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O. Briant ·C. Lemaréchal ·Ph. Meurdesoif · S. Michel ·N. Perrot ·F. Vanderbeck

Comparison of Bundle and Classical Column
Generation !

the date of receipt and acceptance should be inserted later

Abstract. When a column generation approach is applied to decomposable mixed integer
programming problems, it is standard to formulate and solve the master problem as a linear
program. Seen in the dual space, this results in the algorithm known in the nonlinear pro-
gramming community as the cutting-plane algorithm of Kelley and Cheney-Goldstein. How-
ever, more stable methods with better theoretical convergence rates are known and have been
used as alternatives to this standard. One of them is the bundle method; our aim is to illus-
trate its differences with Kelley’s method. In the process we review alternative stabilization
techniques used in column generation, comparing them from both primal and dual points of
view. Numerical comparisons are presented for five applications: cutting stock (which includes
bin packing), vertex coloring, capacitated vehicle routing, multi-item lot sizing, and traveling
salesman. We also give a sketchy comparison with the volume algorithm.

Key words. Lagrangian duality, Dantzig-Wolfe decomposition, stabilized col-
umn generation, cutting-plane algorithms, bundle algorithm, volume algorithm,
nonsmooth convex optimization

1. Algorithms for column generation

This paper deals with optimization problems of the form

min cx , Ax ! b ∈ R
m , x ∈ X := {xi : i ∈ I} ⊂ R

n , (1.1)

where the index set I is assumed finite (think of X as the set of integer points in
a bounded polyhedron). An equivalent formulation is Dantzig-Wolfe’s (integer)
master problem

min
∑

i∈I

(

cxi
)

λi ,
∑

i∈I

(

Axi
)

λi ! b ,
∑

i∈I

λi = 1 , λi ∈ {0, 1} , i ∈ I ,

in which the variable vector is λ ∈ {0, 1}|I|.

O. Briant: Gilco, 46 avenue Félix Viallet, 38000 Grenoble (France)

Ph. Meurdesoif, S. Michel, N. Perrot, F. Vanderbeck: MAB, Univ. Bordeaux 1, 351 cours de
la Libération, 33405 Talence (France)
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When solving such problems, it is standard to make use of a lower bound
obtained by relaxation. Denoting by conv (X) the convex hull of the set X , the
present paper is rather devoted to solving

min cx , Ax ! b ∈ R
m , x ∈ conv (X) (1.2)

or its Dantzig-Wolfe formulation: the (linear) master problem

min
∑

i∈I

(

cxi
)

λi ,
∑

i∈I

(

Axi
)

λi ! b ,
∑

i∈I

λi = 1 , λi ! 0 , i ∈ I . (1.3)

Remark 1.1. Needless to say, the points in conv (X) have the form
∑

i λixi, with
λ varying in the unit simplex.

Our framework could handle the unbounded case as well, considering a finite
set of rays cj : conv (X) would have the form

∑

i λixi +
∑

j µjcj , the µj being
just nonnegative (not restricted to sum up to 1); X could also be a mixed-integer
polyhedron; or also be the Cartesian product of several subsets, i.e. X =

∏

! X!

(when the constraint matrix defining X has a block diagonal structure, say).
Some of these “extensions” shall be illustrated when we come to specific

applications in Section 2. It is mainly for simplicity that here we restrict our
presentation to a single-block bounded polyhedron. !

Our aim is to solve the Dantzig-Wolfe formulation by column generation. At
the current step k of the process, a restricted master problem is solved, obtained
by restricting I to some Ik ⊂ I in (1.2) or (1.3); we will set correspondingly
Xk := {xi : i ∈ Ik}. This resolution provides essentially two outputs:

– a primal solution x̂ =
∑

λ̂ixi, which is a candidate to solving (1.2) or (1.3),
– a dual solution (uk, rk) ∈ Rm

+
× R associated with constraints Ax ! b and

∑

i λi = 1 respectively.
Then, the dual solution is used to price out columns in I \ Ik. For this, an opti-
misation subproblem or oracle is called upon to provide new columns of negative
reduced cost, if any: for the given u = uk, we minimize (possibly approximately)
(c − ukA)xi for i ranging over the whole of I, i.e. we consider the problem

min
x∈X

(c − uA)x (1.4)

at u = uk, where X can equally be replaced by conv (X).
From now on we will assume for simplicity that the oracle is exact and that

Ik = {1, 2, . . . , k}: for a given u, the oracle solves (1.4) exactly, and provides just
one optimal column, call it x(u), to be appended to Xk.

1.1. Standard column generation

The traditional – and most natural – restricted master problem is just (1.2) or
(1.3) with I replaced by Ik: we solve

min cx , Ax ! b ∈ R
m , x ∈ conv (Xk) , (1.5)
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which is the linear program

min
k

∑

i=1

λicx
i ,

k
∑

i=1

λiAxi ! b ,
k

∑

i=1

λi = 1 , λi ! 0 , i = 1, . . . , k . (1.6)

Note that feasibility must be enforced: the initial (1.5) or (1.6) must contain
a number of columns (possibly artificial) having in their convex hull some x
satisfying Ax ! b.

Suppose (1.5) or (1.6) has indeed a solution x̂ or λ̂ with

x̂ =
∑

λ̂ix
i, (1.7)

and multipliers (uk, rk). To check whether x̂ solves (1.2), we implicitly do full
pricing by solving (1.4) to obtain x(uk). Two cases can arise:

(i) Either xk+1 := x(uk) has negative reduced cost: (c − ukA)xk+1 + rk < 0;
this new column is appended to the “bundle” x1, . . . , xk and the process
is repeated, (note: with our definition of (uk, rk), a negative reduced cost
implies that xk+1 does not lie in conv (Xk)).

(ii) Or x(uk) has zero reduced cost: then all columns in I have nonnegative
reduced cost and (1.2) or (1.3) is solved.

Remark 1.2. Some tolerance can be inserted, to stop the algorithm when the
smallest reduced cost is “not too negative”, i.e. (c− ukA)xk+1 + rk ! −ε. Early
termination based on such tolerance results in approximate optimality; this is
the subject of Remark 1.3 below, where the concept of ε-optimality shall be
defined. %&

Insofar as we aim at solving (1.2), x̂ plays its role, of course. However, it is
important to understand that the key role is actually played by uk which, via
the column xk+1, really drives the algorithm toward convergence. Good uk’s are
those that are close to optimal multipliers for (1.2) or (1.3). It is therefore of
interest to analyze (1.5) or (1.6) in the dual space, the LP dual of (1.6) being
the “dual restricted master”

maxub − r , uAxi − r " cxi , i = 1, ..., k , (u, r) ∈ R
m
+

× R . (1.8)

1.2. Column generation seen in the dual space

For subsequent use, it is convenient to free oneself from the LP formalism and
to use general duality (see for example [16], [22, Chap.XII], [38, §1], [37, §1.2]).

To (1.2) we associate the Lagrange function

conv (X) × R
m ' (x, u) (→ L(x, u) := cx + u(b − Ax) = (c − uA)x + ub (1.9)

and the so-called dual function

Rm ' u (→ θ(u) := minx∈X L(x, u) = minx∈conv (X) L(x, u)
= (c − uA)x(u) + ub ;

(1.10)



4 O. Briant et al.

in the last expression, recall that x(u) denotes the answer of the oracle, i.e. an
argmin in (1.4). The dual problem associated with (1.2) is then

max {θ(u) : u ∈ R
m
+
} , (1.11)

which is the linear program

max
(u,s)∈Rm

+
×R

{s : s " ub + (c − uA)xi, i ∈ I} . (1.12)

The left part of Fig. 1.1 illustates this: the thick line represents the dual function
θ, which is the lower envelope of all the possible L(x, ·)’s, for x describing X –
or conv (X), which does not change the picture.

u uk

θ

L(x(u), u) = θ(u)

θk

θk(u)

L(x, ·)

u

cx

Fig. 1.1. The dual function θ (left) and its restricted version θk for k = 3 (right)

Performing the same operations on the restricted master, we introduce like-
wise the restricted dual function (right part of Fig. 1.1, where k = 3))

R
m ' u (→ θk(u) := min

x∈conv (Xk)
L(x, u) = ub + min

i=1,...,k
(c − uA)xi , (1.13)

which overestimates θ: θk(u) ! θ(u) for all u. The dual of (1.5) is then

max {θk(u) : u ∈ R
m
+
} , (1.14)

i.e.,
max

(u,s)∈Rm
+ ×R

{s : s " ub + (c − uA)xi, i = 1, . . . , k} . (1.15)

Setting s = ub − r, we recognize in this latter program the dual (1.8) of (1.6): s
(1.8) [resp. r] stands for θk(u) [resp. ub− θk(u)]; r can be understood as a fixed
cost in the primal oracle (1.4). Observe here and now that u solves (1.14) when
(u, θk(u)) solves (1.15), or equivalently when (u, ub − θk(u)) solves (1.8).

Column generation for (1.6) is row generation for its dual (1.8). Thus, the
algorithm of §1.1 seen in the dual is a cutting-plane procedure to maximize θ:
at each iteration, we maximize θk instead. Then we can write

θ(u) " θk(u) " θk(uk) for all u ∈ Rm
+

. (1.16)

To check whether the iterate uk thus obtained does maximize θ, we compute the
true value θ(uk): we call the oracle (1.4) or (1.10) to obtain x(uk). Said otherwise,
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we check whether uk is feasible for the unrestricted dual master (1.12), calling
on (1.4) or (1.10) to identify the most violated inequality. The same two cases
(i), (ii) of §1.1 can arise, namely:

(i) Either xk+1 := x(uk) defines a violated inequality:

θk(uk) = sk > ukb + (c − ukA)xk+1 = θ(uk) ;

then, the new cut associated with xk+1 is appended to the bundle and the
process is repeated.

(ii) Or all constraints in I are satisfied, i.e., θ(uk) = θk(uk); then (1.16) shows
that uk maximizes θ, i.e. (1.12) is solved.

Remark 1.3. From the oracle (1.4), the number

sk − ukb − (c − ukA)xk+1 = θk(uk) − θ(uk)

introduced in (i) is the largest violation of the constraints in (1.12). It is also
the (opposite of the) smallest reduced cost of Remark 1.2. Besides, the primal-
dual problems (1.5), (1.6), (1.8), (1.14), (1.15) have all the same optimal value:
sk = θk(uk) = cx̂, where we have used (1.7). Thus, this number is also the
duality gap cx̂ − θ(uk).

Just as in Remark 1.2, the algorithm can be stopped when the above number
is “sufficiently small”, i.e. when cx̂ − θ(uk) " ε. This means that x̂ and uk are
ε-optimal, i.e. cx̂ and θ(uk) are within ε of the common optimal value in the
primal-dual pairs of problems (1.2) or (1.3), (1.11) or (1.12). The tolerance ε
is measured in the same units as the objective function of (1.2) and can be
conveniently controlled.

However, because the sequence θ(uk) is not monotone, a more efficient stop-
ping test will use the best dual iterate

û := argmax{θ(ui) : i = 1, . . . , k} (1.17)

(assumed unique just for simplicity). In fact, if

cx̂ − θ(û) " ε , (1.18)

then cx̂ and θ(û) are ε-optimal. The best dual iterate û will play an important
role in the sequel. !

Primal-dual relations coming from standard LP theory can be derived in our
convex-analysis language. The set of optimal solutions in (1.13) (for given u),
namely

X̂k(u) :=
{

x ∈ conv (Xk) : L(x, u) = θk(u)
}

(1.19)

is important for this. If u solves (1.14), X̂k(u) gathers all columns associated to
active constraints in (1.8) or (1.15), or equivalently with zero reduced cost in
(1.6).
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Theorem 1.4.

