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Abstract

The intermittent contact with the ground is the main speci-
ficity of walking robots, allowing more versatility in their
displacements, but resulting in a structural instability of these
systems. A walking robot, having a free-floating base, can-
not control its global movements directly and must rely on
the limited interaction forces in order to move. These con-
straints on the movements of the robot are an obstacle to the
stabilization of a trajectory. We propose then to stabilizenot
a single trajectory but a parametrized setqd(t, p) of all the
possible trajectories, depending on the lentgth of the steps,
the speed of execution... The idea is that a destabilization
can be compensated by an adaptation of the walk.

1 Introduction

With service robotics or medical applications, biped walking
was studied for a long time, but the control laws proposed so
far are not satisfactory in providing robust steady walks. The
main specificity of the walking robots is the intermittent con-
tact with the ground: it allows more versatility in their dis-
placements, but it results in a structural instability. In order
to move around, a walking robot is dependant on its inter-
action with the ground, and especially on the contact forces.
But these forces are bounded, inducing some constraints on
the dynamics and therefore on the stability of the robot.

In order to design a control law for biped walking, some
proposed to monitor the contact forces while stabilizing a de-
sired trajectory. The contact forces are monitored directly in
[3, 4] or through the position of the centre of pressure (also
called Zero Moment Point) in [7]. This way, small pertur-
bations can be compensated without destabilizing the robot,
but in case of strong perturbations, when the desired trajec-
tory can’t be followed anymore, no recovery option has been
proposed so far. Note that some proposed a more global ap-
proach to the walking behaviour [5], leading to some inter-
esting stability results, but with no analytic proof.

The walking behaviour is richer than just following one

single trajectory. We propose then to stabilize not a single
trajectoryqd(t), but a whole parametrized setqd(t, p) rep-
resenting a more comprehensive version of the walking be-
haviour. This way, when one trajectory is not stabilizable
anymore, another might be stabilized instead. This approach
allows to improve the stability of the robot, and seems to be
completely new.

After briefly introducing the dynamics of the robot in sec-
tion (2.1), we stress upon the effect of the contact with the
ground on this dynamics, and especially on the stability of
the robot in (2.2) and (2.3). In sections (3.1) to (3.3), we
show how a parametrized set of trajectories can be used to
improve the stability of the robot, resulting in the design of a
new control law for biped walking presented in (3.4).

2 Dynamics and stability of a biped
robot

2.1 Dynamics of the robot

The main specificity of the dynamics of a biped robot is
the intermittent contact with the ground: we model this in-
teraction as non-penetrating rigid bodies with Amontons-
Coulomb friction. For simplicity, we will consider only
sticking contact (no slipping occurs during plain walking),
therefore we introduce a set of normal constraintsϕn(q) ≥ 0,
and the affiliated tangential constraintsϕt(q) = 0, with q
the variables expressing the configuration of the robot. A
straightforward derivation of the constrained Lagrangiandy-
namics leads to:

M(q) q̈ + N(q, q̇) = T u + C(q)T λ (1)

with M(q) the inertia matrix,N(q, q̇) the gravity and other
nonlinear terms, andT u the actuation. D’Alembert’s princi-
ple states that the generalized contact forces can be expressed
asC(q)T λ with C(q) the Jacobian of the constraints andλ
some Lagrange multipliers.

There is a complementarity condition between the con-
straints and the contact forces, and since the set of active
constraints is varying, this gives rise to hybrid dynamics.For
simplicity, we will consider exclusively, at a given state,the
constraints (normal and tangential) that remain active (such
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Figure 1: The configuration of a 6-DOF planar biped
robot can be expressed through 9 variables, 3 for the
global position of the robot(x, y, θ) and 6 for its inter-
nal shape(α1, . . . , α6), to obtain the state vectorq =
(x, y, θ, α1, . . . , α6)

T .

thatϕ(q) = ϕ̇(q, q̇) = ϕ̈(q, q̇, q̈) = 0). The unilateral con-
tact and the Amontons-Coulomb friction imply some bounds
on the contact forces (Fn ≥ 0 and|Ft| ≤ µFn), which we
express as a set of inequalities on the Lagrange multipliers:

A(λ) ≥ 0 (2)

When a new contact is reached, an impact may occur, re-
sulting in a jump of the velocities [2], but impacts lead to pre-
mature aging of the mechanical structures and should there-
fore be avoided. For this and for simplicity, we will not con-
sider impacts here. Note that slipping, impacts and hybrid
dynamics must definitely be included in any comprehensive
modelization of a walking robot, but this is not needed here.

