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Abstract. We treat with tools from convex analysis the general problem of cutting planes, separating a point
from a (closed convex) set P . Crucial for this is the computation of extreme points in the so-called reverse
polar set, introduced by E. Balas in 1979. In the polyhedral case, this enables the computation of cuts that
define facets of P . We exhibit three (equivalent) optimization problems to compute such extreme points; one
of them corresponds to selecting a specific normalization to generate cuts. We apply the above development
to the case where P is (the closed convex hull of) a union, and more particularly a union of polyhedra (case of
disjunctive cuts). We conclude with some considerations on the design of efficient cut generators. The paper
also contains an appendix, reviewing some fundamental concepts of convex analysis.
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1. Introduction

An important tool in combinatorial optimization is cut generation:
(i) a linear function c!x must be maximized over a “hard-to-deal-with” set S ⊂ Rn

(typically a huge set of integer points);
(ii) for want of a tractable method, S is relaxed to some “easier” set R, usually poly-

hedral, over which c!x is maximized;
(iii) this may produce some x̄ not even belonging to conv (S), the closed convex hull

of S;
(iv) then the problem is to separate x̄ from S – i.e. from conv (S) – by some cutting

plane(s), in order to describe S more accurately.
A cutting plane is defined by the equation d!x = κ , where the nonzero direction d ∈ Rn

and the righthand side κ ∈ R satisfy

d!x̄ > κ and d!x ! κ for all x ∈ S

or equivalently: d!x̄ > σS(d), where σS is the so-called support function of S (some
essential concepts from convex analysis are given in the Appendix).
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Because S is hard to deal with directly, a possible approach for constructing cutting
planes is to introduce an intermediate set P ⊃ S not containing x̄ and to find d separating
x̄ from P . Some desirable properties for a good cut are as follows:
– It should touch P , which fixes κ to its smallest possible value: κ = σP (d). Thus,

finding a cut is a problem in d ∈ Rn only.
– It should be as deep as possible, i.e. d!x̄ − σP (d) should be maximal in a certain

sense. Naturally, this requires in particular an appropriate normalization of d (to avoid
obtaining d!x̄ − σP (d) = +∞); several works are devoted to defining suitable nor-
malizations [2, 6, 3, 11].

– When the enlargement P is polyhedral, a good cut should also touch P on a facet; this
means that the face FP (d) of P exposed by d (see (A.4) in the Appendix) should have
maximal dimension.

The present paper is thus devoted to the general problem of defining good cuts according
to the above criteria; and for this we use the language and tools from convex analysis.

An application that we have in mind is in integer programming. For example in the
case of pure 0-1 programming, S has the form S := R ∩ {0, 1}n for some given poly-
hedron R ⊂ [0, 1]n. Optimizing c!x over the relaxation R yields some point x̄. When
x̄ ∈ {0, 1}n, the integer program is solved. When this is not the case, then 0 < x̄j < 1
for some j , and a natural choice for the above-mentioned enlargement P of S is the
(convex hull of the) union of the polyhedra

R ∩ {x : xj = 0} and R ∩ {x : xj = 1} .

Note: if x̄ is an extreme point of R, it cannot lie in this convex hull; the inequalities that
separate x̄ from this set P are called the lift-and-project cuts [2]. In practice, a small
set of lift-and-project cuts with the good characteristics mentioned earlier are appended
to the definition of R, thus strengthening the relaxation. The process can be repeated
several times for further strengthening.

In a mixed integer linear program, S := R ∩ (Np × Rq) where p, q are positive
integers such that p+q = n, and R ⊂ Rn is a polyhedron. If the point x̄ obtained by opti-
mizing c!x over R does not belong to conv (S), one may strengthen the relaxation R by
adding cuts, such as split cuts [8] defined as follows. Consider a disjunction “π!x ! π0
or π!x " π0 + 1” satisfied by all points of S but not by x̄. A particular choice that gives
a valid disjunction for S is (π,π0) ∈ Nn+1 with πj = 0 for j = p + 1, . . . , n. The set
P is the union of

R ∩
{
x : π!x ≤ π0

}
and R ∩

{
x : π!x ≥ π0 + 1

}

and split cuts are inequalities that separate x̄ from P . A lift-and-project cut is a special
type of split cut, where π is a unit vector. Another well-known example of split cut is
Gomory’s mixed integer cut [9].

More generally, disjunctive programming, as was introduced by Balas in the 1970’s
[1], considers a union of polyhedra. Specifically, given a finite number of polyhedra Pi ,
one would like to separate x̄ from ∪iPi or equivalently from P := conv (∪k

i=1Pi). We
will refer to P as the disjunctive polyhedron. Unfortunately, a description of the dis-
junctive polyhedron as P = {x ∈ Rn : Ax ! b} may require an exponential number of
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constraints Ax ! b. Balas’ key result is that P has a compact representation in a higher-
dimensional space, namely there is a polyhedron P̃ := {(x, y) ∈ Rn+p : Cx+Dy ! d},
whose projection onto the x-space is P , and P̃ has only around kn variables and

∑k
i=1 mi

constraints; here k is the number of polyhedra and mi denotes the number of constraints
of Pi . As a consequence, separating x̄ from P can be solved efficiently by linear pro-
gramming. We also mention [7], in which unions of non-polyhedral sets are considered.