(i) An optimal solution uk of the restricted master (1.14) is characterized by
the existence of some x̂ ∈ X̂k(uk) satisfying complementarity slackness:

Ax̂ − b ! 0 , uk ! 0 , uk(Ax̂ − b) = 0

(abbreviated as 0 " Ax̂ − b ⊥ uk ! 0).

(ii) The x̂’s described in (i) coincide with the optimal solutions of (1.5).
(iii) With û defined in (1.17), these x̂’s are optimal in (1.2) if cx̂ = θ(û).

Proof. Elementary convex analysis says that θk is concave and its subdifferential
(the set of g ∈ Rm such that θk(v) " θk(u) + (v − u)g for all v ∈ Rm) is

∂θk(u) = ∪{g = b − Ax : x ∈ X̂k(u)} ;

see for example [23, §D4.3-4] or [22, §VI.4.3-4]. Then uk maximizes θk if and
only if some subgradient lies in the normal cone to Rm

+
at uk; this is (i).

For (ii), invoke for example [51, Thm. 28.1] or [22, Thm. VII.4.4.3]: the pairs
(x̂, uk) solving the pair of dual problems (1.5), (1.14) are the saddle-points of
the Lagrangian (1.9), i.e. those feasible pairs satisfying

∀(x, u) ∈ conv (Xk) × R
m
+

, L(x, uk) ! L(x̂, uk) ! L(x̂, u) .

It is not difficult to check that this repeats (i).
As for (iii), set ε = 0 in (1.18). !

Needless to say, an x̂ described in (i) can be expressed via (1.7) – with λ̂
optimal in (1.6) – in terms of a number of columns satisfying cxi−ukAxi−s = 0,
i.e. L(xi, uk) = θk(uk); see (1.19)!

Let us conclude this introduction to standard column generation:
– It consists in merely restricting X to Xk in (1.2), leaving everything else

unchanged. In the dual space, θ is correspondingly “impoverished” to θk. In
nonlinear optimization, this is known as the cutting-plane method of Kelley
[24] or Cheney-Goldstein [7].

– It needs a number of columns to start.

– It can be desperately slow: an example constructed by A.S. Nemirovskii ([46,
§4.3.6], reproduced in [22, §XV.1.1]) shows that as many as (1/ε)m/2 calls to
the oracle may be necessary to reach ε-optimality.

– On the other hand, it directly provides a feasible primal point x̂ which satisfies
complementarity slackness with uk and is a distinguished candidate to solving
(1.2).

– As a result, it can be safely stopped as soon as the window cx̂ − θ(uk) or
cx̂ − θ(û) is small.

To finish this section, note that the method of subgradient [57,12,49] is also
a valid candidate to maximize θ, as well as the ellipsoid method [54,45], which
reaches accuracy ε after (log 1/ε)m calls. Both methods behave poorly in prac-
tice, though. Incidentally, we mention a little-known fact: the subgradient met-
hod does provide a substitute for x̂, as well as a stopping criterion resembling
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(1.18); see [55,1,34]. Also related is the volume algorithm of [3], considered in
§3 below.

1.3. Stabilized column generation

Seen in the dual space, where the problem is to maximize θ, the rationale for
(1.8) is the hope that the restriction to a subset of k columns gives a good
approximation (1.13) of the true dual function (1.10): θk - θ, so that maximizing
θk should do good in terms of maximizing θ. Figure 1.2 reproduces the right part
of Fig. 1.1, in which the horizontal line is the level θ(û) of the best answer of the
oracle – see (1.17). Because θk ! θ, the optimal (u∗, θ(u∗)) clearly lies somewhere
in the “safeguard polyhedron” P of Fig. 1.2. Standard column generation chooses
uk as the highest point in P .

uk

θk

θk(u)

û

Fig. 1.2. The safeguard polyhedron P for k = 3

Nemirovskii’s example warns us that choosing this highest point may be
far too optimistic and we may well have θ(uk) . θk(uk). It is advisable to
adopt more conservative strategies, known as stabilized column generation, in
which uk is replaced by some less high but more central point in P . Referring
for example to [6] for a wide overview, we restrict here our attention to the
following stabilization scheme. Instead of θk, some other function is maximized,
the dual restricted master (1.14) being replaced by

max
u∈Rm

+

θ̃k(u) where θ̃k(u) := θk(u) − S(u − û) . (1.20)

Here the stability center û is defined in (1.17); the stabilizing function S should
have 0 as a minimum point, in order to pull uk toward û. Up to some minor
variations, these methods work as follows.

Algorithm 1.5 (Schematic stabilized column generation)

Step 0. Choose an initial stability center û. Select an initial set of k columns.
Step 1. Compute an optimal solution uk of the stabilized dual restricted master

problem (1.20).
Step 2. Call the oracle (1.4) at uk to obtain the new column xk+1 and the dual

value θ(uk) = L(xk+1, uk). Perform the stopping test.
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Step 3. If θ(uk) > θ(û) set û = uk.
Step 4. Increase k by 1 and go to Step 1. !

Step 3 is motivated by (1.17). The initial û may be set to any heuristic
estimate of a dual optimal solution to (1.3); as a default, û may be initialized
to 0. Most such algorithms may start at k = 0 with no initial column, u being
initialized to û in Step 1. Standard column generation uses S ≡ 0 and does need
a nonempty set of initial columns.

Beware that, in the stabilized version, uk no longer maximizes θk, so Thm. 1.4
does not apply. The role of that theorem was to allow the construction of the
primal candidate x̂ from the optimality conditions in the dual restricted master
(1.8), or as a solution of (1.6), viewed as the dual of (1.8). Stabilized duals of the
form (1.20) will provide an alternative candidate – denoted by x̃ hereafter. To
obtain this candidate by solving an optimization problem, we need to define a
dual of (1.20) resembling (1.5). This dualization is indeed possible via conjugate
calculus (see [22, Chap. XI] or [23, Chap.E]). Specifically, introduce the conjugate
function

S∗(g) := max
v∈Rm

[vg − S(v)] ; (1.21)

g shall be interpreted as a slack for constraints Ax ! b, while v stands for the
deviation between u and the stability center û. As will be seen in Thm. 1.7 below,
a convenient dual to (1.20), called the Fenchel dual , is then

min cx + ûg + S∗(g) , Ax ! b − g , (x, g) ∈ conv (Xk) × R
m . (1.22)

This is admittedly a rather abstract problem, it will be made more precise when
S is specified.

Remark 1.6. A way to obtain (1.22) is to formulate (1.20) as

max
[

θk(u) − S(v)
]

, v = u − û , (u, v) ∈ R
m
+

× R
m

and to apply Lagrangian relaxation: associating a multiplier g ∈ Rm with the
constraint v = u − û, the Lagrangian θk(u) − S(v) + (v − u + û)g produces the
dual

min
g∈Rm

[

max
u!0

(

θk(u) − ug
)

+ S∗(g) + ûg
]

.

Tedious calculations show that this coincides with (1.22).
Also, we mention two situations where (1.22) simplifies:

– An equality-constrained master problem (1.5) produces Ax = b − g in (1.22),
which becomes

min cx + û(b − Ax) + S∗(b − Ax) , x ∈ conv (Xk) .

The connection with (1.5) is more transparent; in particular, the above min-
imand discloses the “augmented Lagrangian” L(x, û) + S∗(b − Ax), with an
augmenting function S∗. Remembering that S is minimal at 0, it can be shown
that S∗ is also minimal at 0, and therefore pulls b − Ax toward 0.
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– Standard column generation uses S ≡ 0, whose conjugate is clearly

S∗(g) =

{

0 if g = 0 ,
+∞ otherwise

=: i{0}(g) ,

the so-called indicator function of {0}: the term S∗(g) forces g = 0 in (1.22),
which becomes exactly (1.5). !

We can now state an adapted version of Thm. 1.4:

Theorem 1.7. Assume that S is a convex function over Rm. Consider an op-
timal solution uk of (1.20) such that S(v) < +∞ for all v close to uk − û.
Then:

(i) There exist x̃ ∈ X̂k(uk) of (1.19) and a subgradient g̃ ∈ ∂S(uk − û) such
that 0 " (Ax̃ − b + g̃) ⊥ uk ! 0.

(ii) The (x̃, g̃)’s described in (i) coincide with the optimal solutions of (1.22).
(ii’) If g̃ = 0 in (i), then the corresponding x̃ is optimal in (1.5).

(iii) If, in addition, cx̃ = θ(û), then x̃ is optimal in (1.2).

Proof. The local finiteness of S is just a technical “qualification” assumption, to
guarantee in (1.20) that ∂θ̃(uk) = ∂θk(uk)− ∂S(uk − û) (see [22, §XI.3.5]; other
assumptions are possible, for example that θ̃ is polyhedral). Then (i) goes as in
Thm.1.4(i); (ii) is the so-called Fenchel duality theorem and the rest is clear. !

Thus, x̂ of §1.1 is replaced by x̃, which can be obtained by proving optimality
of uk in (1.20), or by directly solving its associated “bidual” (1.22). As before, x̃
can be expressed via (1.7) in terms of a number of columns satisfying L(xi, uk) =
θk(uk). What is missing is feasibility – and a fortiori complementarity: Ax̃ 1!
b, unless g̃ " 0. As a result, two things must be checked before a stabilized
algorithm can be stopped: cx̃ − θ(û) must be small as before, but the positive
part of g̃ must also be small (so that x̃ is approximately feasible). See [14] for a
convergence study of general stabilized methods.

Several choices have been proposed for S, which we briefly review now.

1.3.1. Boxstep A first stabilizing device forces u in an %∞-box around û. The
stabilizing problem is

max {θk(u) : u ! 0, ‖u − û‖∞ " δ} , i.e. max
u∈Rm

+

θk(u) − iB∞

δ
(u − û) ; (1.23)

S is here the indicator function of the %∞-ball B∞
δ of radius δ and centered at

the origin, see Fig.1.3.
This is the boxstep method of [42]. Its original aim was not much to reduce

the number of calls to the oracle, but rather to ease the resolution of (1.6),
replacing it by

max θ(u) , ‖u − û‖∞ " δ , u ∈ R
m
+

.

The stability center û was chosen a priori; it was not moved as in (1.17) but
only after the above problem was fully solved (unless ‖uk − û‖∞ < δ, indicating
overall optimality and termination of the column generation process).
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v

δ

S(v) = iB∞

δ
(v)

Fig. 1.3. The indicator function of B∞

δ

The conjugate (1.21) is easy to compute when S is an indicator function: this
gives i∗B∞

δ
(g) = δ‖g‖1. According to Remark 1.6 and Thm.1.7, Boxstep therefore

produces an x̃ solving

min cx + ûg + δ‖g‖1 , Ax ! b − g , (x, g) ∈ conv (Xk) × R
m . (1.24)

Both problems (1.23) and (1.24) can be formulated as linear programs; this will
be done in §1.3.3 below.

1.3.2. Polyhedral penalties A series of stabilizing terms S have been subse-
quently proposed, in which the stabilized dual restricted master (1.20) is a more
and more sophisticated LP. Some of the corresponding stabilizing terms are de-
picted in Fig.1.4.

δ′
v v v

δ′ δ

S2(v) S3(v)S1(v)

s′

s
s

Fig. 1.4. Stabilization by "1 penalty

In [25], S is V -shaped (left part of Fig.1.4): (1.20) has the form

max
u∈Rm

+

θk(u) − s
m

∑

j=1

|uj − ûj| , i.e. max
u∈Rm

+

θk(u) − s‖u − û‖1 , (1.25)

with possibly 2m penalty coefficients s+
j and s−j instead of the single s. Interest-

ingly enough, this stabilization is the dual counterpart of Boxstep: in fact, either
LP calculations or standard convex analysis show that (s‖ · ‖1)∗ = iB∞

s
and the

Fenchel bidual (1.22) here takes the form

min cx + ûg , Ax ! b − g , ‖g‖∞ " s , (x, g) ∈ conv (Xk) × R
m , (1.26)

which can again be formulated as a linear program.
The penalty used in [44] has a pair of breakpoints (central part of Fig.1.4),

again with possibly adaptable slopes s, s′ and breakpoints δ′. The stabilizer of
the right part of Fig.1.4 is proposed in [5], where the management of û is inspired
by boxstep, rather than (1.17).

