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ABSTRACT
In this paper we study the tracking control of Lagrangian

systems subject to frictionless unilateral constraints. More pre-
cisly it concerns a class of specific nonsmooth systems which per-
form cyclic impacting tasks. The stability analysis incorporates
the hybrid and nonsmooth dynamical feature of the overall sys-
tem. This work provides details on the conditions of existence of
a such controller which guarantees an asymptotic strongly stabil-
ity. Some tests in simulation give some result on the robustness
of this controller. And finally it clarifies some concepts related to
multiple impacting systems.

1 Introduction
The focus of this paper is the tracking control of a class of

nonsmooth fully actuated Lagrangian systems subject to friction-
less unilateral constraints on the position,F(X)≥ 0.

These nonsmooth complementarity systems evolve in three
different phases :

• a free motion phase, where the mechanical system is not
subject to any constraints (i.e.F(X)> 0),
• a permanently constraint phase where the dynamical system

is subject to holonomic constraints (F(X) = 0),
• and a transition phase, where the manipulator is subject to

multiple impacts and rebounds.

In the first phase the system is assumed to evolve in a free
space and it is described by a set of ordinary differential equation.
This problem has been solved since years by feedback lineariza-
tion or by more specific controllers (adaptive control, robust con-
trol ...).

The second phase concerns permanently constrained system
which are well known in force/position theory, see (McClamroch
& Wang, 1988) for some example of force/position feedback al-
gorithms.

During the transition phase the system is subject to unilateral
constraints, and collisions occur. These collisions will generate
rebounds, and rebounds are generally seen as disturbances in a
feedback laws. In this control framework impacts are provoked
intentionally to dissipate energy and contribute towards stabiliz-
ing the system.

The aim of this paper is to study a control scheme which
guarantees some stability properties of the closed-loop system
during general tasks. It is an extension of the framework devel-
oped in (Brogliatoet al., 2000) to the case of non-scalar friction-
less unilateral constraint. We also study the robustness of this
control scheme with respect to :

• the measurement noise on positions, velocities, accelera-
tions,
• the knowledge of constraints position.

Finally we extend this work to the case of non scalar frictionless
unilateral constraints.

1.1 Dynamics

The systems we study in this paper belong to the
complementary-slackness class of hybrid dynamical systems
(Van der Schaft & Schumacher, 2000) and are represented as:
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M(X)Ẍ +C(X, Ẋ)Ẋ +G(X) = u+ ∇F(X).λX

F(X)≥ 0 , F(X).λX = 0 , λX ≥ 0

Collision rule (1)

Where X ∈ Rn is a vector of generalized coordinates,
M(X) ∈Rn×n is the inertia matrix,F(X) ∈Rm represent the dis-
tance to the constraints,λX ∈ Rm are the Lagrangian multipliers
associate to each constraints,u∈Rnu is the vector of generalized
torques.C(X, Ẋ) is the matrix of Coriolis and centripedal forces,
G(X) contains conservative forces.

1.2 Impact model
A collision rule is needed to make the system (1) integrable.

A collision rule is a relation between the post impact velocities
and the pre-impact velocities. In all the paper impact times are
denoted astk, k≥ 0.

In this work, the collision rule used is chosen as (Moreau,
1988) :

Ẋ(t+
k ) =−enẊ(t−k )+

(1+en) argmax
z∈V(X(tk))

1
2

(z− Ẋ(t−k ))TM(X(tk))((z− Ẋ(t−k )) (2)

whereẊ(t+
k ) is the post impact velocities,̇X(t−k ) is the pre-

impact velocities,V(X(tk)) the tangent cone (see figures 1,2) and
en is the restitution coefficient of the surface,en ∈ [0,1].

When m = 1, (2) is the Newton’s Law (Xn(t+) =
−enXn(t−)).

1.3 Admissible space
The admissible domainΦ is a closed domain in the config-

uration space where the system can involve;

Φ = {X,F(X)≥ 0}=
⋂
i

Φi , Φi = {X,Fi(X)≥ 0}

Definition 1. A singularity of∂Φ is the intersection of two (or
more) surfacesΣi = {X,Fi(X) = 0}.

