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ABSTRACT The second phase concerns permanently constrained system

In this paper we study the tracking control of Lagrangian which are well known in force/position theory, see (McClamroch
systems subject to frictionless unilateral constraints. More pre- & Wang, 1988) for some example of force/position feedback al-
cisly it concerns a class of specific nonsmooth systems which per-gorithms.

form cyclic impacting tasks. The stability analysis incorporates During the transition phase the system is subject to unilateral
the hybrid and nonsmooth dynamical feature of the overall sys- ¢onstraints, and collisions occur. These collisions will generate
tem. This work provides details on the conditions of existence of .opounds. and rebounds are generally seen as disturbances in a
asuch controller which guarantees an asymptotic strongly stabil- feedpack laws. In this control framework impacts are provoked

ity. Some tests in simulation give some result on the robustnessiptentionally to dissipate energy and contribute towards stabiliz-
of this controller. And finally it clarifies some concepts related 10 g the system.

multiple impacting systems.
P P g5y The aim of this paper is to study a control scheme which

guarantees some stability properties of the closed-loop system
during general tasks. It is an extension of the framework devel-
oped in (Brogliatcet al., 2000) to the case of non-scalar friction-
less unilateral constraint. We also study the robustness of this
control scheme with respect to :

1 Introduction
The focus of this paper is the tracking control of a class of
nonsmooth fully actuated Lagrangian systems subject to friction-
less unilateral constraints on the positiéi{X) > 0.
These nonsmooth complementarity systems evolve in three
different phases : e the measurement noise on positions, velocities, accelera-
tions,

e a free motion phase, where the mechanical system is not  ine knowledge of constraints position.

subject to any constraints (i.E(X) > 0),
e apermanently constraint phase where the dynamical system . o

is subject to holonomic constraints (X) = 0), Finally we extend this work to the case of non scalar frictionless
e and a transition phase, where the manipulator is subject to Unilateral constraints.

multiple impacts and rebounds.

In the first phase the system is assumed to evolve in a free )
space and itis described by a set of ordinary differential equation, 1-1 Dynamics
This problem has been solved since years by feedback lineariza- The systems we study in this paper belong to the
tion or by more specific controllers (adaptive control, robust con- complementary-slackness class of hybrid dynamical systems
trol ...). (Van der Schaft & Schumacher, 2000) and are represented as:
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M (X)X +C(X, X)X 4+ G(X)
F(X)>0, F(X).Ax
Collision rule

U+ OF (X) A
0, Ax>0

@)

Where X € R" is a vector of generalized coordinates,
M(X) € R™" is the inertia matrixF (X) € R™ represent the dis-
tance to the constraintsx € R™ are the Lagrangian multipliers
associate to each constrainis; R™ is the vector of generalized
torques.C(X,X) is the matrix of Coriolis and centripedal forces,
G(X) contains conservative forces.

1.2 Impact model
A collision rule is needed to make the system (1) integrable.
A collision rule is a relation between the post impact velocities
and the pre-impact velocities. In all the paper impact times are
denoted a%, k> 0.

In this work, the collision rule used is chosen as (Moreau,

1988) :

X(t) = —enX(t )+

(L+en) argmax (2— X (4 ) TM(X (6)) (2— X(t;))
zeV (X(k))

@)

whereX (t") is the post impact velocitieX (t, ) is the pre-
impact velocitiesY (X(tx)) the tangent cone (see figures 1,2) and
ey is the restitution coefficient of the surfaeg,< [0, 1].

When m = 1, (2) is the Newton’s Law Xn(t*) =
—enXn(t7)).

1.3 Admissible space
The admissible domai® is a closed domain in the config-
uration space where the system can involve;

® = {X,F(X) >0} =P, & = {X,R(X) >0}

Definition 1. A singularity ofo® is the intersection of two (or
more) surface&; = {X, R (X) = 0}.