A common feature of these stabilizations is the necessity to manage carefully
their parameters s, δ, etc. For example:
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– In the boxstep stabilization of Fig. 1.3, a large δ stabilizes nothing, while a
small δ slows down the iterates unduly.

– The form S1 of Fig. 1.4 requires s → 0, to force a small g̃ in Thm. 1.7 – see
(1.26).

1.3.3. Polyhedral stabilization in the primal The main merit of the stabiliza-
tions reviewed so far is to allow LP formulations, both in the primal and dual
spaces – as was alluded to for (1.24) and (1.26). Let us make explicit such cor-
responding LP programs in the case S(v) = s

∑m
j=1 max {0, |vj |− δ}: the left

part of Fig. 1.5 depicts the one-dimensional component j of S, which can be
represented by

Sj(vj) = s min {ρj : ρj ! 0, ρj ! vj − δ, ρj ! −vj − δ} . (1.27)

δ
vj

Sj(vj)

s

s

δ

S∗

j (gj)

gj

Fig. 1.5. An illustrating stabilization (and its conjugate)

The LP formulation of (1.20) is here






















max ub − r − s
∑m

j=1 ρj ,
uAxi − r " cxi i = 1, . . . , k ,
uj − ρj " ûj + δ j = 1, . . . , m ,
−uj − ρj " −ûj + δ j = 1, . . . , m ,
u, ρ ! 0 ,

multipliers λi

multipliers g+

j

multipliers g−

j

whose LP dual is (Aj being the jth row of A)


























min
∑k

i=1(cx
i)λi +

∑m
j=1(δ + ûj)g

+

j +
∑m

j=1(δ − ûj)g
−

j ,
∑k

i=1 λi = 1 ,
∑k

i=1(Ajxi)λi + g+

j − g−

j ! bj j = 1, . . . , m ,
g+

j + g−

j " s j = 1, . . . , m ,
λ, g+, g− ! 0 .

(1.28)

This stabilization amounts to relaxing the constraints Ax ! b by introducing
slack variables g+

j and g−

j , whose sum is bounded by s, and with marginal costs
δ + ûj and δ − ûj respectively.

LP formulations are possible because the penalty function S and its conju-
gate S∗ can be written via linear relations. An illustrative exercise is then to
derive the “Fenchel bidual” (1.22) on the above example, the fundamental op-
eration being to compute the conjugate S∗. This can be done by rather elegant
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conjugacy calculus, or by tedious calculations starting from (1.27). In either case,
our Fenchel bidual (1.22) boils down to

min cx + ûg + δ‖g‖1 , Ax ! b − g , ‖g‖∞ " s , x ∈ conv (Xk) .

Setting s = +∞ [resp. δ = 0] reproduces (1.24) [resp. (1.26)]. Then, additional
calculations result in (1.28) (a key observation is that the constraints g+

j +g−

j " s
can be replaced by g+

j " s, g−

j " s since both g+

j and g−

j cannot be simultaneously
positive).

1.3.4. Euclidean penalty: bundle methods Contemplating the sequence of sta-
bilizers of Fig. 1.4 suggests that they tend to mimic a quadratic function – which
takes δ and s “infinitely small”, and “infinitely many” breakpoints. In fact, stabi-
lization is a rather fundamental paradigm in nonlinear programming (not limited
to Kelley’s method) and there are good reasons to use quadratic stabilizers; see
some explanations in [22, §II.2.2(c)].

Bundle methods, aimed at maximizing a concave function such as the present
θ, go back to [35]. In their latest form, initiated in [36,27] and fully described in
[22, Chap. XV], they are indeed a stabilized Kelley’s method, with a Euclidean
norm for S in (1.20): uk solves

max
u∈Rm

+

θk(u) − 1

2t
‖u − û‖2 (1.29)

(at this point, we mention a technical detail motivated by non-polyhedral θ’s: û
is not exactly the best point of (1.17): actually, Step 3 of Alg. 1.5 moves û to the
new iterate uk only if this results in a “definite” increase for θ).

Clearly, S∗(g) = t
2‖g‖

2, so the Fenchel bidual (1.22) writes

min cx + ûg +
t

2
‖g‖2 , Ax ! b − g , (x, g) ∈ conv (Xk) × R

m . (1.30)

Solving this problem with respect to g for fixed x gives the explicit value g =
max {b − Ax,−û/t}; plugging it back into the objective function discloses the
augmented Lagrangian of [52]. A rather compact writing of the resulting problem
is

min
x∈conv (Xk)

cx +
1

2t

∥

∥(t(b − Ax) + û)+‖2 − 1

2t
‖û‖2 .

Remark 1.8. Assume an equality-constrained master problem (1.5), in which case
u is unconstrained in (1.29). As mentioned in Remark 1.6, the Fenchel bidual
simplifies to

min cx + û(b − Ax) +
t

2
‖b − Ax‖2 , x ∈ conv (Xk) . (1.31)

The augmented Lagrangian is now more transparent: instead of imposing the
constraint Ax = b as in (1.5), we
– dualize it via û(b−Ax) (observe the careful choice of the dual variable, which

is set to the stability center û),
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– and penalize it via t
2‖b − Ax‖2, which limits constraint violations by the can-

didate x̃. !

The relevant primal-dual relations now rely on a crucial output of the quad-
ratic restricted master (1.29):

g̃ :=
uk − û

t
. (1.32)

Theorem 1.9. Use the notation (1.32).

(i) The unique optimal solution uk of (1.29) is characterized by the existence
of some x̃ ∈ X̂k(uk) such that 0 " (Ax̃ − b + g̃) ⊥ uk ! 0.

(ii) Together with g̃, the x̃’s described in (i) coincide with the optimal solutions
of (1.30).

(ii’) If uk = û then these x̃’s coincide with the optimal solutions of (1.5).

(iii) In case (ii’), they are also optimal in (1.2).

Proof. That (1.29) has a unique optimal solution is clear. Then apply Thm. 1.7.
Here (1.22) is (1.30) and ∂S(u − û) is clearly the singleton (u − û)/t, providing
the explicit value for g̃ = (uk − û)/t.

In case (ii’), we have 0 ∈ ∂θk(uk)−0, hence uk maximizes θk. Besides, g̃ = 0
in (i) shows that x̃ is feasible in (1.5) and (1.2). Finally, observe in Alg. 1.5 that
θk(û) = θ(û). Thus, û maximizes θ and (iii) is proved. !

The proof of (iii) deserves a comment. First observe that a key is the existence
of the gradient g̃ = ∇S(uk − û). Indeed (iii) holds in Thm. 1.7 as well, whenever
S in (1.20) is a differentiable function. Also, (iii) seems paradoxical: it implies
that checking cx̃ = θ(û) is unnecessary to stop the process. The trickery here
is that the oracle has actually been already called at û, during some previous
iteration. This guarantees the last equality in the chain

∀u ∈ R
m, θ(u) " θk(u) " θk(uk) = θk(û) = θ(û) .

The crucial g̃ of (1.32) measures the “lack of complementarity” between x̃ and
û (or the “lack of optimality” of the latter); and its convergence to 0 conditions
the convergence of a bundle method. This latter property does not depend much
on t: it holds for example with t ≡ 1. However practical efficiency does require
a t = tk adapted at each iteration.

1.3.5. ACCPM The Analytic-Center Cutting-Plane Method of [17] replaces θk

by a barrier function as follows. With respect to the variable (u, s) ∈ Rm
+

× R,
the safeguard polyhedron P of Fig. 1.2 is defined by the k constraints of the dual
restricted master (1.15), and a level constraint, namely

%i(u, s) := L(xi, u) − s ! 0 , i = 1, . . . , k , and %0(u, s) := s − θ(û) ! 0 .

The so-called analytic center of P is then the unique point maximizing the
barrier function B(u, s) :=

∑k
i=0 log %i(u, s). Note that replacing θk by B is
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a stabilization in itself: the analytic center certainly satisfies the constraints
strictly (see Fig. 1.2 again). The constraints %i are actually suitably scaled, and
a complexity analysis [18] shows that a few Newton iterations maximizing B
suffice to guarantee good overall convergence. In a variant of the method [47,
48], an extra quadratic stabilizer 1

2t‖u−û‖2 is subtracted from B and convergence
is improved; see also [19].

2. Numerical comparisons

We have compared numerically the bundle stabilization of §1.3.4 with the stan-
dard Kelley algorithm of §1.1. Ideally, a comparison with the most advanced
LP stabilizations would be interesting. However, the necessity of application-
specific tuning of various parameters makes it impractical. The applications used
for these comparative tests are the cutting-stock, vextex-coloring, capacitated
vehicle-routing, multi-item lot-sizing, and traveling-salesman problems. They il-
lustrate the diversity of models that can arise when X has a more complex struc-
ture, as alluded in Remark 1.1. Each application is introduced by presenting the
specific form taken by the original integer program, the associated Lagrangian
dual and its Dantzig-Wolfe formulation. First we give some implementation de-
tails.

2.1. Implementations

The algorithms described in §1.1 and §1.3.4 are implemented using the environ-
ment of BaPCod , a generic Branch-And-Price Code [59]. XpressMP[9] is used for
solving master linear programs while customized solvers are used for the oracles.
We emphasize that, in all of our tests below, the oracle minimizes the Lagrangian
exactly (returns the most negative reduced cost), even though this may not be
the usual practice in column generation.

Kelley. Two versions are considered: Kbasic and Krich, which differ by their
initial columns. These “columns”, only characterized by their cost and constraint
value, are purely artificial: they do not correspond to any element of X , or even
of conv (X). As a result, they must be eliminated from the solution x̂ of the
master before a reliable feasible cost cx̂ can be used for the stopping test.
– In the basic version Kbasic, the algorithm of §1.1 is initialized with a single

artificial column – denote it by x1 – with constraint value Ax1 ! b, and whose
cost cx1 is set to an estimate of the optimal value of (1.1).

– Krich is initialized with m artificial columns. Their constraint values form
the canonical basis of Rm: Aj being the jth row of A, Ajxi = 1 if i = j, 0
otherwise; and cxi = αûi where û is an application-specific heuristic estimate
of the optimal dual solution of (1.2) and α is a factor, set to 1.2 unless otherwise
specified1.

1 The artificial xi’s are actually rays: it is only large enough multiples of them that contribute
feasibility.
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For both versions, the algorithm is stopped when (1.18) holds with ε set at 10−6.
However, if artificial columns are in the primal solution λ̂ at that stage, their cost
is increased by the factor α and the column generation procedure is continued.

Remark 2.1. Let j = 1, . . . , m index the artificial columns in Krich and call gj

their multipliers: the kth primal master is


















min
∑k

i=1(cx
i)λi + α

∑m
j=1 ûjgj ,

∑k
i=1 λi = 1 ,

∑k
i=1 Ajxiλi + gj ! bj j = 1, . . . , m ,

λ, g ! 0 .

This resembles (1.28), with g− fixed to 0, δj = (α − 1)ûj; also s is set to +∞.
The dual of the above program is















maxub − r ,
uAxi − r " cxi i = 1, . . . , k ,
uj " αûj j = 1, . . . , m ,
u ! 0 .

Thus, Krich resembles a sort of “static half-boxstep”, in which û remains fixed
and u is bounded from above only (0 being a natural lower bound). The size of
the box is increased when the artificial cost is increased (to force the artificial
variable out of the optimal LP solution). !