The stabilization of the dynamic system is studied only onto
a singular convex point (like on figure 1.a). Unilateral constraint
is expressed by the relationF(X) ≥ O, which can be translated

locally by the system :


C1X1≥ 0

...
CmXm≥ 0

. Clearly the non-convex

f 2
(X

) =
0

f
1 (X

)=0

f
2 (X

)=0

f 1
(X

) =
0

Non ConvexConvex

Φ = Φ1∩Φ2

Φ = Φ1∪Φ2

V(Xd)

Xd

Figure 1. Singular points

exemple of figure 1.(b) cannot be expressed as the intersection
of convex domainsΦi . This case in named a reintrant corner in
the literature, and modelling issues are not yet fixed for reintrant
corners (Glocker, 2001) (Fremond, 2002)

This restriction on singular non-convex points don not mean
that the whole space must be convex, for exemple the domain
of the figure 2 is non convex but the stabilization of a dynamic
system can be study on every point of∂Φ

Singular point

V(X2)

V(X3)X3

X2

X1

V(X1)

Figure 2. Exemple of a suitable non convex domain

1.4 Cyclic impacting robotic task
In this paper we restrict ourselves to a specific task : a suc-

cession of free and constrained phasesΩk.
During the transition between a free and a constrained phase,

the dynamic system passes into a transition phaseIk. In the phase
Ik, the system is subject to collisions. Transition between con-
strained and free motion is smooth.

A robotic task with cyclic impact phases can be represented
in the time domain as :

R
+ = Ω0∪ I0∪Ω1∪Ω2∪ I1∪ ...∪Ω2k−1∪Ω2k∪ Ik∪ ... (3)

whereΩ2k denotes the free-motion phases andΩ2k+1 de-
notes constrained-motion phases.
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2 Stability framework
The systems studied in this paper are complex hybrid dy-

namical system which involve continuous as well as discrete time
phases. The stability criterion used in this paper is an exten-
sion of the Lyapunov second method for closed loop mechanical
system with unilateral constraints proposed in (Brogliatoet al.,
1997) and (Brogliatoet al., 2000)

The main idea of this criterion is to get simultaneously con-
tinuous and discrete stability via the same Lyapunov’s function
V. The criterion guarantees that the collisions during impact
phases do not destroy the Lyapunov stability of the closed loop
system.

Definition 2 ( Ω-weakly stable system). The closed-loop
system isΩ-weakly stable if for eachε> 0, there existsδ(ε)> 0
such that‖ x(0) ‖≤ δ(ε)⇒‖ x(t) ‖≤ ε for all t ≥ 0, t ∈Ω.

Let us define the closed-loop impact Poincaré maps that cor-
respond to the sectionΣ+

i = {x : Fi(X) = 0, ẊT∇XFi > 0} :

PΣ : Σ+
i → Σ+

i ,

xΣ,i(k) 7→ xΣ,i(k+1). (4)

Definition 3 (Strongly stable system). The system is said
strongly stable if: (i) it isΩ-weakly stable, (ii) PΣ is Lyapunov
stable, and (iii) the sequence{tk}k∈N has a finite accumulation
point t∞ <+∞.

Let us define the jump functionσ f (t) = f (t+)− f (t−) and
λ[.] is the Lebesgue measure.

Claim 1 (Weak Stability). Assume that

- the task is as in (3),
- λ[Ω] = +∞,
- for each k∈ N, λ[Ik]<+∞,
- V(x(tk

f ), t
k
f )≤V(x(tk

0), tk
0),

- V(x(.), .) uniformly bounded on each Ik.

If on Ω, V̇(x(t), t) ≤ 0 and σV(tk) ≤ 0 for all k ≥ 0, then the
closed-loop system isΩ-weakly stable. IḟV(x(t), t)≤−γ(‖ X ‖)
for some class K functionγ, then the system is asymptotically
Ω-weakly stable.

Claim 2 (Strong Stability). The system is strongly stable if:

- it is weakly stable,
- σV(tk)≤ 0
- V(t−k+1)≤V(t+

k );
- V is uniformly bounded and time continuous on Ik−∪k{tk},

where the sequence{tk} exists and has a finite accumulation
point.

As we will see, getting the asymptotic strong stability for (1)
subject to (3), is a hard task in general.

3 Tracking controller framework
To make the controller design easier the dynamical equa-

tions (1) are considered in the generalized coordinates introduced
in (McClamroch & Wang, 1988). After transformation in the
new coordinates, the dynamic system is as follows :

q =
[

q1
q2

]
, q1 =

 q1
1
...

qm
1

 , q = Q(X)

M11(q)q̈1 +M12(q)q̈2 +C1(q, q̇)q̇+g1(q) = T1(q)u+

(
λq1

1

λq2
1

)
M21(q)q̈1 +M22(q)q̈2 +C2(q, q̇)q̇+g2(q) = T2(q)u

q1
1≥ 0 , q1

1.λq1
1

= 0 , λq1
1
≥ 0

· · ·
qm

1 ≥ 0 , qm
1 .λqm

1
= 0 , λqm

1
≥ 0 (5)

The controller developed in this paper uses three different
low-level control laws for each phase (Ω2k, Ω2k+1 andIk) :

u = Unc for t ∈Ω2k

u = Ut for t ∈ Ik
u = Uc for t ∈Ω2k+1 (6)

A supervisor switches between this three control laws, and
the supervisor must generate desired tracking trajectories to en-
sure the stability. The objective of the controller is to stabilize
the system on the codimensionm surface∩iΦi during transition
phasesIk, and to assure the stability in the sense of definition 2
and 3 above.