The stabilization of the dynamic system is studied only onto
a singular convex point (like on figure 1.a). Unilateral constraint
is expressed by the relatidh(X) > O, which can be translated
CiXp1 >0
locally by the system : . Clearly the non-convex

CinXm = 0

D= Udy

Convex Non Convex

Figure 1. Singular points

exemple of figure 1.(b) cannot be expressed as the intersection
of convex domainsb;. This case in named a reintrant corner in
the literature, and modelling issues are not yet fixed for reintrant
corners (Glocker, 2001) (Fremond, 2002)

This restriction on singular non-convex points don not mean
that the whole space must be convex, for exemple the domain
of the figure 2 is non convex but the stabilization of a dynamic
system can be study on every pointogf

e Singular point

Figure 2. Exemple of a suitable non convex domain

1.4 Cyclic impacting robotic task

In this paper we restrict ourselves to a specific task : a suc-
cession of free and constrained pha@gs

During the transition between a free and a constrained phase,
the dynamic system passes into a transition phase the phase
I, the system is subject to collisions. Transition between con-
strained and free motion is smooth.

A robotic task with cyclic impact phases can be represented
in the time domain as :

R* =QoUlpUQ1UQoUIU...UQp 1 UQxUIkU... (3)

where Qy denotes the free-motion phases dbgk,; de-
notes constrained-motion phases.
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2 Stability framework

The systems studied in this paper are complex hybrid dy-

3 Tracking controller framework
To make the controller design easier the dynamical equa-

namical system which involve continuous as well as discrete time tions (1) are considered in the generalized coordinates introduced
phases. The stability criterion used in this paper is an exten- in (McClamroch & Wang, 1988). After transformation in the
sion of the Lyapunov second method for closed loop mechanical new coordinates, the dynamic system is as follows :

system with unilateral constraints proposed in (Brogliet@l.,
1997) and (Brogliatet al,, 2000)

The main idea of this criterion is to get simultaneously con-
tinuous and discrete stability via the same Lyapunov’s function
V. The criterion guarantees that the collisions during impact
phases do not destroy the Lyapunov stability of the closed loop

system.

Definition 2 ( Q-weakly stable system). The closed-loop
system i-weakly stable if for each > 0, there existd(¢) > 0
such that]| x(0) ||< d(g) = || x(t) [<eforallt >0, t € Q.

Let us define the closed-loop impact Poiréearaps that cor-
respond to the sectiof]” = {x: F(X) = 0,XTOxF > 0} :

Ps: Zfr — Zﬁ,
Xsi(K) — xsi(k+1). 4)

Definition 3 (Strongly stable system). The system is said
strongly stable if: (i) it isQ-weakly stable, (i) P is Lyapunov

stable, and (iii) the sequendgy}ken has a finite accumulation
point t, < +co.

Let us define the jump functioo (t) = f(t™) — f(t7) and
A[] is the Lebesgue measure.

Claim 1 (Weak Stability). Assume that

- the task is as in (3),

- )\[Q} = 00,

- for each ke N, A[lg] < oo,
V(X(t). tF) <V (X(t5). 1),

- V(x(.),.) uniformly bounded on eachQ.!

If on Q, V(x(t),t) < 0 and oy (t) < O for all k > 0, then the
closed-loop system @-weakly stable. I¥/ (x(t),t) < —y(|| X ||)
for some class K functiog, then the system is asymptotically
Q-weakly stable.

Claim 2 (Strong Stability). The system is strongly stable if:

- itis weakly stable,

- Ov(t) <0

- V(1) V()

- V is uniformly bounded and time continuous @r Uk {t«},
where the sequendg} exists and has a finite accumulation
point.