2.2 Feasible movements

The variablesq that describe the configuration of the robot
consist in two different sets: a first setq1 describing the
global position of the robot in the space, and a second set
q2 describing the joint positions (Fig. 1). Let us split the La-
grangian dynamics (1) in order to dedicate the upper part to
the global movements and the lower part to the joint varia-
tions:

[
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M2

]

q̈ +

[
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]

=

[

0
T2

]

u +
[

C1 C2

]T
λ

The biped robot has no direct actuation of its global move-
ments, what is expressed here by the fact thatT1 = 0. It
is therefore dependent on the contact forcesCT

1 λ in order
to generate any global movement. But these forces are con-
strained (2), implying some conditions on the feasibility of
the movements of the robot:

{

M1q̈ + N1 = CT
1

λ

A(λ) ≥ 0
(3)

Figure 2: Stabilizing a standing stationary robot, small per-
turbations (top) can be compensated, but for stronger ones
(middle), the only way to avoid to fall is to make a step, re-
turning to the desired state later (bottom).

In order to illustrate the effects of these constraints on the sta-
bility of the robot, let’s consider the stabilization of a stand-
ing stationary position (Fig. 2). For slightly perturbatedini-
tial conditions, the robot can be driven back to the equilib-
rium point (top strip), but over a threshold on the perturba-
tion, the contact with the ground can’t generate anymore the
forces that would stir the robot to the desired position (mid-
dle strip). In this case, the only way for the robot to avoid to
fall is to make a step (bottom strip), returning to the desired
state later.

2.3 Viability and invariance

We have seen that the stability of a reference state can’t be
accurately related to the property that the robot can avoid to
fall or not. But it’s this property we’re interested in: it is
in fact a viability property [1]. Without going into accurate
definitions, we can say that:a state is viable if it is possible to
avoid to fall from it through a suitable selection of the control
inputs. Then, the robot can avoid to fall as long as it remains
in the viability kernel (Fig. 3), the set of all the viable states.

For a given control law, a fall is actually avoided only in
a sub-set of the viability kernel, an invariant set. Outside
this invariant set, the control law can’t avoid a fall of the
robot, even inside the viability kernel where it would have
been possible. The design of the control law must therefore
make invariant the largest sub-set of the kernel. Unfortu-
nately, a control law can’t be computed directly from the vi-
ability properties.

We have seen (Fig. 2) that a perturbed state might quickly
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Figure 3: The viability kernel (Viab) is the set of all the states
from where it is possible to avoid to fall. For a given control
law, a fall is avoided only in an invariant set (Inv ), a sub-set
of the viability kernel.

be outside the invariant setInv(u1) of a control lawu1

but that in this case, it might be inside the invariant set
Inv(u2) of another control lawu2. It appears then thatu1

and u2 can be linked together in order to make invariant
Inv(u1)

⋃

Inv(u2). We can foresee then the possibility to
design a control lawu exploiting judiciously a set of control
lawsuk in order to obtainInv(u) ⊃

⋃

k Inv(uk). Unfortu-
nately, the invariant sets can’t be obtained numerically, so a
control law can’t either be computed directly from the invari-
ance properties.

3 Stabilization of the walking be-
haviour

3.1 Parametrized trajectories

The robot’s walking patterns vary, depending on the length
and height of the steps, the speed of execution, and all kinds
of reactions to the environment. All these variations can oc-
cur during a walk, and should be considered in the definition
of the walking behaviour. Moreover, when the desired tra-
jectory is not stabilizable anymore, one of these variations
might be stabilized instead.

Let’s introduce then a parametrized set of trajectories
qd(t, p), the parametersp expressing the characteristics of
each pattern, such as the length, height and speed of the steps.
Doing so, the error of stabilizatioñq = q − qd(t, p) appears
depending on the state of the robotq as well as on the se-
lected parametersp. Let’s replace then̈q = ¨̃q + q̈d(t, p) in
(3):

{

M1
¨̃q + M1q̈d(t, p) + N1 = CT

1
λ

A(λ) ≥ 0
(4)

We can observe here the reciprocal influence between the
regulation of the error̃q, the value of the parametersp, and
the satisfaction of the constraints on the dynamics of the
robot.