The stability of this controller is analyzed by using the crite-
ria proposed in section 2. The key of this analysis is to prove that
the Lyapunov function has decreased between two consecutive
rebounds.

During Ωk phase (free or permanently constraint motion)
the tracking reference trajectories are determined in regard to the
task we want to accomplish, whereas duringIk desired reference
trajectories are determined to ensure the stabilization on the con-
strained surface.

The asymptotic stability of this scheme makes the system
land on the constraint surfaces tangentially after enough cycles of
constraints/free motions (one cycle =Ω2k∪ Ik∪Ω2k+1). Asymp-
totically the transitions between free motion phase and perma-
nently constraint phase are done without any rebound.

For this control framework, we use a Lyapunov function
which is very close to the nonsmooth global energy of the sys-
tem. Let us notice that the usefulness of using Poincaré map-
ping during transition phases, partially lies in the fact that even
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in some simple cases guaranteeingV̇(t)≤ 0 for all t is not possi-
ble, see (Brogliatoet al., 2000).

V(t, q̃, ˙̃q) =
1
2

˙̃qTM(q) ˙̃q+
1
2

γ1q̃T q̃+ ΨΦ(q) (7)

with q̃= q−qd whereqd is a desired trajectory, andΨΦ(q) is the
indicator function of the setΦ = {q : F(q)≥ 0} (Moreau, 1988);

ΨΦ(q) =
{

0 i f q ∈Φ
+∞ i f q 6∈Φ which is a nonsmooth potential asso-

ciated to the unilateral constraints.
The control law used in this scheme is an extension of the

asymptotically stable controller of (Paden and Panja, 1988), orig-
inally designed for free-motion position and velocity tracking.
Let us propose (see (6))

Unc = M(q)q̈d +C(q, q̇)q̇d +g(q)− γ1q̃− γ2 ˙̃q

Ut = Unc before the first impact

Ut = g(q)− γ1q̄− γ2q̇ after the first impact

Uc = Unc−Pd +K f (Pq−Pd)
γ1 > 0 γ2 > 0 K f > 0 (8)

wherePd is the desired force we want for the permanently con-
straint motion. The interest for choosing this controller is that
the functionV(t, q̃, ˙̃q) in (7) is very close to the total energy of
the system.

A first observation is that a control strategy which consists of
attaining the surface∂Φ tangentially and without incorporating
impacts in the stability analysis, cannot work in pratice due to its
lack of robustness (because it implies the perfect knowledge of
the constraint location).

In view of this, the control law for the transition phase is
defined in order :

• to make the system hit the constraint surface (and then dissi-
pate energy during impacts) if the tracking error is too large.
If V(t, q̃, ˙̃q) is large,qd is computed to hit the constraint sur-
face.
• To make the system approach the constraint surface tangen-

tially (without rebound) if the tracking is perfect. IfV(t, q̃, ˙̃q)
is small,qd is computed to land smoothly on the surface.

This two situations are conflicting because we want impacts
for the robustness of the control: indeed with each collision there
is an kinetic energy loss which stabilizes the system provided the
controller is suitably chosen. On the other hand the coupling be-
tweenq1 andq2 in (5), and the stability framework in claims 1
and 2, make the asymptotic stability quite difficult to obtain if
velocities are subject to discontinuities. This conflicting situa-
tion implies a specific controller to achieve the required stability
properties.

During the transition phaseqd(t) is defined as follows (see
figure 3) :

t0
t1

t2
0

τk
0

tk
0

q1(t)

q1d(t)

Ω2k Ik

q1d(t) is not used in the control

−αV(τk
0)

t

Ω2k+1 Ω2k+2

q∗1d(t)

t∞ tk
f

Figure 3. Desired trajectory q1d

Let us define :

- τk
0 is the chosen by the designer as the start of the transition

phase,
- tk

0 is the time corresponding toq1d(tk
0)=0,

- t0 corresponds to the first impact,
- t∞ correspond to the finite accumulation point.
- tk

f is the end of the transition phase

On [τk
0, t0), we impose thatqd(t) ∈C2 andq1d(t) decreases

towards−αV(τk
0).