As we will see, getting the asymptotic strong stability for (1)
subject to (3), is a hard task in general.

q= [ql} . gl= ; 9=Q(X)

g2
ar

. At
M11(@)d +Ma2(9) G2 +C1(0, 9)G+91(q) = Ta(q)u+ ( A‘“;)
a1
M21(a) G + M22(q) 2 +Co(a, 4)q+ g2(a) = T2(q)u
i >0, qi.xqizo , Ag >0

g >0, af'Aqr=0, Aqn>0 (5)

The controller developed in this paper uses three different
low-level control laws for each phas@4, Qa1 andly) :

u= Unc fOI’ t S sz
u=U; fort elg
u=Ufort e Qu 1 (6)

A supervisor switches between this three control laws, and
the supervisor must generate desired tracking trajectories to en-
sure the stability. The objective of the controller is to stabilize
the system on the codimensiamsurfacen;®; during transition
phasedy, and to assure the stability in the sense of definition 2
and 3 above.

The stability of this controller is analyzed by using the crite-
ria proposed in section 2. The key of this analysis is to prove that
the Lyapunov function has decreased between two consecutive
rebounds.

During Qx phase (free or permanently constraint motion)
the tracking reference trajectories are determined in regard to the
task we want to accomplish, whereas durigdesired reference
trajectories are determined to ensure the stabilization on the con-
strained surface.

The asymptotic stability of this scheme makes the system
land on the constraint surfaces tangentially after enough cycles of
constraints/free motions (one cycleXy U Ik U Qok+1). ASymp-
totically the transitions between free motion phase and perma-
nently constraint phase are done without any rebound.

For this control framework, we use a Lyapunov function
which is very close to the nonsmooth global energy of the sys-
tem. Let us notice that the usefulness of using Pomcaap-
ping during transition phases, partially lies in the fact that even
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in some simple cases guaranteev(g) < O for allt is not possi-
ble, see (Brogliatet al., 2000).

@)

~ A~ 1.'.4 ~ 1 ~T ~
V(t,6,0) = 56" M(@d+ 5vad' G+ Ye(q)
with § = q— qq whereqyq is a desired trajectory, ante (q) is the
indicator function of the seb = {q: F(q) > 0} (Moreau, 1988);

_J 0 ifge®
Yol =\ jwifqg o
ciated to the unilateral constraints.

The control law used in this scheme is an extension of the
asymptotically stable controller of (Paden and Panja, 1988), orig-
inally designed for free-motion position and velocity tracking.
Let us propose (see (6))

which is a nonsmooth potential asso-

Unc = M(a)da +C(a,d)Ga +9(d) — 10— V20
Uy = U before the first impact

U =9g(q) —yig—Y2g after the first impact
Uc = Unc— Py + K¢ (Py—Pa)

y1>0y2>0 Kf >0 8

wherePy is the desired force we want for the permanently con-
straint motion. The interest for choosing this controller is that
the functionV (t,d,d) in (7) is very close to the total energy of
the system.

Afirst observation is that a control strategy which consists of
attaining the surfac@® tangentially and without incorporating
impacts in the stability analysis, cannot work in pratice due to its
lack of robustness (because it implies the perfect knowledge of
the constraint location).

In view of this, the control law for the transition phase is
defined in order :

e to make the system hit the constraint surface (and then dissi-

pate energy during impacts) if the tracking error is too large.
If V(t,q,q) is large,qq is computed to hit the constraint sur-
face.

During the transition phasg(t) is defined as follows (see
figure 3) :

0i4(t) is not used in the control

-

— "Tid'(t)' ,,,,,, 7 —aV(t§)

Qa1+ Qo2
-~

Figure 3. Desired trajectory Q14

Let us define :

- TS is the chosen by the designer as the start of the transition
phase,

- t§ is the time corresponding tpq(t§)=0,

- tp corresponds to the first impact,

- 1, correspond to the finite accumulation point.

- tkis the end of the transition phase

On [T'g,to), we impose thaty(t) € C? andqyq(t) decreases
towards—aV (tf).
On to,tf], we definegy andgy as follows :

(&) (42)

—aV(t§)
O

e To make the system approach the constraint surface tangen-

tially (without rebound) if the tracking is perfect.\f(t, §, §)
is small,qq is computed to land smoothly on the surface.