We have introduced a new variablep which has an influ-
ence on the stabilization of the robot. The idea is to use the
possible adaptations of the parametersp in order to compen-
sate the constrained dynamics (4), maintaining this way the

regulation of the error̃q. This can be interpreted as a change
of walking pattern in order to maintain the stability of the
robot. Note that this realizes exactly the behaviour exposed
in the bottom strip of (Fig. 2).

One way to achieve this is to consider piecewise constant
parameters: when the stabilization of the desired trajectory is
no more possible, another stabilizable trajectory is searched
for, and an instantaneous modification ofp is generated. This
modification induces a jump of̈qd(t, p), but also ofqd andq̇d,
and therefore of̃q, ˙̃q and¨̃q, giving rise to hybrid dynamics,
the stability of which is not obvious.

3.2 Stabilization of a set

If we want the variations ofp not to generate any hybrid dy-
namics, we have to consider thatp(t) can be differentiated
twice:

q̇d(t, p, ṗ) = J(t, p) ṗ +
∂qd

∂t
(t, p)

q̈d(t, p, ṗ, p̈) = J(t, p) p̈ + n(t, p, ṗ) (5)

with J(t, p) = ∂qd(t, p)/∂p andn(t, p, ṗ) the other terms
appearing during the derivation. Replacingq̈d in (4), we ob-
tain:

{

M1
¨̃q + M1J p̈ + M1n + N1 = CT

1
λ

A(λ) ≥ 0
(6)

Here, the variations ofp are directly connected to the regula-
tion of the error̃q and to the constraints on the dynamics that
have to be satisfied. The adaptation ofp required to com-
pensate the constraints and maintain the regulation ofq̃ may
be inferred trivially, then. Note that this relation is achieved
through the termJ p̈ which expresses the movements gener-
ated by a modification of the walking pattern.

Since p(t) varies, the trajectory actually followed
qd(t, p(t)) might be far from the original walking patterns
qd(t, p) (for a fixedp). Gathering all the walking patterns
into a setQ = {qd(t, p) : t ∈ R , p ∈ P}, it appears that
letting p vary amounts to allowing any trajectory insideQ.
This way, the setQ, which can be considered as a more com-
prehensive description of the walking behaviour, is stabilized
as a whole.

As long as the constraints in (6) can be compensated by
M1J p̈, the stability of the robot is safe, but this reserve
of trajectories is limited:M1J might not be of full rank,
meaning that the modifications of the walking pattern might
not compensate every constraints on the global movements.
Moreover, some trajectories might not be realisable due to
obstacles in the environment or to some mechanical limita-
tions (maximal step length, for example):p might be con-
strained to a realisable sub-set ofP .

Still, this approach encompasses the traditionnal trajectory
following which works with a fixed walking pattern, what
should improve the stability of the robot: the invariant setob-
tained when stabilizing a single trajectory should definitely
be included in the invariant set obtained when stabilizing a



larger set, of higher dimension... Unfortunately, no inclu-
sion can be proved concerning these invariant sets (cf. sec-
tion 2.3).

3.3 Monitoring the contacts

Remember that the dynamics of the robot is also constrained
by the contact with the ground (ϕn(q) ≥ 0 andϕt(q) = 0
in section 2.1). Moreover, the contact forces can only be
generated when the contact is active. A control law for the
biped robot must therefore carefully monitor and control the
active constraintsϕ(q) = 0. Replacingq = q̃+qd(t, p), these
constraints establish another relation between the regulation
of q̃ and the variations ofp:

ϕ(q̃ + qd(t, p)) = 0

From this relation, we can see that whenq̃ = 0, the selected
trajectory must satisfy the active constraints (ϕ(qd) = 0).
But whenq̃ 6= 0, the transient behaviour of̃q will most prob-
ably impose a variation ofp which might not be necessary
nor even desired. In particular, whenϕ(qd) = 0 and the con-
straints (6) are satisfied witḣp = p̈ = 0, there’s no point
in changing the reference trajectory, but the transient might
induce such a change.

A solution to avoid this unsatisfying transient is to decou-
ple the dynamics with respect to the constraintsϕ(q) = 0.
For this, let’s follow the task function approach [6], and in-
troduce aC2 diffeomorphismf(q) as an output function to
regulate. Differentiating twice the errore(q, t, p) = f(q) −
f(qd(t, p)) and using (5), we obtain:

ė = B(q) q̇ − B(qd) q̇d(t, p, ṗ)

ë = B(q) q̈ − B(qd)J(t, p) p̈ + b(q, q̇, t, p, ṗ) (7)

with B(q) the Jacobian off(q) andb(q, q̇, t, p, ṗ) the other
terms appearing during the derivation. The dynamics of the
error that appears in (7) and (1) can be linearized and decou-
pled (see section 3.4) in order to obtain the dynamicsë = v.