On [t0, t f ], we defineqd andq∗d as follows :

qd =
(

0
q∗2d

)
, q∗d =

(
−αV(τk

o)
q∗2d

)

whereqd is the fixed point of the whole system (the Lagrangian
equation and the unilateral constraint), andq∗d is the fixed point
of the closed loop system without the constraint. Indeedq∗d is
outside the admissible domainΦ, and cannot be reached by the
system. The purpose ofq∗d is to create a “virtual” potential force
which stabilizes the system on∂Φ even if the position of the
constraint is uncertain.

Consequently the real fixed point of the system(qd, q̇d) is
used in the expression of the Lyapunov fonction : ˜q = q− qd,
whereas the unreachable fixed pointq∗d is used in the control law :
q̄ = q−q∗d.
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In order to cope with coupling betweenq1 andq2, the signal
q2d(t) is frozen during the transition phase, i.e.:

• q2d(t) = q∗2d, q̇2d(t) = 0 on[tk
0, t f ]

• q2d(t) is defined such that ˙q2d(tk−
0 ) = 0 on[τk

0, t
k
0]

Let τk
1 be such thatq1d(τk

1) =−αV(τk
0) and ˙q1d(τk

1) = 0.

Definition 4. {CI} is the subspace of initial condition X(0)
which assure t0≥ τk

1.

Let m= 1 in (1).

Claim 3. The system defined by (1) in closed-loop with the con-
troller in (8) and qd(t) as defined above, is :

- Asymptotically strongly stable if X(0) ∈ {CI} and if γ1 > 0,
γ2 > 0

- Asymptotically weakly stable if X(0) 6∈ {CI} and if γ1, γ2

andα are large enough.

Proof. The proof of the first item can be found in (Brogliato
et al., 2000). The proof of the second item follows the same line
but in this caseσV(t0) is not negative. One has :

σV(t0) = TL(t0)− 1
2

γ1q1d
2(t−0 )− 1

2
q̇d(t−0 )TMq̇d(t−0 )+q̇(t−0 )TMq̇d(t−0 )

whereTL(t0) is the loss of kinetic energy at the impacttk.
To obtain the weak stability, it is sufficient that :

V(t−1 )−V(t−0 )≤ 0 (9)

Inequality (9) is equivalent to :

σV(t0)− γ2

∫ t−1

t+0

q̇T q̇dt≤ 0 (10)

And (10) is implied by :

q̇(t−0 )TMq̇d(t−0 )≤ γ2

∫ t−1

t+0

q̇T q̇dt (11)

Or, integrating the right-hand side of (11) by parts, by :

q̇(t−0 )TMq̇d(t−0 )≤−γ2

∫ t−1

t+0

qT q̈dt (12)

Let us calculate an estimation of the integral in (12). By lin-

earization around the pointq=
(

0
q∗2d

)
, the closed-loop equation

of the system is :

Mq̈+ γ1

(
αV(τk

o)
0

)
+ γ2q̇ = 0 (13)

Inserting (13) in (12) gives the inequality :

q̇(t−0 )TMq̇d(t−0 )≤ γ1γ2

∫ t−1

t+0

qTM−1
(

αV(τk
o)

0

)
dt +

γ2
2

2
[qTM−1q]t1t0

(14)

[qTM−1q]t1t0 = 0 becauseq(tk) = 0

(15)

Therefore (14)implies :

q̇(t−0 )TMq̇d(t−0 )≤ γ1γ2αV(τk
o)
∫ t−1

t+0

(M−1
21 ) Tq2dt (16)

If the coupling betweenq1 andq2 is weak, we haveq2(t) = q∗2d
on [t+

0 ; t−1 ], and (16) becomes :

q̇(t−0 )TMq̇d(t−0 )≤ (t1− t0)γ1γ2αV(τk
o)(M−1

21 ) Tq∗2d (17)

Let ∆min be a lower bound of∆ = (t1− t0). Then (17) implies :

q̇(t−0 )TMq̇d(t−0 )≤ γ1γ2αV(τk
o)(M−1

21 ) Tq∗2d∆min (18)

To prove that it existγ1, γ2 and α which verify (18), we
need to verify that ˙q(t−0 )TMq̇d(t−0 ) is bounded :

On [τk
0; t0], Ut = Unc andV̇(t)≤ 0, then we have :

V(τk
0) ≥ V(t−0 )