Bundle. Our implementation follows rather accurately [41], in particular for the
management of the stabilizing parameter t = tk. The restricted master prob-
lem (1.29) is solved by the QP solver of K.C. Kiwiel [26,29]. Unless otherwise
specified, we start with an empty initial set of columns. Most of the time, two
versions are tested: bundle, where the initial iterate û is problem-dependent,
and bundle0 initialized at û = 0. The algorithm needs an initial value for t, and
this is obtained from an estimate of the optimal value of (1.2). The algorithm
stops when (1.18) holds, together with ‖g̃‖ " ε

√
m (meaning that x̃ satisfies the

dualized constraints within ε on the average). The same value ε = 10−6 is used
throughout, for bundle and for Kelley.

Feasible primal points. Once the artificial columns are properly eliminated, Kel-
ley’s method provides a feasible candidate x̂ at each iteration; the bulk of the
work is then to improve this feasible solution. By contrast, primal feasibility is
only asymptotic for a bundle method, which stops as soon as a feasible enough
primal point is obtained – in a way, this is predicted by Theorem1.9(iii). Reach-
ing primal feasibility is thus the whole business of a bundle method. We have
therefore considered bundle+K, a variant aimed at combining the two ap-
proaches: bundle generates the sequence of dual iterates uk, while Kelley is used
to obtain a primal solution x̂′ based on which we perform an additional test at
each iteration, in the hope to stop the algorithm earlier. Thus, bundle+K is as
follows (compare with Algorithm1.5).
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Algorithm 2.2 (Combination of bundle and Kelley)

Step 0. Choose an initial stability center û. Select an initial set of k columns.
Step 1. Compute the optimal solution uk of the quadratic restricted master

problem (1.29).
Step 1’. Solve the linear restricted master problem (1.6) to obtain x̂′. Stop if

cx̂′ − θ(û) " ε.
Step 2. Call the oracle (1.4) at uk to obtain the new column xk+1 and the dual

value θ(uk) = L(xk+1, uk). Perform the stopping test.
Step 3. If θ(uk) > θ(û) set û = uk.
Step 4. Increase k by 1 and go to Step 1. !

Our numerical experiments have been performed on a PC pentium 3, 1 Ghz.
Most of the tables below record the number of iterations and CPU times.
– One iteration means one execution of the oracle and of the master. Besides

the number of iterations, the tables also record the total number of columns
generated (including the artificial one for Kbasic, but not for Krich and
including the last subproblem solution with zero reduced cost when stopping
does not arise before that). Note that, for a stabilized algorithm such as bundle,
the oracle may answer the same column to several calls, even though these calls
are made with different u’s.

– The total CPU time is spent respectively in the oracle and in the master,
plus an overhead which may not be negligible. Note that when the oracle is
exponential (as is the case for all applications but the multi-item lotsizing and
the TSP), its computing time may vary in fairly large proportions.

2.2. The cutting stock problem (CSP)

The problem is to minimize the number of stock pieces of width W , used to meet
demands d1, . . . , dm, for items j = 1, . . . , m, to be cut at their width w1, . . . , wm.
We assume that every wj is smaller than W and that there are enough stock
pieces, say N , available for a feasible cutting: for example N =

∑

j dj is certainly
enough.

Let us put the resulting problem in the framework of the present paper. Call
y! ∈ {0, 1} an indicator of whether stock piece % is used, and z!

j ∈ N the quantity
of item j cut in stock piece %. Then, a possible formulation for (1.1) is



















min
∑N

!=1 y! ,
∑N

!=1 z!
j ! dj for j = 1, . . . , m,

∑m
j=1 z!

jwj " Wy! for % = 1, . . . , N ,

y! ∈ {0, 1}, z!
j ∈ N for j = 1, . . . , m, % = 1, . . . , N .

(2.1)

Introducing the variable vector x = (y, z), call Ax ! b the demand-covering
constraints

∑

! z! ! d and put the other constraints in X ; the Lagrangian (1.9)
is then

L(y, z, u) =
N

∑

!=1

(

y! − uz!
)

+ ud .
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It is decomposable with respect to % and its minimization produces the dual
function (1.10) which takes the form

θ(u) = du +
N

∑

!=1

min
{

y! − uz! : wz!
" Wy! , y! ∈ {0, 1}, z! ∈ N

m
}

.

This is the juxtaposition of N identical optimization problems, which can be
solved by inspection on y!: one solves the knapsack problem2

maxuz , wz " W , z ∈ N
m (2.2)

to obtain an optimal solution z(u) – we drop the useless index %. The minimum
value in the above curly bracket is then min{0, 1 − uz(u)}, so that the dual
function has the value

θ(u) = du +

{

0 if uz(u) " 1 ,
N(1 − uz(u)) otherwise .

(2.3)

An alternative presentation follows the Dantzig-Wolfe model (1.3). Let I
enumerate solutions x = (y, z), where z is feasible for (2.2) and y is the associated
indicator variable. The problem can be formulated as

min
∑

i∈I

yiλi ,
∑

i∈I

ziλi ! d ∈ R
m ,

∑

i∈I

λi " N , λi ! 0 , i ∈ I .

Here
∑

i λi " N is inherited from the original convexity constraints
∑

i λ
!
i = 1 as-

sociated with each stock piece: as stock pieces are identical, convexity constraints
can be aggregated; the resulting constraint can be relaxed to a "-constraint since
(y, z) = 0 is a solution of I. They express that the total number of available stock
pieces is limited. Our N being an overestimate of the actual number of stock
pieces used, this constraint is not binding and can be dropped: the formulation
becomes

min
∑

i∈I

λi ,
∑

i∈I

ziλi ! d ∈ R
m , λi ! 0 , i ∈ I , (2.4)

whose dual is
max du , uzi " 1 , i ∈ I , u ∈ R

m
+

. (2.5)

Remark 2.3. It is interesting to observe that the formulation (2.5) of the dual is
actually a nonlinearly constrained problem, namely

max du , h(u) " 1 , u ! 0 ,

where
h(u) := max

wz"W
uz = uz(u) .

In other words, the oracle delivers the value of a dual constraint function h
rather than a dual objective function θ. From this point of view, maximizing
(2.3) appears as a so-called exact penalty approach to solve (2.5): the term
N(1 − uz(u)) imposes a price to pay for infeasible u’s. !

2 The knapsack solver proceeds by transforming the problem into a multiple-class binary
knapsack problem and solves it using an extension of the standard branch-and-bound algorithm
of Horowith and Sahni, as presented in [58].
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For this application, we compare in Tables 2.1 and 2.2 the two versions of Kel-
ley, the standard bundle method, and the version bundle+K of Algorithm2.2.

For Kbasic, the cost of the unique artificial column is set to 5
P

i widi

W 6, a lower
bound on the required number stock pieces. For Krich, the artificial column
costs are set to αû with α = 1.2 and û := w/W . This value of û solves the
dual of the LP relaxation of (2.1); it turns out to be a very good estimation
of the optimal solution to the Lagrangian dual. As for bundle, we tested two
initializations:

– bundle 1
m : û = 1/m to test a poor initialization;

– bundle: û = w/W , an accurate initialization.

For bundle+K, û = w/W , and the master used for Kelley includes the same
articial column as in Kbasic. We also report on tests where the algorithm is
initialized with the columns of an initial incumbent primal solution, obtained
via a first-fit decreasing heuristic. These versions are denoted by Kelley-Inc,
bundle-Inc, and bundle+K-Inc. Kelley-Inc is initialized with the columns of
the heuristic solution only (no artificial columns are used). The counter “cols”
in the tables includes these heuristic columns.

Also, the stopping test of Remark 1.3 is strengthened: knowing that the op-
timal value to (2.1) is integer, the dual bound is rounded-up to the next integer;
earlier stop may occur when a primal bound is available (note: such is the case
with Kelley but not with bundle).

Table 2.1 concerns the results on 9 industrial instances, whose number m of
items ranges from 7 to 33; N is specified in the data. Table 2.2 gives the same
statistics on 20 randomly generated instances, having 50 items each; the average
demand is 100 and the widths are drawn uniformly in [500,5000], while the
wideroll width is 10000 and N = 2500. The fastest methods seem to be Kbasic

and Kelley-Inc, while the fewer iterations are with Kelley-Inc and bundle+K-
Inc. An important observation is that the number of calls to the oracle and the
total time spent in the oracle are somehow anti-correlated: more time is spent in
the oracle when it is called by a stabilized method. In fact, the more expensive
oracles are those called by the end of the algorithms, when u and w tend to be
collinear vectors: this behaviour is illustrated by Fig. 2.1, obtained with one of
the random instances. A final observation is that the times spent in the master
are (small and) comparable for all variants, whether this master is the LP (1.6)
or the QP (1.30).

In another series of runs, we consider a variant of CSP: the number of items
j to cut must take a value within a prescribed interval [dj , dj ]. The objective is
then to minimize the waste (this would be equivalent to minimizing the number
of stock pieces if the demands were fixed). The resulting master takes the form

min
∑

i∈I

(

W − wzi)λi , d "
∑

i∈I

zjλi " d , λi ! 0 , i ∈ I .

In this variant, convergence is no longer truncated by rounding dual bounds
(the objective value is no longer an integer). The test problems are the same,
but with a 5% tolerance on production: dj = 70.95 dj8 and dj = 51.05 dj6.
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Counters Timers (in seconds)
Master iter cols oracle master total
Kbasic 42 43 .38 .03 .52
Krich 29 29 2.82 .01 2.91

bundle 1
m

90 52 6.86 .07 7.04
bundle 43 33 42.57 .03 42.68

bundle+K 38 32 38.20 .05 38.37

Kelley-Inc 24 49 .12 .03 .25
bundle-Inc 41 56 40.47 .40 40.63

bundle+K-Inc 25 49 6.33 .13 6.55

Table 2.1. CSP: averages on 9 industrial instances with 7 to 33 items

Counters Timers (in seconds)
Master iter cols oracle master total
Kbasic 235 236 3.45 .50 4.51
Krich 142 142 3.15 .21 3.72

bundle 1
m

246 185 12.30 .54 13.37
bundle 163 111 26.51 .27 27.17

bundle+K 155 109 25.16 .39 26.08

Kelley-Inc 136 211 3.36 .20 4.61
bundle-Inc 164 186 26.94 .40 28.70

bundle+K-Inc 131 170 20.18 .46 22.00

Table 2.2. CSP: averages on 20 random instances with 50 items

oracle time

iterations

80 160 24080 160 24080 160 240

Kbasic
Krich

bundle

Fig. 2.1. CSP: oracle computing time along iterations

A possible heuristic to define û is as follows. Let R be an upper bound on
the optimal waste (obtained by solving the first variant). Then:

– set uj = Rwj
P

k wkdk
for the covering constraints

∑

i ziλi ! d;

– set uj = R

wj
P

k

dk
wk

for the packing constraints
∑

i ziλi " d.

Intuitively, the portion of the waste induced by a covering constraint is propor-
tional to the width of the item, while the waste induced by the production upper
bounds is inversely proportional to the usefulness of the item in filling the holes
(the more useful items being the small ones).

The results for this CSP variant are given in Tables 2.3 and 2.4. In these
particular experiments, the QP (1.30) was cold-started at each iteration, even
though its k+1st execution could take advantage of the kth one; a comparison of
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the master timers with the previous tables illustrates the benefit of warm starts.
For Krich, we define artificial column cost as αû with α = 1.1. The initial-
ization bundleW&0 refers to using û as defined above for covering constraints
but using 0 for packing constraints. For bundle and bundle+K, we use û as
defined above. To obtain an initial incumbent, the first-fit decreasing heuristic
is used to cover demands dj ; then production surplus are used to fill holes in ex-
isting cutting patterns. Now the fastest method is Kbasic. Again, supbroblems
take longer to solve with stabilized schemes. Nevertheless, the fewer number of
iterations is achieved by Krich. Whatever the initialization, bundle takes more
iterates than Kelley.