The output functionf(q) might include any information
needed for the stability of the robot, such as the position of
the center of mass of the robot. Here, we stress the need to
monitor the active constraints. Let’s consider then an output
function of the form:

f(q) =

[

f1(q)
f2(q)=ϕ(q)

]

Concerning the regulation of the second part of the output
function, we have then:

ë2 = ϕ̈(q, q̇, q̈) − ϕ̈(qd, q̇d, q̈d) = v2

Sinceϕ̈(q, q̇, q̈) = 0 (cf. section 2.1), and differentiating
twiceϕ(qd), we have:

v2 + C(qd)q̈d + s(qd, q̇d) = 0

with C(qd) the Jacobian ofϕ(qd) and s(qd, q̇d) the other
terms appearing during the derivation. Using (5) then, we
obtain:

v2 + CJ p̈ + Cn + s = 0 (8)

Where the interaction between the contact with the ground
and the regulation of the parametersp appears decoupled
from any transient of the rest of the dynamics.

3.4 A control law for biped walking

We have seen that the monitoring and control of the contacts
induce a preference for decoupling control laws. Decoupling
and linearizing the dynamics of the errore(q, t, p) that ap-
pears in (7) and (1) leads to the following scheme:

MB(q)−1(v + B(qd)J p̈ − b) + N = T u + CT λ (9)

in order to obtain the dynamics̈e = v. Applying this sheme,
we must satisfy the constrained dynamics (3) through some
appropriate variations of the walking parametersp, having
a look also on the constraint (8). The variations ofp are
hopefully not completely constrained so far, leaving the pos-
sibility of some higher level specification for the long term
behaviour. A simple specification can be to match as closely
as possible to one desired trajectory (one prefered step length
and speed, for example). For this, we can try to minimize the
distance between a stabilization lawkp(p − pd) + kv ṗ and
the realized acceleration̈p∗.

The control law we propose can be resumed therefore as:

1. Specify a controlv∗ in order to regulate the error
e(q, t, p).

2. Compute the regulation of the parametersp̈∗ accord-
ing to the high-level specification and satisfying the
constraints on the dynamics through the contact forces
λ∗. This leads to the following Quadratic Programming
with linear constraints:

min
p̈,λ

‖ p̈ − kp(p − pd) − kv ṗ ‖2

M1B(q)−1(v∗ + B(qd)J p̈ − b) + N1 = C1(q)
T λ

v2∗ + C(qd)(J p̈ + n) + s = 0

A(λ) ≥ 0

3. Compute then the control actually realized by the actu-
ators (supposing that all the joints are actuated indepen-
dently,T2 is invertible):

u = T−1

2
[M2B(q)−1(v∗+B(qd)J p̈∗−b)+N2−CT

2
λ∗]

Note that in order to improve the stability of the robot,
this control law is completely dependent on the disponibility
of a parametrized set of trajectoriesqd(t, p) in which can be
found enough variations of the walking pattern for compen-
sating the usual perturbations.



4 Conclusion

We have seen that a walking robot needs to interact with its
environment in order to control its global movements. Since
this interaction is only performed through limited forces,this
leads to a structural instability of the system. First attempts to
control this instability led to monitor the contact forces,but
the solutions proposed so far don’t react properly to strong
perturbations of the system. It appears then that the stability
of the robot can be improved if we manage to consider a more
comprehensive description of the walking behaviour.

This comprehensive description is introduced through a
parametrized set of trajectoriesqd(t, p). We managed then
to relate directly the different constraints acting on the dy-
namics of the robot to the variations of the walking patterns
that will allow to maintain the stability the robot. We can
propose then a control law for biped walking with improved
stability, based on an approach that seems completely new.

In order to complete the design of this control law, we
must achieve now the generation of a set of walking trajecto-
ries that will allow to recover from any destabilization. Note
that the walking patterns are required for continuous varia-
tions of the parameters. Moreover, the more comprehensive
will be this set of trajectories, the more perturbations will
be compensated. For these reasons, the classical tools for
generating one single trajectory are not adapted, and specific
developments definitely need to be done.
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