V(τk
0) ≥ 1

2
˙̃q(t−0 )TM(q) ˙̃q(t−0 )+

1
2

γ1q̃(t0)T q̃(t0)

V(τk
0) ≥ 1

2
˙̃q(t−0 )TM(q) ˙̃q(t−0 )

V(τk
0) ≥ 1

2
λmin[M(q(t))] ‖ q̇(t−0 )− q̇d(t−0 ) ‖2 (19)

From (19) we have :

‖ q̇(t−0 ) ‖≤ (
2V(τk

0)
λmin[M(q(t))]

)1/2 + max
t∈[τk

0;t0]
‖ q̇d(t) ‖ (20)
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Hence ˙q(t−0 ) is bounded, ˙qd(t−0 ) is bounded by
maxt∈[τk

0;t0] q̇d(t). Then q̇(t−0 )TMq̇d(t−0 ) is bounded. If

∆min 6= 0, there existγ1, γ2 andα such that (18) is satisfied.

To calculate∆min, we need to solve equation (13). The solu-
tion is of the form :

q1(t) = A.e
− γ2

M11
t +B.t +C

with A =−M11

γ2
(

γ1

γ2
αV(τk

o)+ q̇1(t+
0 )) ,

B =−γ1

γ2
αV(τk

o) , C =
M11

γ2
(

γ1

γ2
αV(τk

o)+ q̇1(t+
0 ))

∆ ≥ 0 is a solution ofq1(t) = 0. A developpement of order 2
gives a lower bound.

∆min =
2M11q̇1(t+

0 )
γ1αV(τk

o)+ γ2q̇1(t+
0 )

(21)

? If 1 > en> eε, thenq̇1(t+
0 ) =−enq̇1(t−0 )> 0 and∆min> 0,

we can conclude that there existα, γ1 andγ2 large enough such
that inequality (9) holds.

? If 0 ≤ en < eε, thenq̇1(t+
0 ) and∆min are very small. One

has :

lim
en→0

(t∞− t0) = 0

(22)

and the sufficient condition (18) gives that :

lim
en→0

(αγ1γ2) = +∞ (23)

In this case we cannot conclude on the existence of bounded
α, γ1 and γ2. However it exist a boundedδ > 0, such as for
tk
f > t∞ + δ we have :

V(tk
f )−V(t−0 )≤ 0 (24)

Inequality (24) assures the weak-stability in this last case.

4 Simulation & Robustness study
This control scheme is tested in simulation on a 2-link pla-

nar manipulator for the simplest case of a scalar constraint, with

a Newton’s restitution rule. The constraint surface corresponds
to the ground (y = 0). The natural generalized coordinates so
that the dynamics fits with (5), withm = 1, are the work-space
coordinates(x,y). We take:

q =
[

q1

q2

]
=
[

y
x

]
, y> 0

x

y

θ2

θ1

Figure 4. 2-link planar manipulator

4.1 Evolution of V(t) at impact times
4.1.1 First impact after that qd was totally frozen

In this simulationX(0) ∈ {CI}, and the impact occurs when
q1d = 0. This means that at the first impact timet0, the varia-
tion of the Lyapunov functionσV is negative.

σV(t0) = TL(t0)− 1
2γ1q1d

2(t−0 )< 0

On figure 5,V(t) decreases andσV is negative, this means
that the claim 3 applies and the closed loop system is asymptoti-
cally strongly stable.

4.1.2 First impact before that qd was totally frozen
In this simulationX(0) 6∈ {CI}, and the impact occurs when
q1d 6= 0. This means that at the first impact timet0, the varia-
tion of the Lyapunov functionσV can be positive in function of
q̇(t−0 )TMq̇d(t−0 ).

σV = TL(t0)− 1
2

γ1q1d
2(t−0 )

− 1
2

q̇d(t−0 )TMq̇d(t−0 )+ q̇(t−0 )TMq̇d(t−0 )

On figure 6,V(t) is not decreasing all the time: at the first
impact time of each cycle the Lyapunov function has a peak. This
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Figure 5. Negative jump of V(t)
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Figure 6. Positive jump of V(t)

means that the strong stability of the closed-loop system is not
assured, but ifγ1, γ2 andα are chosen like in claim 3, the system
is weak-stable. We see thatV(τn+1)−V(τn) < 0 between two
consecutives cycles.

4.2 Asymptotic convergence
Figure 7 shows the evolution ofq1(t) andq2(t) during cyclic

tasks. On the graph ofq1, the asymptotic convergence of the
controller is exhibited as the value ofαV(q, t) decreases expo-
nentially.