Counters Timers (in seconds)
Master iter cols oracle master total
Kbasic 43 43 2.39 .03 2.53
Krich 31 26 8.42 .03 8.53

bundle 60 35 15.35 .25 15.71
bundleW&0 48 34 54.19 .23 54.51
bundle+K 59 36 15.22 .30 15.66

Kelley-Inc 44 69 4.78 .05 4.97
bundle-Inc 55 59 19.28 .30 19.74

bundle+K-Inc 54 59 19.35 .37 19.87

Table 2.3. CSP, minimization of the waste: averages on 9 industrial instances

Counters Timers (in seconds)
Master iter cols oracle master total
Kbasic 144 143 8.25 .29 9.03
Krich 142 120 32.80 .29 33.56

bundle 200 86 58.92 5.78 65.15
bundleW&0 203 177 56.83 7.12 65.52
bundle+K 198 87 58.20 5.88 64.65

Kelley-Inc 171 247 7.48 .44 9.46
bundle-Inc 196 162 58.21 9.11 68.85

bundle+K-Inc 195 162 57.80 9.24 68.65

Table 2.4. CSP, minimization of the waste: averages on 20 random instances

We now come to the bin-packing problem, which is a special case of the
cutting-stock problem where item demands take value 1. However, when an in-
stance involves identical items (items with the same width) their demands are
aggregated. Hence, bin-packing instances can be viewed as cutting-stock prob-
lems with low average demand (and typically more items). Our test problems
are extracted from the OR library [4]. We use 20 random instances with 120 and
250 items, whose sizes are integer and vary between 20 to 100, while the size
of the bin is 150. We use also 20 so-called triplets instances with 120 and 249
items, for which the bin capacity is 100, and the items sizes are real and range
from 25 to 49.9. The triplets instances are generated from an optimum solution
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where there are exactly three items in each bin, which fill the bin capacity ex-
actly (hence û = w/W is an optimal dual solution to (2.4)). They are known
to be hard to solve for standard column generation algorithms. The results are
given in Table 2.5. The comparison between Kbasic and Krich shows the im-
pact of the good a priori knowledge of the dual solution. Bundle initialized with
û = w/W typically takes fewer iterations. It is also the fastest method on the
hardest instances.

Counters Timers (in seconds)
Master iter cols oracle master total
Kbasic 222 223 0.79 .31 1.79

BP-120 Krich 101 101 0.68 .19 1.15
bundle 107 90 .79 .23 1.36

Kbasic 260 260 1.66 .50 2.90
BP-250 Krich 134 134 1.35 .30 2.03

bundle 112 105 0.82 .30 1.60

Kbasic 339 340 5.82 .74 7.83
BP-t120 Krich 120 120 3.38 .34 4.14

bundle 80 79 2.17 .20 2.84

Kbasic 553 554 56.56 2.37 61.36
BP-t249 Krich 189 189 14.79 .81 16.49

bundle 139 138 7.20 .69 9.09

Table 2.5. Bin packing: results are averages on 20 instances

2.3. The vextex coloring problem (VCP)

Given a graph G(V, E), the coloring problem is to use the minimum number of
colors in assigning a color to each vertex so that no adjacent vertices receive
the same color. This minimum number of colors χ(G) is called the chromatic
number. Let N be an upper bound on χ(G). To formulate the coloring problem
as (1.1), let us introduce variables y! ∈ {0, 1} to indicate whether color % is used
and z!

j ∈ {0, 1} to indicate whether vertex j is assigned color %. Then χ(G) is
the optimal value of

min
y,z∈{0,1}

N
∑

!=1

y! ,
N

∑

!=1

z!
j ! 1, j ∈ V , z!

i + z!
j − y! " 0, (ij) ∈ E, % = 1, . . . , N .

We dualize the covering constraints
∑N

!=1 z!
j ! 1 and keep the other con-

straints in X . The Lagrangian (1.9) is then

L(y, z, u) =
N

∑

!=1

(

y! −
∑

j∈V

ujz
!
j

)

+
∑

j∈V

uj ,

resulting in the dual function

θ(u) =
∑

j

uj + min
y,z∈{0,1}

∑

!

{

y! −
∑

j

ujz
!
j : z!

i + z!
j − y! " 0, (ij) ∈ E

}

.
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The above minimization problem is decomposable with respect to colors %; in
fact, θ is obtained as the sum of N identical minimization problems. The value
y! = 0 produces z! = 0, while for y! = 1, z = z! solves a maximum independent
set problem on G with weights u:

max
z∈{0,1}

∑

j

ujzj , zi + zj " 1, (ij) ∈ E .

Denoting by z(u) an optimal solution to this problem, the dual function is just
as for CSP:

θ(u) = 1u + N min{0, 1 − uz(u)} .

Now, let us write the Dantzig-Wolfe master program (1.3): min
∑

i∈I yiλi,
∑

i∈I zi
jλi = 1, j ∈ V ,

∑

i∈I λi ≤ N , λi ≥ 0, i ∈ I, where I enumerates the

solutions (y, z) ∈ X!. As for CSP,
∑

i∈I λi ≤ N are inherited from original con-
vexity constraints. Moreover, the constraint can be dropped given the objective.
Thus the useful formulation is

min{
∑

i∈I

λi :
∑

i∈I

zi
jλi ! 1, j ∈ V, λi ≥ 0, i ∈ I},

Then, I enumerates independent sets of the graph G and xis are indicator vectors
of these sets. The dual is:

max{1u : uzi ≤ 1, i ∈ I, u ≥ 0}.

The above column-generation mechanism was given in [43]; it produces the so-
called fractional chromatic number, denoted by χF (G), which is also an upper
bound for the maximum clique number ω.

Numerical tests were performed on two academic families of graphs (the My-
cielski and Queen graphs), as well as on real-life instances (register allocation).
These graphs were used as benchmarks for the DIMACS challenge3. Three meth-
ods are compared: Kbasic, Krich and bundle. The initial û for bundle is set
to ûj = deg(j)/(|V | − 1) where deg(j) is the number of neighbours of node j:
the dual cost of assigning a color to a vertex connected to every other vertex
is 1. Krich is initialized with artificial variable cost set to αû with α = 1.1.
The (NP-Hard) oracle subproblems are solved using a recursive enumeration
algorithm [43].

The Mycielski graphs form a sequence of increasingly large graphs with clique
number 2 (triangle-free graphs) and increasing chromatic number (for instance,
Mycielski 2 is a pentagon). Since the fractional chromatic number is sandwiched
between those two numbers, a large gap means a graph hard to color. Table 2.6
gives the computational results for these instances. Its first column gives, for
each problem:
– the name of the problem,

– (number of nodes , number of edges),

3 http://mat.gsia.cmu.edu/COLOR/instances.html
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– the clique, chromatic and fractional chromatic numbers: ω – χ – χF .

Compared to Kbasic, the rough initialization of Krich helps to reduce the
computational time and the number of iterations. The computing time for the
bundle method is competitive compared to Krich, with a gain in solving the
master.

Problem Master Counters Timers (in seconds)
data iter cols oracle master total

Mycielski2 Kbasic 8 8 0.01 0.00 0.02
(5,5) Krich 6 5 0.00 0.01 0.03

2 – 3 – 2.5 bundle 6 5 0.00 0.00 0.05

Mycielski3 Kbasic 29 29 0.01 0.01 0.09
(11,20) Krich 12 11 0.00 0.00 0.07

2 – 4 – 2.9 bundle 19 11 0.04 0.00 0.09

Mycielski4 Kbasic 91 91 0.17 0.12 0.56
(23,71) Krich 47 46 0.13 0.03 0.41

2 – 5 – 3.24 bundle 61 25 0.26 0.06 0.46

Mycielski5 Kbasic 264 264 2.79 0.74 4.96
(47,236) Krich 177 176 2.83 0.69 5.05

2 – 6 – 3.55 bundle 177 55 4.59 0.53 5.76

Mycielski6 Kbasic 928 928 109.82 14.19 138.84
(95,755) Krich 690 690 76.42 8.34 95.78

2 – 7 – 3.83 bundle 447 113 90.86 5.11 101.30

Mycielski6 Kbasic 3724 3724 8875.99 997.05 10109.26
(191,2360) Krich 3204 3203 6704.52 684.32 7587.72
2 – 8 – 4.10 bundle 1254 510 7160.93 28.46 7217.13

Table 2.6. Vertex Coloring: results on Mycielski graphs

The Queen graphs arise from the puzzle of placing as many queens as possible
on an n × n chessboard so that no two queens are on the same row, column or
diagonal : graphs are constructed so that the answer to the puzzle correspond to
a maximum independent set on the graph. The results on these highly symmet-
ric instances are presented in Table 2.7, which reads as Table 2.6. Once again,
stabilisation decreases stubstantially the number of iterations; but observe the
corresponding increase in oracle’s computing time, which can be dramatic.

In Table 2.8, we compare the three methods on 50-vertex subgraphs extracted
from real instances arising in register allocation: assign variables of a program
to high-speed access memory registers. On these graphs, computing times are
much shorter using Kbasic. For Krich, there are typically more vertices with
strictly positive reward to consider when solving the subproblem, implying even
more computing time than for bundle. Moreover, the initial û does not reflect
the structure of the optimal dual solution, which typically involves three classes
of vertices: those that receive weight 1 (as those in the largest clique), those with
zero weight, and the “undecided”. Thus, several phases are required to eliminate
all artificial columns from the solution.
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Problem Master Counters Timers (in seconds)
data iter cols oracle master total

Queen 5x5 Kbasic 60 61 0.14 0.03 0.25
(25,160) Krich 6 6 0.01 0.01 0.08
5 – 5 – 5 bundle 11 7 0.05 0.01 0.13

Queen 6x6 Kbasic 84 84 0.25 0.12 0.59
(36,290) Krich 53 53 0.27 0.18 0.70
6 – 7 – 7 bundle 44 41 0.62 0.07 0.85

Queen 7x7 Kbasic 141 142 1.15 0.32 1.86
(49,476) Krich 206 206 3.65 1.11 5.83
7 – 7 – 7 bundle 14 11 1.08 0.05 1.25

Queen 8x8 Kbasic 197 198 10.23 0.67 11.64
(64,728) Krich 134 134 8.83 0.40 9.96

8 – 9 – 8.44 bundle 74 70 30.98 0.28 31.82

Queen 9x9 Kbasic 351 351 117.26 2.13 121.26
(81,2112) Krich 293 292 142.40 1.80 145.88
9 – 9 – 9 bundle 102 96 334.76 0.55 336.37

Queen 10x10 Kbasic 457 458 1177.39 4.60 1185.11
(100,2940) Krich 349 349 1063.42 3.65 1069.64

10 – 10 – 10 bundle 312 156 6759.60 2.26 6764.44

Queen 11x11 Kbasic 510 511 5912.88 8.01 5925.31
(121,3960) Krich 374 374 5457.54 6.07 5467.19

11 – 11 – 11 bundle 125 124 13017.26 3.88 13025.21

Table 2.7. Vertex Coloring: results on Queen graphs

2.4. The Capacitated Vehicle Routing Problem (CVRP)

Given a set of m customers, indexed by j = 1, . . . , m, demanding a delivery
dj , and N identical vehicles, indexed by % = 1, . . . , N , available to make these
deliveries, the problem is to determine a route for each vehicle satisfying the
following constraints:

– the route starts and ends at the depot (denoted by index 0);

– the deliveries assigned to a vehicle cannot exceed its capacity C;
– each customer j must be delivered dj by a single vehicle.

The distance matrix {cij}0"i,j"m between customer sites is known (the dis-
tances are assumed to be integer and triangular inequalities hold). The goal is
to minimize the sum of the lengths of the N routes.