This two situations are conflicting because we want impacts
for the robustness of the control: indeed with each collision there
is an kinetic energy loss which stabilizes the system provided the
controller is suitably chosen. On the other hand the coupling be-
tweenq; andgy in (5), and the stability framework in claims 1
and 2, make the asymptotic stability quite difficult to obtain if
velocities are subject to discontinuities. This conflicting situa-
tion implies a specific controller to achieve the required stability
properties.

whereqq is the fixed point of the whole system (the Lagrangian
equation and the unilateral constraint), ayids the fixed point
of the closed loop system without the constraint. Indggds
outside the admissible domai, and cannot be reached by the
system. The purpose df is to create a “virtual” potential force
which stabilizes the system ai even if the position of the
constraint is uncertain.

Consequently the real fixed point of the systémg,qq) is
used in the expression of the Lyapunov fonctiog = g — qq,
whereas the unreachable fixed pajjis used in the control law :

q=09-dg.
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In order to cope with coupling betweeg andgp, the signal
O24(t) is frozen during the transition phase, i.e.:

o God(t) = Gy, Goa(t) = 0 ONtf;, tf]
e Opq(t) is defined such thagg(t§™) = 0 on|tk, t]

Let ¥ be such thatyg(t§) = —aV (t§) andayq(t¥) = 0.

Definition 4. {Cl} is the subspace of initial condition (¥)
which assured > .

Letm=1in (1).

Claim 3. The system defined by (1) in closed-loop with the con-

troller in (8) and q(t) as defined above, is :

- Asymptotically strongly stable if(®) € {CI} and ify; > 0,
y2>0

- Asymptotically weakly stable if ) ¢ {CI} and if y1, y2
anda are large enough.

Proof. The proof of the first item can be found in (Brogliato
et al,, 2000). The proof of the second item follows the same line

but in this cas@y (tp) is not negative. One has :

v (t0) = Ti(t0) ~ 5y1016°(tg )~ 5Cia(tg ) Meia(tg) +a(tg) Meiatg)

whereT, (to) is the loss of kinetic energy at the impagt
To obtain the weak stability, it is sufficient that :

V(ty)-V(ty) <0 9)

Inequality (9) is equivalent to :

ot
ov(to)~ve |, 'adt<0 (10)
0
And (10) is implied by :
T an s e b,
Aty ) l\/lqd(to)éyz/t+ g qdt (11)
0
Or, integrating the right-hand side of (11) by parts, by :
TR b
At ) Mdalty) < —ve || o (12)
0
5

Let us calculate an estimation of the integral in (12). By lin-

earization around the poigt= <q9 ) , the closed-loop equation
2d
of the system is :

av (tg)

ey (5 (19

)+V2q0

Inserting (13) in (12) gives the inequality :

e Tan (e b g aVv (T -
a(to )Tl\/lqd(to)ﬁylyz/t+ q'M 1( éo))duf[qTM “alig
0

(14)
[a"M~ 1} = 0 because(tx) =0
(15)
Therefore (14)implies :
o L o
Gt ) Meilty) < vayaoV (t§) [ * (M) Tt (16)

0

If the coupling between; anda, is weak, we havep(t) = g,
on|ty;t; ], and (16) becomes :

Gty ) TMda(ty ) < (1 —to)yay2aV (T (My) Teg (17)
Let Amin be a lower bound oh = (t; —to). Then (17) implies :
Aty ) "Mdg(ty) < vayzaV (T8) (M) TobgAmin - (18)

To prove that it existy;, y» and a which verify (18), we
need to verify that(ty ) "Mdg(ty ) is bounded :

On [t§;to], Ut = Unc andV/ (t) < 0, then we have :

<
—~~
~
ox
N
Y
—
—t
© |
~—

<
—
—
ox
Sdo
v
O
=
—t
S

o) TM(a)d(ty) + %quao)TQ(to)
o) TM(@)d(ty)

> SAmin[M(a(t))] || d(ty ) —Galty) |17

<
—~

—~
ox
N

\Y
O
—~

RPNIRPNP <
—
o

<
=
S

\Y,

(19)

N

From (19) we have :

)2+ max | ga(t) |
te[tsito]

k
14) 1< () (20)

min[M(q(t))]
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Hence q(t;) is bounded, q4q(t,;) is bounded by
MaX e Ga(t)-  Then G(ty)"™™Mdg(ty) is bounded. If
Dmin # 0, there existy, y2 anda such that (18) is satisfied.