The graph ofq2 shows the coupling betweenq1 andq2. At
each impact time a jump in ˙q2 occurs. The periodic step onq2d

corresponds to the transition phase during whichq2d needs to be
frozen.
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q2d(t)

q1(t)

−αV(τ0
0)

−αV(τ1
0)

−αV(τ2
0)

−αV(τ3
0)

Figure 7. Asymptotic Convergence

Figure 8 illustrates the asymptotic stability of this control
strategy. The simulation begins with an important error position
tracking error. The first impacts have a large magnitude (function
of V(τ0

k)) and after only five cycles rebounds practically vanish.
Asymptotically the transition phase disappears.
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Figure 8. Attenuation of rebounds height.

4.3 Robustness
In this subsection, we study the robustness of the controller

with respect to the uncertainty on the constraint position and to
the noise on the measured state vector.

4.3.1 uncertainty on constraint position In this
subsection the position of the constraint surface is not known
precisely. As seen on figure 9 there are two situations to con-
sider.

c
q̂1c = c> 0

q̂1c = c< 0

real position ˆq1c = 0

Figure 9. estimated position q̂1c

? If c< 0, the estimated position of the constraint is lower
than the real position. In this case the desired trajectories de-
crease towardq1d = −αV(τ0

k)− |c| instead ofq1d = −αV(τ0
k).

The errorc can be incorporated in the term−αV(τ0
k) and the

stability of the transition phase is not changed. During the con-
straint phase the controller is :

Uc = Unc
ideal− (Pd + γ1

[
|c|
0

]
)+K f (Pq−Pd)

The error termγ1|c| is added to the desired forcePd and con-
tributes to keep the contact with the surface during the con-
strained phase.

In this case, the stability of the system is not changed, but
the system loses is asymptotic stability : If the tracking is perfect
V(τ0

k) = 0 andq∗1d = −|c|, then the system does not approach
the surface tangentially and rebounds occur. The asymptotic
stability is not preserved. Figure 10 shows an exemple of

1e3 3e3 5e3 7e3 9e31e3 3e3 5e3 7e3 9e3

−0.04

0

0.04

0.08

0.12

0.16

−0.04

0

0.04

0.08

0.12

0.16

q1d(t)

q1(t)

V(t)

Figure 10. Stability if c< 0

stabilization wherec< 0.

? If c> 0, the estimated position of the constraint is above
the real position. If the tracking is perfectV(τ0

k) = 0, the desired
trajectory decreases towardq1d = c and the system never reaches
the constraint. There is no convergence (see figure 11).

real position

estimated position

−0.06

−0.02

0.02

0.06

−100 300 700 1100 1500 1900 2300 2700 3100

−αV(τ0)> |c|

Figure 11. Non convergence if c> 0

This problem can be solved by monitoring the time of
stabilization. If there is no stabilization after the timet̂∞, the
estimated position of the constraint is refresh ˆqnew

1c = q̂old
1c − ε.

After a finite number of iterations, one gets ˆq1c < 0. The system
is in the previous situationc< 0 and the stability is preserved.
Figure 12 show an example of auto adjustment of the estimated
position of the constraint.

When the tracking is not perfect andαV(τ0
k)> c, the previ-

ous problem is not present, the transition phase is able to stabilize
the system on the surface. But during the constraint phase, the
control law is:

Uc = Unc
ideal− (Pd− γ1

[
c
0

]
)+K f (Pq−Pd)
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900 1300 1700 2100 2500 2900 3300

0

0.04

0.08

Figure 12. Auto adjustment of q̂1c

Pd must be chosen enough large in regard toγ1c to be sure that
system keeps the contact with the surface during all the constraint
phase.

4.3.2 noise measurement on state vector We
consider noise on the measurement of the position :

q̂ = q+b

whereb is the noise, assumed to be a white noise.
The control lawUt becomes :

Ut = g(q)− γ1(q̂−q∗d)− γ2q̇

Ut = g(q)− γ1

(
q1− (−αV(τk

0)−b)
q2 +b−q∗2d

)
− γ2q̇

q∗1d needs to be negative to attain the surface. Then we need
|b| < αV(τk

0) to have convergence. To avoid this problemn we
need to haveα enough large.

Figure 13 shows a simulation whereα is too small: After
three cycles the value ofαV(τ2

0) no longer dominates the noise.
The switching timetk

f betweenIk andΩ2k+1 is defined to be as

tk
k ≥ t∞. Therefore in this case there is no stabilization on the
surface andt∞ = +∞. The cycling tasks in (3) are stopped.

