs that
τk
1 < t0, which is a shortcoming that we avoid in this paper.

q∗1d(·) is set to −αV (τk
0 ) (in other words Ut switches as in-

dicated in (9)) . Since q̇1d(t
−
0 ) 6= 0 and q1d(t

−
0 ) 6= 0 in

general, the trajectory q1d(·) behaves like in a sort of plas-
tic collision (en = 0). With respect to figure 2, one has τ k

0

at A, t∞ at B′, t0 at A′, tkd at C, and B at tkf (the term
−Pd−KfPd defines the signal X∗

d (·) between B and C on
figure 2). If V (τk

0 ) = 0 then A′′ corresponds to the time
τk
1 .

The piece of curve AA′ on figure 2 is normal to ∂Φ (which
in coordinates q is the codimension-m plane q1 = 0). The
closed-loop desired trajectory X i,c(·) is defined as qi,c(t) =
q∗d(t) on Ω2k, qi,c(t) = q∗d(t) with α = 0 on Ik, and q

i,c
1 (t) =

0 on Ω2k+1, q
i,c
2 (t) = q∗2d(t) on IR+. It is impactless.

3.3 Closed-loop stability analysis

The closed-loop state can be chosen as x = (q̃, ˙̃q), accord-
ing to definition 1 which concerns only phases Ωk.

Definition 3 {CI} is the subspace of initial conditions
x(0) which assure t0 ≥ τk

1 uniformly along a motion as in
(4).

Let us assume that m = 1 now.

Assumption 1 The controller Ut in (9) assures that
a sequence {tk}k≥0 of impact times exists, with
limk→+∞ tk = t∞ < +∞.

One difficulty in the stability analysis along a path like in
(4), is to assure that initial tracking errors do not increase
from one cycle Ω2k ∪ Ik ∪ Ω2k+1 to the next, due to the
impacts. One key point in the stability is the value of the
first jump of V (.), i.e. σV (t0). One has






σV (tk) = TL(tk) ≤ 0 , k ≥ 1
σV (t0) = TL(t0) −

1
2γ1q1d

2(t−0 ) − 1
2 q̇d(t

−
0 )T Mq̇d(t

−
0 )

+M11q̇1(t
−
0 )q̇1d(t

−
0 ) + q̇2(t

−
0 )T M21q̇1d(t

−
0 )

(11)
It is noteworthy that the equalities in (11) hold indepen-
dently of the chosen impact rule. The only assumption
is that impacts dissipate kinetic energy. The choice for
q∗d(.) and switching strategy, is mainly done to pos-
sibly obtain σV (tk) ≤ 0 for k ≥ 0. Let us now state the
following:



Claim 4 Let assumption (1) hold. The system defined by
(1) in closed-loop with the controller in (9) and qd(·), q∗d(·)
as defined in section 3.2, is :

(i) - Asymptotically strongly stable if x(0) ∈ {CI}.

(ii) - Asymptotically strongly stable if q∗d(.) is designed such
that at the first impact time of each phase Ik we have
[

M11q̇1(t
−
0 ) + q̇2(t

−
0 )T M21

]

q̇∗1d(t
−
0 ) ≤ 0.

(iii) - Asymptotically strongly stable if M12 = 0 and en = 0.

(iv) - Asymptotically weakly stable if M12 = 0 and 0 ≤ en <

1.

Proof. The proof is omitted for the sake of paper brevity
and since it relies on similar arguments as in [4].

3.4 Perspectives

The application of claim 2 requires to choose a control law
Unc such that item (a) of claim 2 applies. For instance the
Slotine and Li or an input/output feedback linearization
can be tried. The crucial step is item (d) of claim 2.

4 Simulation example

This control scheme is tested in simulation on a 2-link
planar manipulator for the simplest case of a scalar con-
straint. The constraint surface corresponds to the ground
(y = 0). The natural generalized coordinates so that the
dynamics fits with (7), with m = 1, are the work-space
coordinates (x, y). We take:

q =

[

q1

q2

]

=

[

y

x

]

, y > 0

Figure 4 shows the evolution of q1(t) and q2(t) during
cyclic tasks as in (4) . On the graph of q1, the asymptotic
convergence of the controller is exhibited as the value of
αV (τk

0 ) decreases exponentially. The graph of q2 shows
the coupling between q1 and q2. At each impact time a
jump in q̇2 occurs. The periodic step on q2d corresponds to
the transition phase during which q2d needs to be frozen.

5 Conclusion

This paper deals with the tracking control of fully actu-
ated Lagrangian systems subject to frictionless unilateral
constraints. These dynamical systems are named comple-
mentarity systems because they involve complementarity
conditions. They are nonsmooth because the velocity may
possess discontinuities (at impact times), so that the ac-
celeration and the contact force are measures. They may
be seen as a complex mixture of ordinary differential equa-
tions, differential-algebraic equations, and measure differ-
ential equations. The extension of the tracking control
of unconstrained (or persistently constrained) Lagrangian
systems, towards complementarity Lagrangian systems, is
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Figure 4: Asymptotic Convergence

not trivial. The aim of this paper is to study the design of
a feedback controller for these specific nonsmooth systems,
supposed to perform a general cyclic impacting task.
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