The paper is organized as follows. Sections 2 to 4 introduce from different points of
view the fundamental objects for cutting: the reverse polar set and its associated support
function. In §5 they are particularized to unions of sets and the polyhedral case is studied
in §6. Finally we have a conclusion section: it turns out that good cuts between x̄ and P

are attached to the direction pointing from x̄ to some point x∗ ∈ P , and we suggest some
possibilities for choosing x∗. Essential concepts from convex analysis are gathered in
an Appendix.

2. Reverse polar and gauge

In this section we consider a nonempty set Q ⊂ Rn (standing for P − x̄), which we want
to separate from the origin. As observed in the introduction, this amounts to finding a
direction d such that σQ(d) < 0. Separating directions thus form an open set, which is
delicate to manage numerically, when one wants to choose a distinguished element in
it. The following definition, given in [1], ingeniously turns the difficulty around, taking
advantage of positive homogeneity: the set

Q− :=
{
d ∈ Rn : σQ(d) ! −1

}
(2.1)

will be called the reverse polar of Q. Note that Q− is dual to the space where Q lies;
if “−1” in (2.1) were replaced by 0, we would recognize the definition of a polar cone;
see Fig. 2.1, where the notation cone (·) stands for the closed conical hull.

Theorem 2.1. Assume 0 /∈ conv (Q).
(i) The reverse polar Q− is nonempty closed and convex.

(ii) Let lin (Q) be the linear space generated by Q. Then Q− has the form R +
(lin (Q))⊥, where R ⊂ lin (Q).

(iii) A direction d separates 0 from Q if and only if td ∈ Q− for some t > 0.

cone (Q)

Q−

Q

[cone (Q)]◦ 0

Fig. 2.1. Reverse polar (dotted lines connote dual elements)
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Proof. (i) Closedness and convexity hold because the function σQ is itself closed and
convex; see theAppendix for notation. Nonemptiness is just standard separation between
conv (Q) and {0}.

(ii) The property % ⊥ lin (Q) is equivalent to

%!x = 0 , i.e. (d + %)!x = d!x , for all x ∈ Q .

Thus σQ(d) = σQ(d + %) and therefore d ∈ Q− ⇔ d + % ∈ Q−.
(iii) Finally, d separates 0 from Q means that σQ(d) ! −1/t , for some t > 0; this is

equivalent to σQ(td) ! −1, i.e. td ∈ Q−. 01

It is observed in [2] – and will be confirmed below – that, to compute good separating
directions, it is advisable to maximize some linear function over the reverse polar set.
This motivates the following definition and notation:

Definition 2.2. The support function of Q−

Rn 2 q 3→ γQ(q) := sup
σQ(d)!−1

q!d (2.2)

will be called the reverse gauge of Q: γQ = σQ− .
As explained in (A.4) of the Appendix, the (possibly empty) optimal set in (2.2) is the

face of Q− exposed by q:

'Q(q) := FQ−(q) = Argmax
d∈Q−

q!d . 01

The following result goes along the lines of [3, Thm. 12].

Theorem 2.3. Assume 0 /∈ conv (Q).
(i) The reverse gauge is a closed sublinear function.

(ii) Denoting by cone (Q) the closed conical hull of Q, there holds

γQ(q)

{
! 0 if q ∈ cone (Q)

= +∞ otherwise .

(iii) If q ∈ conv (Q) then γQ(q) ! −1.

Proof. (i) Being a support function, γQ is closed sublinear.

(ii) Use the notation K := cone (Q) and observe that Q− ⊂ K◦: if q ∈ K , then the
objective value in (2.2) is nonpositive, as well as its supremum.

On the other hand, let q /∈ K: there exists d0 ∈ K◦ such that q!d0 > 0 (sepa-
ration between q and K , see (A.3) in the Appendix). Note: σQ(d0) ! σK(d0) ! 0
(see (A.8) in the Appendix). Take d̄ ∈ Q− ⊂ K◦, ε > 0 and form the vector

d(ε) := d0 + εd̄ ⊂ K◦ .

For ε small enough, q!d(ε) > 0. By subadditivity of σQ, we also have

σQ(d(ε)) ! σQ(d0) + εσQ(d̄) ! −ε .