Let y!
j = 1 if customer j is visited by vehicle %; let z!

ij = 1 if arc (i, j) is in

the route of vehicle % and zero otherwise; call q!
j the cumulated load of vehicle %
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Register counters timers (in seconds)
instances iter cols oracle master total
fpsol2.i.1 88 89 0.22 0.14 0.63
fpsol2.i.2 76 77 0.16 0.09 0.48
fpsol2.i.3 76 77 0.21 0.06 0.51
mulsol.i.1 125 126 0.40 0.16 0.90
mulsol.i.2 93 93 0.23 0.14 0.67
mulsol.i.3 93 93 0.24 0.11 0.61
mulsol.i.4 93 93 0.24 0.07 0.60
mulsol.i.5 93 93 0.25 0.10 0.63
zeroin.i.1 75 75 0.19 0.09 0.55
zeroin.i.2 75 75 0.14 0.10 0.49
zeroin.i.3 75 75 0.16 0.08 0.51

Kbasic average 87.5 87.8 0.22 0.10 0.60

fpsol2.i.1 117 106 3.31 0.21 3.78
fpsol2.i.2 142 114 7.85 0.26 8.50
fpsol2.i.3 142 114 7.88 0.22 8.38
mulsol.i.1 138 128 1.33 0.26 1.84
mulsol.i.2 276 247 2.13 0.45 3.28
mulsol.i.3 276 247 2.27 0.49 3.45
mulsol.i.4 276 247 2.25 0.51 3.43
mulsol.i.5 276 247 2.15 0.59 3.41
zeroin.i.1 146 134 4.89 0.25 5.50
zeroin.i.2 146 134 4.90 0.27 5.49
zeroin.i.3 146 134 4.85 0.22 5.42

Krich average 189.2 168.4 3.98 0.34 4.77

fpsol2.i.1 62 58 0.61 0.09 0.92
fpsol2.i.2 71 62 0.62 0.15 1.00
fpsol2.i.3 71 62 0.68 0.19 1.03
mulsol.i.1 58 52 0.53 0.13 0.84
mulsol.i.2 51 40 0.41 0.11 0.68
mulsol.i.3 51 40 0.50 0.06 0.70
mulsol.i.4 51 40 0.46 0.11 0.70
mulsol.i.5 51 40 0.43 0.08 0.70
zeroin.i.1 64 54 0.60 0.14 0.93
zeroin.i.2 64 54 0.61 0.10 0.90
zeroin.i.3 64 54 0.59 0.13 0.90

bundle average 59.8 50.5 0.55 0.12 0.85

Table 2.8. Vertex Coloring: results on register-allocation problems

on departure from customer j. Then a possible formulation for (1.1) is:















































min
∑

i,j,! cijz!
ij

∑N
!=1 y!

j ! 1 for j > 0 (∗)
∑

i z!
ij =

∑

i z!
ji for all j, %

∑

i z!
ij = y!

j for all j, %
q!
i − q!

j + Cz!
ij + djy!

j " C for i 1= j > 0 and all %
djy!

j " q!
j " Cy!

j for j > 0 and all %
q!
i ! 0 for j > 0 and all %

y!
j , z

!
ij ∈ {0, 1} for i 1= j > 0 and all %
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Introducing the variable vector x = (q, y, z), call Ax ! b the cover4 constraints
(∗); the other constraints are put in X . This gives the Lagrangian dual function
(1.10)

θ(u) =
m

∑

j=1

uj + min
(q,y,z)∈X

N
∑

!=1

(

∑

i,j

cijz
!
ij −

∑

j

ujy
!
j

)

which is decomposable with respect to %: X is the Cartesian product of N
identical subsets X!. The optimization sub-problem, min(q,y,z)∈X"

∑

i,j cijzij −
∑

j ujyj (where the useless index % is dropped), is an elementary shortest path
problem with resource constraints; it can be solved by dynamic programming
[13]. Denoting its optimal solution by x(u) = (q(u), y(u), z(u)), the dual function
has value:

θ(u) = 1u + N [c z(u) − u y(u)]

An alternative presentation of the Lagrangian dual problem is Dantzig-Wolfe
formulation (1.3). Here the master is:

min {
∑

i∈I

(
∑

kj

ckjz
i
kj)λi :

∑

i∈I

yi
jλi ≥ 1 ∀j ,

∑

i∈I

λi ≤ N , λi ≥ 0 i ∈ I}

where I enumerates solutions xi = (qi, yi, zi) of X!, i.e. feasible vehicle routes.
Its dual takes the form:

max {1 u − Nr : uyi − r ≤ c zi , i ∈ I (u, r) ∈ R
m
+ × R+} .

Kelley and bundle are compared on 12 test problems from the website [2]. The
three P-instances and the E-instance are just those of [2]. The 8 remaining ones
are reduced B-instances of [2], obtained by selecting a subset of N routes from
the optimal solution and restricting the problem to the associated customers.
The sizes m and N are provided in the problem names.

To define artificial column costs, we take an estimate edge cost ci for con-
necting client i, and then use

B := N

∑

j(c0j + cj0)

m
+

m − N

m

∑

i

ci ,

which estimates the optimal cost of an integer solution. Indeed, a solution can be
seen as a TSP tour visiting all customers and making N detours by the depot;

for the inter customer distance, we take the average value
P

i ci

m ; for the cost of

the detour to the depot, we take the average value
P

j(c0j+cj0)

m . One could take
ci to be the average edge cost on, say, the 4 closest neighbors. A finer estimate is
to take into account that customer with high demand are harder to accomodate
in a cluster and, as a result, can be paired up with customer that are further
away. Hence, we define ci = 1

βi

∑βi

j=1 cij where the neighbors, j, are assumed to

4 Covering contraints may be used instead of partitioning because triangular inequalities
guarantee that a customer will not be visited more than once in an optimal solution.
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be sorted in non-decreasing order of the edge costs, βi = 2(1 + 5di

d
6), and d is

the average demand.
Seven versions are tested:

– Kbasic, where the master is initialized with an artificial column of cost equal
to the above estimation B.

– Krich initialized with m artificial columns associated with each client i. Their
cost represents the fraction of total cost estimate B that is attributed to client
j, i.e.

ûj =
wj

∑m
k=1 wk

B

where the weight factors are defined as wi = ci + 1

1+
C−di

d

c0i to reflect a larger

portion of the cost to customer with high connection cost, high demand (and
thus lower number of neighbors with whom to share the cost of travelling from
and to the depot) and that are far from the depot. When artificial columns
remain in the solution we multiply them by α = 1.2.

– bundle0, initialized at û = 0.
– bundle, initialized at û defined as for Krich.

– KrichMC is Krich with multi-column generation for each subproblem: we
insert in the master all feasible routes (or up to 500) found by the dynamic
programming solver for the subproblem (this is standard practice when solving
VRP by column generation).

– Kelley-Inc is initialized with a primal heuristic solution obtained using Clarke
and Wright’s iterative route merging procedure (the artificial column of Kba-

sic is also included in case the heuristic solution is not feasible: i.e. if it uses
too many vehicles).

– bundle-Inc, initialized at û defined as for Krich with an initial bundle made
of the columns of Clarke and Wright’s solution.

We also tested bundle+K but the results hardly differ from the use of bundle
alone.

Averages iter cols oracle master total
Kbasic 41 41 3.82 .10 4.10
Krich 17 14 .74 .08 .91
KrichMC 7 136 .85 .07 1.21

bundle0 25 18 86.14 .05 86.32
bundle 24 13 1.58 .06 1.73

Kelley-Inc 31 36 1.40 .09 1.66
bundle-Inc 24 18 1.58 .06 1.75

Table 2.9. Average results for CVRP instances

Table 2.9 gives the average results. Details are given in Table 2.10 (for the
first 4 instances) and Table 2.11 (the 8 remaining ones). These latter two tables
explain in particular bundle0’s large average computing time, which occurs in
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Problem Method Counters Timers (seconds)
iter cols oracle master total

Kbasic 29 29 .15 .06 .31
Krich 18 17 .04 .06 .19

P-m16-N8 bundle0 30 22 .08 .06 .24
bundle 40 20 .18 .10 .42

KrichMC 6 42 .07 .03 .18

Kbasic 57 57 .54 .18 .90
Krich 37 31 .38 .17 .70

P-m22-N8 bundle0 46 34 .72 .16 1.10
bundle 38 26 .65 .11 .93

KrichMC 17 125 .61 .12 1.06

Kbasic 65 62 .72 .26 1.21
Krich 46 39 .70 .53 1.42

P-m23-N8 bundle0 70 39 1.51 .25 2.11
bundle 69 31 1.67 .24 2.13

KrichMC 22 145 1.13 .47 .02

Kbasic 83 83 15.41 .32 16.14
Krich 37 35 3.37 .11 3.71

E-m22-N4 bundle0 35 30 745.39 .05 745.65
bundle 44 23 5.58 .14 5.85

KrichMC 10 231 1.90 .10 2.78

Table 2.10. Detailed comparison on CVRP

some instances only. Version Krich is the fastest while KrichMC needs fewer
iterations. However, these results are sensitive to the fine tuning of the cost
estimate and resulting value of û (we previously tested rough estimates that
yielded more iterations for Krich). By contrast, bundle is more robust: the
number of iterations does not suffer from a poor initialization (although the
time spent in the oracle does).

Most of the computing time is spent in the oracles. The resource-constrained
shortest path problem solver of [13] enumerates many partial solutions when the
rewards uj are high and many clients seem attractive to be included in the route.
We noted experimentally that our initial û overestimates on average the optimal
dual solution: for most customers the dual values decrease in the course of the
column generation procedure. Hence, the most expensive oracle calls tend to be
at the beginning of the column generation procedure. For Kbasic and bundle0

however, many rewards uj are very small in the initial iterations (initial extreme
dual solutions under Kbasic concentrate all the reward on a few clients) and the
oracle preprocessor removes the unattractive nodes, making the problem easier.
After a few timid iterations, bundle0 increases the u’s largely and uniformly,
which yields expensive oracles. This behaviour is illustrated by Fig. 2.2.

2.5. The multi-item lot-sizing (MILS) problem

The problem is to optimize the production planning of items % = 1, . . . , N for
time periods j = 1, . . . , m. Before production can take place, the machine must
be specifically setup for the item (at a cost f !

j and with a loss of production
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Problem Method Counters Timers (seconds)
iter cols oracle master total

Kbasic 21 21 .07 .04 .17
Krich 9 8 .06 .03 .12

gen-B-m8-N2 bundle0 16 10 .13 .04 .22
bundle 12 7 .10 .01 .16

KrichMC 6 73 .27 .04 .44

Kbasic 40 40 3.43 .09 3.72
Krich 12 11 1.45 .04 1.54

gen-B-m12-N2 bundle0 23 20 748 .03 763
bundle 25 12 3.55 .03 3.68

KrichMC 7 282 2 .01 2.68

Kbasic 34 34 2.57 .03 2.74
Krich 5 3 .15 .01 .19

gen-B-m12-N2 bundle0 15 12 3.78 .02 3.86
bundle 10 4 .43 .01 .49

KrichMC 4 81 .31 .02 .41

Kbasic 40 40 6.37 .05 6.67
Krich 4 3 .19 0 .26

gen-B-m14-N2 bundle0 9 6 215.47 0 215.51
bundle 6 3 .45 0 .52

KrichMC 2 71 .23 0 .30

Kbasic 29 29 .61 .06 .76
Krich 6 5 .21 .01 .26

gen-B-m10-N2 bundle0 9 6 75 .02 80
bundle 14 7 1.52 .03 1.60

KrichMC 4 125 .69 .02 .83

Kbasic 46 46 15.68 .09 16.03
Krich 6 5 1.79 .01 1.85

gen-B-m13-N2 bundle0 17 14 57.29 .02 57.42
bundle 5 2 3.52 .01 3.57

KrichMC 4 224 2.02 .01 2.33

Kbasic 27 28 .22 .04 .35
Krich 13 12 .32 .06 .42

gen-B-m10-N2 bundle0 21 17 .69 .03 .80
bundle 23 13 .95 .03 1.03

KrichMC 6 138 .45 .02 .72

Kbasic 25 25 .15 .01 .29
Krich 13 10 .24 .03 .30

gen-B-m10-N2 bundle0 19 14 .42 .03 .53
bundle 13 8 .40 .01 .44

KrichMC 7 106 .55 0 .80

Table 2.11. Detailed comparison on reduced CVRP

capacity b!
j). The other costs associated with item % are unit production costs

p!
j and holding costs h!

j . Item demands for each period j are denoted by d!
j and

the machine production capacity in period j is Cj . Set the binary variable y!
j to

1 if the machine is setup for item % in period j. Let z!
j be the production of item

% in period j and s!
j the stock of % at the end of period j.
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Fig. 2.2. CVRP: oracle computing time for instance E-m22-N4

Then (1.1) takes the form:































min
∑

j,!(f
!
j y!

j + p!
jz

!
j + h!

js
!
j)

∑N
!=1 z!

j + b!
jy

!
j " Cj for all j (∗)

s!
j−1 + z!

j = d!
j + s!

j for all j, %
z!

j " D!
jy

!
j for all j, %

z!
j , s

!
j ! 0 for all j, % .

y!
j ∈ {0, 1} for all j, % .