Figure 14 shows a simulation whereα is larger, in this situ-
ation impacts always occur.

5 Mutiple impact
This section extend the previous controller framework to the

case of multiple impact.

Definition 5 (Multiple impact). A multiple impact is an im-
pact into a singularity as in definition 1. If the singularity has
codimensionα, the multiple impact is named anα-impact.

At multiple impacts, more than one relation of the form
Fi(q) = 0 are verified at the same time.

The difficulty created by stabilization at singularities of∂Φ,
is that the way the system attains the singularity, may vary: the

0 1e3 2e3 3e3 4e3 5e30 1e3 2e3 3e3 4e3 5e3

−0.01

0.03

0.07

−0.01

0.03

0.07

V(t)

q1(t)

q1d(t)

−αV(τ0
k)

Figure 13. α too small with respect to the noise level

0 1e3 2e3 3e3 4e3 5e3 6e3 7e3

−0.10

−0.06

−0.02

0.02

0.06

0 1e3 2e3 3e3 4e3 5e3 6e3 7e3

−0.10

−0.06

−0.02

0.02

0.06

V(t)

−αV(τ0
k)

q1(t)

q1d(t)

Figure 14. Suitable α

system may hit the singularity directly, or hit one or several sur-
facesΣi (through a finite or infinite number of impacts) before
attaining the singularity.

5.1 Stability of transition controller if θkinetic<
π
2

In this subsection, we want to stabilize the system on the
sub-spaceΣ1∩Σ2. In a first instance we restrict ourselves to an
admissible spaceΦ where the angle between the surfaces is less
than π

2 in the kinetic metric. Figure 15 depicts the situation in
the planar case, or can be viewed as an abstract section of the
configuration space.

The kinetic angle is the angle in the kinetic metric defined as
xTM(q)y for vectors x and y. The reason why we make a differ-
ence betweenθkinetic>

π
2 andθkinetic≤ π

2 , is that (at least in the
planar case and a 2-impact)θkinetic>

π
2 implies discontinuity of

the solutions with respect to initial data, whereas withθkinetic≤ π
2

solutions are continous in the initial data (q(0), q̇(0)). This is ex-
pected to influence the stabilization strategy on the singularity.
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Figure 15. Multiple impacts (2-impacts)

5.1.1 Case (a) : Simultaneous impacts In this
case, the multiple impact on the surfaces are simultaneous, this
means that at each impact timetk, q1

1(tk) = q2
1(tk) = 0, and the

closed loop analysis made in (Brogliatoet al., 2000) for a 1-
impact can be adapted immediately toα-impact,α ≥ 2. Indeed

at each impact timetk, q1(tk) =

0
...
0



5.1.2 Case (b) : Impacts on one surface before
double impact In this case the stabilization is made in two
steps. A first step where the system is stabilized on the first sur-
face f1(q) = 0 (without impact on the second surface). And a
second phase during which the constraint system onf1(q) = 0 is
stabilized on both surfaces.

The proof of stability of the fisrt phase is the same as for the

1-impact case if we takeq1 = [q1
1] andq2 =

[
q2

1
q2

]
.

During the second phase, the system is in a constraint mo-
tion, and its closed loop dynamic equation is:

M(q)q̈=−C(q, q̇)q̇−γ1q̄−γ2q̇+(1+kf 1)(λq1−λq)∇qq1
1 (25)

Then the system is stabilized on both surfaces using desired

trajectoriesq1d =
[

0
q2∗

1d

]
, whereq2∗

1d has the same form asq1∗
1d in

the previous phase and decreases toward−α2V(X(τk
0),τk

0).
With the same demonstration as before, we need to prove

that :

V(X(t−k+1), t−k+1)−V(X(t+
k ), t+

k )≤ 0 (26)

One obtains :

V(X(t−k+1), t−k+1)−V(X(t+
k ), t+

k )

=
∫ t−k+1

t+k

V̇(t)dt

=
∫ t−k+1

t+k

q̇TMq̈+ q̇T Ṁ
2

q̇+ γ1q̃T q̃dt

=
∫ t−k+1

t+k

{q̇T [−Cq̇− γ1q̄− γ2q̇+(1+kf 1)(λq1−λq)∇qq1
1]

+ q̇T Ṁ
2

q̇+ γ1q̃T q̃}dt (27)

=
∫ t−k+1

t+k

−γ2q̇T q̇dt+ γ1

∫ t−k+1

t+k

q̇T
1 q∗1ddt

+
∫ t−k+1

t+k

q̇T(1+kf 1)(λq1−λq)∇qq1
1dt (28)

=
∫ t−k+1

t+k

−γ2q̇T q̇dt≤ 0 (29)

(28) is deduced from (27) since 2C− Ṁ is skew-symmetric
and ˙̃qT q̃− q̇T q̄ = q̇Tq∗1d. (29) is deduced from (28) since ˙qT(1+
kf 1)(λq1−λq)∇qq1

1 = 0 and[qT
1 q∗1d]tk+1

tk = 0 sinceq1(tk) = 0 dur-
ing the 2-impact.