To calculateAmin, We need to solve equation (13). The solu-
tion is of the form :

Y2

qut) =Ae Mi' £ Bt+C
M11

with A= — 2 oy (k) L gut)
Y2 Y2
Y1 K M1 v1 Ky | o et
B=——=aV(1y) , C=——=(=aV(ty) +qu(t
Vo (To) % (y2 (To) + Gty )

A > 0 is a solution ofgi(t) = 0. A developpement of order 2
gives a lower bound.

2M1161(tg)
y1aV (T§) + 201 (tg)

Apin = (21)

*If1 > e, > e, thendi(ty) = —enba(ty ) > 0 andAmin > 0,
we can conclude that there exesty; andy. large enough such
that inequality (9) holds.

* If 0 < &, < &, thendi(ty) andAmin are very small. One
has :

lim (te —to) =0
en—0
(22)
and the sufficient condition (18) gives that :
Jim (avayz) =+ (23)

In this case we cannot conclude on the existence of bounde

a, y1 andy,. However it exist a bounded > 0, such as for
t > t, + 5 we have :

V() —V(ty) <0 (24)

Inequality (24) assures the weak-stability in this last case.

4 Simulation & Robustness study

This control scheme is tested in simulation on a 2-link pla-

a Newton'’s restitution rule. The constraint surface corresponds
to the ground ¥ = 0). The natural generalized coordinates so
that the dynamics fits with (5), witm= 1, are the work-space
coordinategx,y). We take:

[y o

N
K"

Figure 4. 2-link planar manipulator

4.1 Evolution of V(t) at impact times

4.1.1 First impact after that qq was totally frozen
In this simulationX(0) € {Cl}, and the impact occurs when
Oiq = 0. This means that at the first impact tirge the varia-
tion of the Lyapunov functiowy, is negative.

Oy (to) = TL(tO) - %quldz(t()_) <0

On figure 5,V (t) decreases anadl is negative, this means
that the claim 3 applies and the closed loop system is asymptoti-
cally strongly stable.

4.1.2 Firstimpact before that gq was totally frozen

q!n this simulationX(0) ¢ {Cl}, and the impact occurs when

Oiq # 0. This means that at the first impact tirge the varia-
tion of the Lyapunov functiomy can be positive in function of

Aty ) "Mda(ty ).

1
ov =T.(to) — §V1Q1d2(to_)

- %Qd(tE)TMq'd(to_) +0(tg) " Méal(ty)

On figure 6,V (t) is not decreasing all the time: at the first

nar manipulator for the simplest case of a scalar constraint, with impact time of each cycle the Lyapunov function has a peak. This

6
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Figure 5. Negative jump of V (1)
0.09
0.08 |
0.07 |
0.06 |
0.05 7
1 O
004

0.03 7|

0.02 7|

0.01

>

Time (in sample)

Figure 6. Positive jump of V (1)

4.2 Asymptotic convergence

Figure 7 shows the evolution gi(t) andgy(t) during cyclic
tasks. On the graph af;, the asymptotic convergence of the
controller is exhibited as the value a¥ (qg,t) decreases expo-
nentially.

The graph ofg, shows the coupling between andgy. At
each impact time a jump ig; occurs. The periodic step apqg
corresponds to the transition phase during whighneeds to be
frozen.