Here D!
j =

∑m
τ=j d!

τ ; the corresponding constraint forces z!
j = 0 unless y!

j = 1.
Introducing the variable vector x = (y, z, s), call Ax ! b the capacity con-

straints (∗) and put the other constraints in X ; this gives the Lagrangian dual
function (1.10)

θ(u) = −
∑

j

ujCj + min
(y,z,s)∈X

!
∑

j

[

(f !
j + b!

juj)y
!
j + (p!

j + uj)z
!
j + h!

js
!
j

]

which is decomposable with respect to %: X is the Cartesian product of N non-
identical subsets X!. Each optimization sub-problem

θ!(u) := min
(y,z,s)∈X"

∑

t

[

(fj + bjuj)yj + (pj + uj)zj + hjsj

]

(2.6)

(where the useless index % is dropped) is a single-item lot-sizing problem with
unbounded capacity; it can be solved by dynamic programming in polynomial
time. The dual function is then

θ(u) =
N

∑

!=1

θ!(u) −
m

∑

j=1

Cjuj .
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The master formulation (1.3) takes the form:

min {
∑

!,i∈I"

(
∑

j

(f !
j yi

j + p!
jz

i
j + h!

js
i
j))λ

!
i

∑

!,i∈I"

(zi
j + b!

j yi
j) λ

!
i " Cj ∀j , (2.7)

∑

i∈I"

λ!
i ! 1 ∀% , (2.8)

λ!
i ! 0 ∀%, i ∈ I!}

where I! enumerates production plans xi = (yi, zi, si) of X!, i.e. X! = {xi}i∈I" .
Its dual takes the form:

max{
N

∑

!=1

r! −
∑

j

ujCj :

r! −
∑

j

uj(z
i
j + b!

jy
i
j) " (f !

j yi
j + p!

jz
i
j + h!

js
i
j) ∀%, i ∈ I!,

(u, r) ∈ R
m
+ × R

N
+} .

This model has an important implementation feature: in view of (2.6), the
dual function θ is a sum of N different concave functions θ!. The approxima-
tion θk of (1.13) at iteration k can therefore be disaggregated in the sum of N
“restricted local” dual functions

θ!
k(u) := min

i=1,...,k
L!(xi, u) ;

here L!(xi, u) denotes the Lagrangian corresponding to product %. Such a disag-
gregation results in a more accurate restricted dual function. In our experiments,
Kelley uses disaggregation; but, even though this would be possible for bundle
(as described and assessed for example in [40]), we have not implemented the
corresponding software. It should be mentioned that the use of disaggregation
in bundle would probably result in fewer iterations and more CPU time in the
master.

In Table 2.12, we compare Kelley and bundle on randomly generated in-
stances with N = 20 items and m = 60 periods. Each line is an average over 10
instances. For version Kbasic, the master is initialized with N artificial columns
– one for each subproblem – with cost equal to a large constant: the artificial
column associated with item % has coefficient 1 in the associated item covering
constraint (2.8) and zero elsewhere. For version Krich, the master is initial-
ized with m + N artificial columns – one for each capacity constraint (2.7) and
one for each item covering constraint (2.8) – with coefficient 1 in the associated
constraint and zero elsewhere. Their cost is an estimation of the dual value as-
sociated with the constraint: for r̂!, we use the cost of the production planning
solving the single-item lot-sizing problem with unbounded capacity for item %;
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∑

! r̂! defines a lower bound on the multi-item lot-sizing problem; we then arbi-
trarily assume that the capacity constraints will yield a 20% cost increase over

this bound and we define ûj = 0.2
P

" r̂"

mCj
; the artificial variable costs are set to

αûj and αr̂! respectively, with α = 1.2. The above û is used to initialize bundle,
while the initial û is 0 for bundle0. Counter “Sp” indicates the total number of
subproblems solved; the reported number “col” of different columns is likewise
disaggregated (for Kbasic, cols includes N = 20 artificial columns).

Master Counters Timers (seconds)
iter Sp cols oracle master total

Kbasic 9 186 118 0.72 0.01 2.63
Krich 9 180 90 0.67 0.01 2.50

bundle0 37 754 80 3.94 0.06 5.64
bundle 53 1062 303 5.59 0.07 9.95

Table 2.12. MILS: average results on 10 random instances with 20 items and 60 periods

2.6. The traveling salesman problem (TSP)

Given a complete undirected graph G = (V, E) and length ce for each edge
e ∈ E, the problem is to find a tour of minimum length. For S ⊂ V , let δ(S) be
the set of edges {i, j} with i ∈ S and j /∈ S, and let E(S) be the set of edges
{i, j} with i ∈ S and j ∈ S. To make our notation consistent with the rest of
the paper, we set V = {0, 1, . . . , m}; a possible formulation for (1.1) is























min
∑

e∈E cexe ,
∑

e∈δ({j}) xe = 2 for j = 0, 1, . . . , m ,
∑

e∈E(S) xe " |S|− 1 for all ∅ 1= S ⊆ {1, . . . , m} ,
∑

e/∈δ({0}) xe = n − 2 ,
xe ∈ {0, 1} for e ∈ E .

(∗)

Call Ax ! b those constraints (∗) with j > 0 (they can in fact be re-
placed by inequalities) and put the other constraints in X : the dual variables
are u1, . . . , um. For notational convenience, we set u0 = 0, and the Lagrangian
is

L(x, u) =
∑

e={i,j}∈E

(ce − ui − uj)xe + 2
m

∑

j=1

uj . (2.9)

This relaxation was introduced by M. Held and R. Karp: [20,21].
In the definition of X , no two variables xe and xe′ appear in the same con-

straint if e ∈ δ({0}) and e′ /∈ δ({0}). As a result, the solutions of the ora-
cle are the minimum-weight 1-trees, i.e. the minimum-weight spanning trees on
{1, . . . , m} completed by the two minimum-weight edges of δ({0}). The oracle
is then an easy problem which can be solved by a Prim’s algorithm [50].
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Let I enumerate the 1-trees, i.e the solutions xi ∈ X . Then, the master
program (1.3) of a Dantzig-Wolfe reformulation is















min
∑

i∈I λi
∑

e∈E cexi
e ,

∑

i∈I λi
∑

e∈δ({j}) xi
e = 2 for all j ∈ V \ {0} ,

∑

i∈I λi " 1 ,
λi ! 0 for all i ∈ I .

Its dual (1.12) takes the form

{

max2u − r (u, r) ∈ Rm
+

,
∑

j∈V \{0} uj
∑

e∈δ({j}) xi
e − r "

∑

e∈E cexi
e for all i ∈ I .

0

9100

Kbasic: 744 iterations
Krich: 479 iterations

bundle0: 30 iterations

Fig. 2.3. TSP: Kelley vs. bundle on bays29

We have applied Kbasic, Krich and bundle0 on three instances from
tsplib5 having 29, 76 and 442 cities respectively. For Krich, we compute

ûj := min{
∑

e∈δ({j})

cexe :
∑

e∈δ({j})

xe = 2 , xe ∈ {0, 1} for e ∈ δ({j}) };

then we define m artificial columns with cost αû for α = 1.2. The results are
reported in Figures 2.3 to 2.5. On the third example (pcb442), no convergence
can be obtained from Kelley, even with a rich initialization. The reported primal-
dual gap is the value cx̂ − θ(u), but with a x̂ that may still involve artificial
columns (then cx̂ is not a true primal bound).

Finally, Fig. 2.6 displays the 1-trees computed by the oracle during the first
39 iterations of both versions of Kelley, and the 31 iterations of bundle0. Many
of the 1-trees computed by Kbasic are star-shaped. In fact, the dual variables
are extreme points of the epigraph of the restricted dual function θk. During
the first iterations, θk is a “simple” function and most of these extreme points
are those introduced by the artificial column x1: they have only one nonzero
coordinate, probably rather large. As seen in (2.9), the edges issued from the
corresponding node have a rather low cost and are therefore chosen by priority.

5 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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0

105120

bundle0: 77 iterations

2.1% for Krich

Primal-dual gap after 1000 iterations:

7.4% for Kbasic

Fig. 2.4. TSP: Kelley vs. bundle on pr76

0

10100

50500

Krich: Primal-dual gap after 1000 iterations = 34%

Kbasic: Primal-dual gap after 1000 iterations = 197%

bundle0: 546 iterations

Fig. 2.5. TSP: Kelley vs. bundle on pcb442

3. Additional comparisons: the volume algorithm

To complete our study, we present a rudimentary comparison with the volume
algorithm [3], which computes the dual iterates as

uk = û + sk(b − Axk) + dk ; (3.1)

here sk is a stepsize and dk is a suitable correction, updated by simple recurrence
formulae. Being based on the subgradient paradigm, this method has apparently
little to do with stabilized column generation; however there are some analogies:

– Bundle can indeed be viewed as an improved subgradient method: economic
versions can be defined, in which each Xk in (1.30) has only two vertices:
Xk = [x̃, xk]; then the iterates are computed analogously to (3.1) (except that
the corrections dk are not described explicitly: we still have to solve a quadratic
program – with two variables, though). This aspect of the method is totally
overlooked in the present paper but see [37, §5.3].

– As shown in [33], the volume algorithm can somehow be viewed as a variant
resembling the above bundle form.

We use the volume implementation available in the COIN-OR library [8],
downloaded from https://projects.coin-or.org/Vol; it will be referred to
as volume below. We compare it to bundle0 because it apparently uses the
initialization u1 = 0. On the other hand, the volume algorithm has no stopping
test; and we could not find a reliable way to stop volume; we therefore just
compare the evolution of the dual function θ(uk) along the iterations. This is a
rather primitive way of comparing methods that are so different; but a detailed
comparison of computing times would be hazardous. Taking into account their
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Fig. 2.6. TSP: primal behaviour on Bays29 for Kbasic (top), Krich (middle) and bundle0

(bottom)

structural differences (volume is written in C++ and we have not tried to
optimize transfers with the oracle, which is in Fortran; bundle0 is totally in
Fortran) we can only say that the time of a whole run is roughly of the same
order of magnitude for both methods – and see Remark 3.1 below for the oracle
computing time.

Our comparison uses two families of problems: CSP and TSP, with larger
instances than in §2. For each family, we have scanned a number of values for
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the optional parameters of volume; differences may be substantial, and our
results below report on the best sets only.