Equality (29), and a demonstration like in the 1-impact case
give the asymptotic stability of this 2-impact. But in this case
we have supposed that there is no impact on the second surface
before the 2-impact.

5.1.3 Case (c) : General case In this case the system
can collide indifferently the two surfaces. There are several 1-
impacts on the both surfaces before the 2-impact occurs. In this
situation we do not haveq1(tk) = 0 for all impact (this true only
during the 2-impact). The weak stability of the transition phase
can be obtained by studying the variation ofV(X(t), t) between
two impacts on the same surface.

t2k represent instant of impact onf2(q) = 0.

t2k+1 represent instant of impact onf1(q) = 0.

q∗1d =
[

q1∗
1d

q2∗
1d

]
=
[
−α1V(X(τk

0),τk
0)

−α2V(X(τk
0),τk

0)

]
Let us calculate the following variation :
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Figure 16. General case

V(t−2(k+1))−V(t+
2k)

= +
∫ t−2k+1

t+2k

V̇(t)dt + σV(t2k+1)
∫ t−2(k+1)

t+2k+1

V̇(t)dt

= σV(t2k+1)− γ2

∫ t−2k+1

t+2k

q̇T q̇dt− γ2

∫ t−2(k+1)

t+2k+1

q̇T q̇dt

+ γ1q∗1d
T [q1]t2k+1

t2k
+ γ1q∗1d

T [q1]
t2(k+1)
t2k+1

(30)

= ∆ + γ1q∗1d
T(q1(t2(k+1))−q1(t2k)) (31)

= ∆ + γ1q1∗
1d

T(q1
1(t2(k+1))−q1

1(t2k)) (32)

where∆ is the sum of all negative terms in (30). (31) is deduced
from (30) sinceq2

1(t2k) = 0 for all k.
With α1 = 0, we haveq1∗

1d = 0 and then :

V(t−2(k+1))−V(t+
2k)< 0

The strategy is to takeα1 = 0 (target A, see figure 16) at
the begining of the transition phase to stabilize the system on
f2(q) = 0, and to switch toα2 = 0, α1 > 0 (target B, see figure
16) when the system is onf2(q) = 0 (or to switch to the previous
case).

5.2 Plastic impact if θkinetic>
π
2

The situation whereθkinetic>
π
2 (see figure 17) is more com-

plex. Indeed ifen > 0, if q(t−k ) ∈ ∂Φi we cannot be sure that
q(t+

k ) ∈ ∂Φi , and the work done above reasoning fail. Let us
consideren = 0. In this case ifq(t−k ) ∈ Σi thenq(t+

k ) ∈ Σ j , j 6= i.
After the 2-impact the system is alway in contact with a surface,
however not the same surface as before the 2-impact (see figure

17). The problem is to find a control law which stabilizes the
system around the intersection of the two surfaces.

f
1 (q)=0

f2 (q)=0tk
−

tk
+

(   )

(   )q

q
.

.

Figure 17. Generalized plastic 2-impacts

6 Conclusion
This paper deals with the tracking control of fully actuated

Lagrangian systems subject to frictionless unilateral constraints.
The aim of this paper is to study a controller for specific nons-
mooth systems which perform cyclic impacting tasks. First the
stability framework dedicated to study these systems is recalled,
and some definitions are given. Then we precise the condition
of existence of desired trajectories which give asymptotic stable
controllers for this class of system.

The second part of this paper is devoted to numerically study
an example : a 2-link plannar manipulator subject to a single uni-
lateral constraint. This example allows to exhibit some results on
the robustness of this control framework in term of uncertainty of
the constraint surface position. The effect of measurement noise
is also studied. It is shown that the proposed scheme possesses
some interesting robustness properties.

The last part of this note is devoted to the case when so-
called multiple impacts occur. Some specific difficulties related
to the constraint boundary geometry, are highlighted, and some
possible manners to extend the single constraint case are indi-
cated.

Challenging goals are now to caracterise more precisely the
subspace of initial conditions{CI} which produce asymptoti-
cally strongly stable systems, and to extend the results on more
general cases for multiple impacts.
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