0.78 7
077 7
0.76
075 7
0.74 7
073 7
o7 | Qo)
071 7

0.70 7

0.08

0.06 7|

0.04 7|

0.02 7|

-0.02 7|

-0.04 |

-0.06 |

—av(t)

-0.08 T T T T T T T T T T T T T T T T
0 1e3 2e3 3e3 4e3 5e3 6e3 7e3 8e3

Time (in sample)

Figure 7. Asymptotic Convergence

Figure 8 illustrates the asymptotic stability of this control

means that the strong stability of the closed-loop system is not strategy. The simulation begins with an important error position

assured, but i1, y» anda are chosen like in claim 3, the system
is weak-stable. We see the{1,.1) — V(1) < 0 between two

consecutives cycles.

tracking error. The firstimpacts have a large magnitude (function

OfV(T(k))) and after only five cycles rebounds practically vanish.

Asymptotically the transition phase disappears.
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Figure 8. Attenuation of rebounds height.

4.3 Robustness

In this subsection, we study the robustness of the controller
with respect to the uncertainty on the constraint position and to
the noise on the measured state vector.

4.3.1 uncertainty on constraint position In this
subsection the position of the constraint surface is not known
precisely. As seen on figure 9 there are two situations to con-
sider.

Gic=¢c>0

real positiongic = 0

Gic=c<0

Figure 9. estimated position qlc

* If ¢ < 0, the estimated position of the constraint is lower
than the real position. In this case the desired trajectories de-
crease towardjg = —aV (t0) — |c| instead ofgig = —aV(1)).

The errorc can be incorporated in the termaV (t2) and the
stability of the transition phase is not changed. During the con-
straint phase the controller is :

i C
Ue = Uncldeal —(Pg+v1 [ |0| } )+ Kt (Pq —Py)

The error termys|c| is added to the desired ford® and con-
tributes to keep the contact with the surface during the con-
strained phase.

In this case, the stability of the system is not changed, but
the system loses is asymptotic stability : If the tracking is perfect
V(10) = 0 andq;y = —|c|, then the system does not approach
the surface tangentially and rebounds occur. The asymptotic
stability is not preserved. Figure 10 shows an exemple of

8

0.08 i au(t)

Ga
-0.04 —! | ! | ! | ! | ! |
5e3 7e3 9e3

Figure 10. Stability if C < O

stabilization where < 0.

* If ¢ > 0, the estimated position of the constraint is above
the real position. If the tracking is perfe¢{t?) = 0, the desired
trajectory decreases towaygy = ¢ and the system never reaches
the constraint. There is no convergence (see figure 11).

0.06 7|

0.02 estimated position

real position

-0.02 7|

—aVv(t) > [c]

-0.06 |

' ' ' ' ' ' '
-100 300 700 1100 1500 1900 2300 2700 3100

Figure 11. Non convergence if C > 0

This problem can be solved by monitoring the time of
stabilization. If there is no stabilization after the tirhg the
estimated position of the constraint is refregli"= G2!9 —e.
After a finite number of iterations, one gejg < 0. The system
is in the previous situation < 0 and the stability is preserved.
Figure 12 show an example of auto adjustment of the estimated
position of the constraint.

When the tracking is not perfect ao (t?) > c, the previ-
ous problem is not present, the transition phase is able to stabilize

the system on the surface. But during the constraint phase, the
control law is:

i Cc
UC = Uncldeal - (Pd - yl |:0:| ) + Kf (Pq - Pd)
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| Estimated position

o7 Esfimated position
900 1300 1700 2100 2500 2900 3300 ] ! ' ! ! ! ! | ! |
0 1e3 2e3 3e3 4e3 5e3
Figure 12. Auto adjustment of (¢ V()

P4 must be chosen enough Iarge in regardrlmto be sure that Figure 13. O too small with respect to the noise level

system keeps the contact with the surface during all the constraint
phase.