3.1. CSP with Volume

A first series of tests picks Beasley’s bin-packing problems from Table 2.5. Ac-
tually, these are made genuine CSP, items of identical width being merged into
one item, whose demand is appropriately multiplied. The optional parameters
input to volume are greentestinvl = 2, yellowtestinvl = 1, redtestinvl
= 6 and alphaint = 200. Both algorithms behave consistently on all problems
tested: for the BP-t501 series [resp. BP-t249, resp. BP-1000],

– in some 500 iterations [resp. 350, resp. 150], bundle0 converges to the optimal
solution and proves its optimality,

– in some 2000 iterations [resp. 1500, resp. 1500], volume reaches optimality
within less than 1% – enough to get the correct integer lower bound.

We also used cutting-stock examples from [30]: with m = 50 items of Gau-
Waescher [15], and medium-size instances with m = 100 items of Degraeve-
Peeters [10]. Here, best parameters are greentestinvl = 3, yellowtestinvl =
1, redtestinvl = 9, alphaint = 200.

Problem best value obtained at iteration optimum
by volume volume bundle0 value iter

BP-t501.14 166.3 1991 522 167 547
BP-t249.01 82.9 1366 349 83 355

CS-WG50-75-10.03 240.8 2809 94 241 98
CS-WG50-75-50.11 871.3 1488 126 916.4 196

CS-DPM100-15-25.05 991.4 1906 175 993 247
CS-DPM100-05-00.00 3045 2615 204 3055 216

Table 3.1. Bin packing and cutting stock: volume vs. bundle

Table 3.1 gives an idea of what happens, on a few particular instances ex-
tracted from the whole sets. For example, the first line of this table concerns
instance 14 of BP-t501 (the largest instance in Beasley’s set, with m = 203
items) and says the following: volume attains the value 166.3 at iteration 1991;
bundle0 attains this same value at iteration 522, and then proves at itera-
tion 547 that the optimal value is 167 (remember that the initial value θ(u1) is
θ(0) = 0; volume eventually stops at iteration 2001). Figure 3.1 illustrates the
evolution of θ(uk) for each method on this instance.

The results are less homogeneous on cutting stock than bin packing: the iter-
ations needed by volume spread on a substantially broader range, from 1500 to
3000; the dual maximal value is often approximated rather closely, but sometimes
more grossly: 5% on instance 11 of WG50-75-50; the corresponding evolution of
both algorithms is illustrated by Fig.3.2, which we find fairly aesthetic. Table
3.1 reports on instance 00 of DPM100-05-00 because it is rather special:
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0

volume

-920

167

2000

bundle0

Fig. 3.1. Bin packing: volume vs. bundle on BP-t501-14

– the dual maximum appears to be very sharp, (see below point (iii) in our
conclusion section and the right part of Fig. 3.5), an unfavourable case for the
volume algorithm;

– the available upper bound N on the number of stock pieces is actually the
optimal primal value;

– there is no duality gap.

volume

916

-1843

0

1500

bundle0

Fig. 3.2. CSP: volume vs. bundle on WG50-75-50.11

Remark 3.1. The oracle is Martello-Toth’s knapsack solver; but in order to mit-
igate the erratic behaviour of an NP oracle, we have inserted a relaxed stopping
criterion, as in [30]: a knapsack is declared optimal and returned to the master
as soon as its optimality within 10−8 is proved.

The result can be spectacular. On the industrial instance with 30 items from
Table 2.1, the CPU time is divided by 100, while the iteration counter goes from
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98 to 100. On a 50-item instance of Gau-Wäscher, the algorithm collapses after
110 iterations, simply because the oracle runs forever.

Note that the results in the present section can by no means be compared to
those of §2.2, the oracle and the computing environment being so different. !

3.2. TSP with Volume

Our experiments in §2.6 were limited by the poor performances of Kelley. How-
ever volume can deal efficiently with bigger instances: in addition to those of
§2.6, we present results for pcb1173 and pcb3038. The default values of the op-
timal parameters are used in volume – we could not find a better set; it runs
systematically during about 500 iterations in all the test-problems. Results are
reported on Table 3.2, which reads just as Table 3.1.

Problem best value obtained at iteration optimum
by volume volume bundle0 value iter

bays29 9014.3 66 19 9015 52
pr76 105113 135 103 105120 112

pcb442 50495 502 191 50499 357
pcb1173 56348 456 209 56351 527
pcb3038 136557 502 316 136587 4957

Table 3.2. TSP: volume vs. bundle

If poor accuracy is accepted, both methods behave very similarly, as illus-
trated by Figures 3.3 and 3.4, which show their respective evolutions along it-
erations. Note a rather special behaviour on Fig. 3.4: volume reaches its best
value faster than bundle; but then, the iterates deteriorate substantially and
consistently until they stop (at iteration 502).

500

volume

136587

127400

bundle0

Fig. 3.3. TSP: volume vs. bundle on pcb3038
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3.3. Comments

We have conducted the above experiments without any involvement of the vol-
ume team. The results obtained with the volume algorithm may therefore not
be the best possible and should be taken with care. For example, the behaviour
illustrated by Fig. 3.4 might perhaps be overcome by an appropriate action on
volume. Here we will just propose the following cautious comments:

– As a subgradient-type method, volume behaves fairly well.

– However it can hardly reach high accuracy – just as any other subgradient-type
method.

– “Seen from far”, bundle behaves similarly (at least on TSP),
– but combines the advantages of Kelley; in particular, it enjoys reliable stopping

criteria,
– which however may be fairly expensive to reach: see pcb3038 in Table 3.2.

100 500

105100

104600

90900

112 iterations

bundle0

volume

bundle0:

Fig. 3.4. TSP: volume vs. bundle on pr76

Conclusions

The first part of this paper has presented in a unified way various stabilizing
schemes of column generation, including the bundle and ACCPM approaches.
Stabilization is conveniently introduced in the dual space; deriving its primal
counterpart is easy when an LP formulation exists. However, we have mentioned
a possible dualization scheme allowing the same primal derivation, even when
the stabilized master is a genuine nonlinear program.

This uniform and concise overview of the theory and algorithms, which uses
well-known tools from convex analysis, is not new (it is also treated in [14] for
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instance). The innovative part of the paper is really §2. The numerical behaviour
of the bundle method is compared with standard column generation on a few
combinatorial problems, while previous comparative reports tend to concentrate
on a concrete application with specific tuning (see for instance [11,53]). Studying
a larger spectrum of applications emphasizes that no method is consistently
better. With no big surprise, our study gives further evidence of what might
have been the general perception of the comparative behavior of these algorithms
amongst the experts. Hopefully this study shall make the non-expert more aware
of these facts and of the alternatives to standard LP-based approaches.

Let us summarize the conclusions that can be drawn from our experiments
(the comments below concern the comparison Kelley vs. bundle, see §3.3 for a
few comments about volume).

(i) Sometimes Kelley and bundle are grossly comparable in terms of number
of calls to the oracle. This is generally observed for problems of §2.2 to
§2.5.

Remark 2.3 is worth recalling here: in the case of CSP and VCP, we use
our bundle code to solve a constrained problem by exact penalty, which
is known to be rather inefficient. Using a constrained bundle method such
as [28,39] – or, better: [32] – would probably improve the results.

Another useful observation is the lack of robustness of numerical ex-
periments in nonsmooth optimization. Because the x = x(u) answered by
the oracle is discontinuous, small changes (in the data, the initialization,
the accuracy of the master, . . . ) may result in substantial changes in the
behaviour of the column generation process. To solve a given problem by
a given method, it is common that the same software takes substantially
more iterations (say 20%) when compiled on a different computer. Keep-
ing this in mind, the differences reported in §2.2 to §2.5 should not be
overemphasized.

(ii) Sometimes, typically when m grows, Kelley simply collapses: see §2.6. This
phenomenon was known before, the interesting point is that bundle still
works for much larger instances: we refer to [37], in which instances with
103 vertices are solved to (dual) optimality; ACCPM is reported to behave
similarly.

(iii) An interesting question related with (ii) is: when should Kelley behave
poorly compared to bundle? According to Nemirovskii’s example (see the
end of §1.1), this should be more likely for large m. Common sense suggests
that it should generally happen when θk of (1.13) approximates poorly
the true dual function θ of (1.10); such is the case when the graph of θ
presents many small facets. Figure 3.5 gives a rudimentary illustration of
this point: both functions θ on the left and on the right are piecewise linear;
nevertheless, approximating the one on the left by a piecewise linear model
θk requires many sampling points; a quadratic model should probably be
more efficient – and this is precisely what bundle proposes.

Anyway, it seems daring to propose a reliable answer to this question
(assuming that a reliable answer exists at all!)



Comparison of Bundle and Classical Column Generation 41

u

θ(u)

Kelley should behave nicely
u

θ(u)

Kelley should behave poorly

Fig. 3.5. The graph of the dual function

(iv) A phenomenon, already known and confirmed by our experiments, is that
stabilization may affect the computing time spent in the oracle. The choice
of the oracle solver (a branch-and-bound versus a dynamic program, for
instance), its implementation and even the initialization of the master pro-
gram, are determinant factors when analyzing oracle computing time over
the course of the column generation algorithm. Nevertheless, even though
the reported times should be taken cautiously, our NP oracles may be
perceivably more difficult when called by a stabilized method. Paroxystic
entries such as Queen 11x11 in Table 2.7 or E-m22-N4 in Table 2.10 can
hardly be tolerated. We have not fully explained this behaviour, which
may occur at any time during the column generation process: either by
the end (CSP) or at the beginning (CVRP).

On the other hand, the dual iterates uk of a stabilized algorithm are sup-
posedly close together. It might therefore be advantageous to use “warm-
started” oracles à la [56].

(v) Being specifically designed to maximize a concave function such as θ,
the bundle method needs an exact oracle, to compute exact values of θ.
Keeping in mind (iv) above, this can become a killing disadvantage; by
contrast, Kelley simply needs separating hyperplanes (which do not have
to touch the graph of θ). One of the consequences is that, for problems
with exponential oracle – especially VCP and CVRP –, our experiments
were limited to relatively small instances.

The cure lies in “robust” stabilized algorithms, accepting inaccurate or-
acles which do not fully minimize the Lagrangian. Concerning the bundle
method, a promising step forward is made along these lines in [31]: prelim-
inary experiments reported in [30] show that the benefit can be drastic.

(vi) Perhaps one of the most important messages delivered by these experi-
ments is that, in terms of CPU, the price to pay for solving the quadratic
master (1.30) is quite reasonable with respect to the LP master (1.6). Here
this price is negligible but the dual problems to solve are fairly small, and
the oracles are expensive. Nevertheless, QP is also cheap for TSP, even
large ones – see [37].

Besides, it should be observed that little R&D work has been devoted so
far to QP, compared to the 50 years of intense activity in LP technology.
The relative price of QP can therefore be expected to decrease in the
future.
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(vii) It can also be mentioned that an appropriate initialization of Krich can
require fairly delicate heuristic considerations. The paper provides such
dual heuristics. They do yield significant reduction in the number of iter-
ations, compared with poorer initialization on which we did not report.
On the other hand, they can be sensitive to the characteristics of the
datasets; VCP is an illustration. By contrast, bundle appears as a push-
button method, in which even the initial û has little importance.

(viii) As mentioned at the outset of Section 2, we should ideally have compared
bundle with the most advanced LP stabilizations of Kelley. However a
fair comparison between methods should imply the involvement of the
methods’ developers (judging from the difficulties we had to merge [59]
with [41], this is hard work). Besides, a fair amount of application-specific
tuning would be needed. We believe that our comparison between Kbasic

and Krich already gives a flavour of what LP stabilizations of Kelley can
bring. Similar comments can be made concerning volume.

Acknowledgment. We are indebted to anonymous referees for their careful read-
ing and for their suggestion to insert comparisons with the volume algorithm. For
this, K.C. Kiwiel gracefully made available to us his oracle and test-problems.
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