4.3.2 noise measurement on state vector We
consider noise on the measurement of the position :

q=q+b

-010 7 ! | ! | ! | ! | ! | ! | ! |

whereb is the noise, assumed to be a white noise. 0 13 23 33 43 5e3 6e3 Te3

The control lawJ; becomes :

Ut =9(a) —yi(4—ag) — 20

g1 — (—aV (1) — b) ) . v
Uy =g(q) — -
k= 9(a) w( G2+ b— g Y24 |

"

Figure 14. Suitable O
0;q4 Needs to be negative to attain the surface. Then we need

|b| < aV(t) to have convergence. To avoid this problemn we
need to haver enough large.

Figure 13 shows a simulation wheeeis too small: After
three cycles the value @iV (13) no longer dominates the noise.
The switching tima'f‘ betweenly andQy. 1 is defined to be as

t& > t,. Therefore in this case there is no stabilization on the
surface and, = +. The cycling tasks in (3) are stopped.

Figure 14 shows a simulation whemds larger, in this situ-
ation impacts always occur.

system may hit the singularity directly, or hit one or several sur-
facesz; (through a finite or infinite number of impacts) before
attaining the singularity.

5.1 Stability of transition controller if Bkinetic < 5

In this subsection, we want to stabilize the system on the
sub-space; N 2,. In a first instance we restrict ourselves to an

5 Mutiple impact admissible spac® where the angle between the surfaces is less
This section extend the previous controller framework to the than 3 in the kinetic metric. Figure 15 depicts the situation in
case of multiple impact. the planar case, or can be viewed as an abstract section of the

. o L . ) configuration space.
Definition 5 (Multiple impact). A multiple impact is an im-

pact into a singularity as in definition 1. If the singularity has
codimensioru, the multiple impact is named animpact.

The kinetic angle is the angle in the kinetic metric defined as
xTM(q)y for vectors x and y. The reason why we make a differ-
ence betweefiinetic > 5 andbBginetic < 3, is that (at least in the

At multiple impacts, more than one relation of the form planar case and a 2-impa®)netic > ’—ZT implies discontinuity of
Fi(q) = 0 are verified at the same time. the solutions with respect to initial data, whereas Wighetic < g

The difficulty created by stabilization at singularitiesods, solutions are continous in the initial da ), q(0)). This is ex-
is that the way the system attains the singularity, may vary: the pected to influence the stabilization strategy on the singularity.
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V(X(t|2+1)at|2+1) _V(X(tlzr)vtlj)

teor .
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N
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Figure 15. Multiple impacts (2-impacts)

b1 v oM. T ~
:‘/tJrJr qTMq+qT§q+ququt
k

Y, . .
= /t . T [~Ca—vg— o9+ (1+ k1) (g, —Aq) DqCtt]
k

M
T M ~T ~

5.1.1 Case (a) : Simultaneous impacts In this +a 2 A+v.g gidt 27)
case, the multiple impact on the surfaces are simultaneous, this Teq T [AER
means that at each impact time gi(t) = g2(t) = 0, and the = ./t+ —Y2q’ qdt+vs /t+ G Gqdt
closed loop analysis made in (Brogliaéb al, 2000) for a 1- K - K
impact can be adapted |mmed|z8telyotompact,a > 2. Indeed + ﬁk“ " (14 Kr1) (g, — Ag) Dgabdt (28)

k
at each impact timg, qu(tx) = | - b T
p Ch( k) O — /t+ +1 *yquth <0 (29)
k

5.1.2 Case (b) : Impacts on one surface before
double |m_pact In this case the sta_lblhzatl_qn is made in two (28) is deduced from (27) sinc€2- M is skew-symmetric
steps. A first step wherg the system is stabilized on the first sur- and§Tg—q'g= qTq»]id. (29) is deduced from (28) sineg (1+
face f1(g) = 0 (without impact on the second surface). And a k1) (Aqy — Aq) ot = 0 and[q] ]tk+l _ 0 sinceq (t) — O dur-
second phase during which the constraint systerfy 6o = 0 is Kt1)(Agy = Aq)Lgly = 01Ol ~ = edu(lk) =
- ing the 2-impact.
stabilized on both surfaces.
The proof of stability of the fisrt phase is the same as for the Equality (29), and a demonstration like in the 1-impact case
q% give the asymptotic stability of this 2-impact. But in this case
o2 | we have supposed that there is no impact on the second surface
During the second phase, the system is in a constraint mo- before the 2-impact.
tion, and its closed loop dynamic equation is:

1-impact case if we takg; = [q%] andqgy = {

M(a)&= —~C(0. )G~ v10— 20+ (1+ K1) (Aqy — Aq) g0l (25) 5.1.3 Case (c): Generalcase Inthis case the system

can collide indifferently the two surfaces. There are several 1-

impacts on the both surfaces before the 2-impact occurs. In this

0 situation we do not have () = O for all impact (this true only

trajectories)ig = { o ] , whereqﬁ‘j has the same form aﬁg in during the 2-impact). The weak stability of the transition phase
G can be obtained by studying the variation(fX (t),t) between

two impacts on the same surface.

Then the system is stabilized on both surfaces using desired

the previous phase and decreases towargV (X (t§), T§).
With the same demonstration as before, we need to prove

that : tox represent instant of impact da(q) = 0.
toa+1 represent instant of impact da(q) = 0.
V(X(te, 1) ey n) —VX(E),80) <0 (26) At L [aav(X(tE),Ts)
o= || = [ h)
One obtains : Let us calculate the following variation :
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Figure 16. General case

Vitgpa) Vit

= +/tt2k+1 (t )dt+0v(t2k+1)/

2k Gri1

L)

V(t)dt

= 0y (tar1) — V2 / T gdt—y, / 0D T el

2k 2k+l

+yaGia TIA2 + yaggg Tlau Y (30)
=D+vilig T (O (tokers) — Oa(tal)) (31)
=D+ v | (it — Gr(tx)) (32)

whereA is the sum of all negative terms in (30). (31) is deduced
from (30) sincey?(tx) = O for all k.
With a; = 0, we haveg}; = 0 and then :

Vltypin) = V(ty) <0

The strategy is to takea; = O (target A, see figure 16) at
the begining of the transition phase to stabilize the system on
f2(q) = 0, and to switch t@m, = 0, a1 > O (target B, see figure
16) when the system is of2(q) = O (or to switch to the previous
case).

5.2 Plastic impact if Byinetic > 5

The situation wher8yjnetic > g (see figure 17) is more com-
plex. Indeed ife, > 0, if q(t, ) € 0®; we cannot be sure that
q(ty) € 0®;, and the work done above reasoning fail. Let us
considere, = 0. In this case ify(t, ) € % thenq(t) € =, j #1.
After the 2-impact the system is alway in contact with a surface,

however not the same surface as before the 2-impact (see figure

11

17). The problem is to find a control law which stabilizes the
system around the intersection of the two surfaces.

é( Q) <0

4(te)

Figure 17. Generalized plastic 2-impacts

6 Conclusion

This paper deals with the tracking control of fully actuated
Lagrangian systems subject to frictionless unilateral constraints.
The aim of this paper is to study a controller for specific nons-
mooth systems which perform cyclic impacting tasks. First the
stability framework dedicated to study these systems is recalled,
and some definitions are given. Then we precise the condition
of existence of desired trajectories which give asymptotic stable
controllers for this class of system.

The second part of this paper is devoted to numerically study
an example : a 2-link plannar manipulator subject to a single uni-
lateral constraint. This example allows to exhibit some results on
the robustness of this control framework in term of uncertainty of
the constraint surface position. The effect of measurement noise
is also studied. It is shown that the proposed scheme possesses
some interesting robustness properties.

The last part of this note is devoted to the case when so-
called multiple impacts occur. Some specific difficulties related
to the constraint boundary geometry, are highlighted, and some
possible manners to extend the single constraint case are indi-
cated.

Challenging goals are now to caracterise more precisely the
subspace of initial condition§Cl} which produce asymptoti-
cally strongly stable systems, and to extend the results on more
general cases for multiple impacts.
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