Then, for t → +∞, we have

σQ(td(ε)) →−∞ and q!(td(ε)) → +∞ .
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0

q⊥

q

Q−

'Q(q)

Fig. 2.2. Constructing a separator via a primal point

(iii) If q ∈ conv (Q) then q!d ! σQ(d) for all d (separation theorem, see (A.3) in the
Appendix). Thus q!d ! −1 for any d feasible in (2.2) and this inequality is still
valid for the supremum γQ(q). 01

Figure 2.2 illustrates Definition 2.2: shifting the hyperplane q⊥ so as to just touch the
dashed area gives 'Q(q) as the contact set. These various dual objects are all associated
with a single primal point q.

We finish this section with a comment on our nonemptiness assumption. The case
Q = ∅ is somewhat trivial but also pathological: we may set σQ ≡ −∞ (see Note 2,
p.584) and it is natural from (2.1) to set Q− = Rn; then γQ(0) = 0 and γQ(d) = +∞
for all d 7= 0.

3. Geometric characterizations

This section is devoted to describing γQ and 'Q in terms of Q itself, without any refer-
ence to σQ. This can be done via the following problem:






sup t

t " 0
q ∈ t conv (Q)

(3.1)

and Theorem 3.2 below will justify our terminology “reverse gauge” (see the Appendix
for the definition of a gauge).

In the remainder of this section, we will assume q ∈ conv (Q), which is the case of
interest for the applications we have in mind. Observe that, by positive homogeneity, this
amounts to taking q anywhere in the cone generated by Q; up to the closure operation,
this essentially amounts to assuming γQ(q) < +∞ (see Theorem 2.3 (ii)).

Lemma 3.1. Assume 0 /∈ conv (Q) and let q ∈ conv (Q). Then the optimal t in (3.1) is
not smaller than 1 and the optimal value is attained (the sup is actually a max).

Proof. Call t∗ the optimal value of (3.1). The property t∗ " 1 is obvious by our choice
of q.

Let tk be a maximizing sequence: q/tk ∈ conv (Q) and 1/tk → 1/t∗ (a finite
number, possibly 0). Then q/tk → q/t∗, which has to lie in the closed set conv (Q). 01
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Theorem 3.2. Assume 0 /∈ conv (Q) and let q ∈ conv (Q). Then the optimal value in
(3.1) is −γQ(q).

Proof. Apply Lagrangian duality to (2.2) (a convex problem which satisfies Slater’s
condition):

γQ(q) = inf
t"0

sup
d∈Rn

[
q!d − t (σQ(d) + 1)

]
= inf

t"0
[−t + θ(t)] ,

where θ(t) := supd

[
q!d − tσQ(d)

]
. Observe that θ(t) " 0 (just take d = 0). Because

γQ(q) ! −1 (Theorem 2.3), we may impose the constraint t " 1. Then

θ(t) =
{

0 if q ∈ tQ ,
+∞ otherwise .

To see this, either invoke [10, §E.1] (more specifically Example 1.1.5 and Theorem 1.3.5)
or argue as follows: by positive homogeneity θ(t) = +∞ if there is d such that q!d −
tσQ(d) > 0, i.e. q/t /∈ Q (separation between Q and q/t , (A.3) in the Appendix). On
the other hand q/t ∈ Q means (q!/t)d − σQ(d) ! 0 for all d and then θ(t) = 0.

It follows that γQ(t) = inf {−t : t " 0, q ∈ tQ}. 01

This result, together with Lemma 3.1, reveals important objects attached to Q and q:

Definition 3.3. Denoting by t∗Q(q) the optimal value of (3.1),

q∗ := q

−γQ(q)
= q

t∗Q(q)

is the visible point from the origin in the direction q. 01

Geometrically, q∗ is the closest point to the origin on the line-segment [0, q], still
lying in conv (Q); see [3, Corr. 14]. In fact, (3.1) can also be written (setting s := 1/t):

inf s , s " 0 , sq ∈ conv (Q) .

Clearly enough, q 3→ t∗Q(q) is positively homogeneous: the length of q has no real
influence on (2.2) or (3.1) or q∗. The points q ∈ conv (Q) that are visible from the
origin are those such that t∗Q(q) = −γQ(q) = 1.

Theorem 3.4. Assume 0 /∈ conv (Q), let q ∈ conv (Q) and use the notation of Defini-
tion 3.3. Then 'Q(q) is the set of d in the normal cone to conv (Q) at q∗ that satisfy
q!d = γQ(q). In other words, d ∈ 'Q(q) is equivalent to

d!(x − q∗) ! 0 for all x ∈ Q (3.2)

and d!q = γQ(q) . (3.3)
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Q

Q−

q

'Q(q)
0

q∗NQ(q∗)

Fig. 3.1. The visible point q∗ lies in the face of Q exposed by 'Q(q)

Proof. Let d satisfy (3.2); maximizing over x ∈ Q shows that σQ(d) ! d!q∗. If, in
addition, d satisfies (3.3), σQ(d) ! −1: d is feasible in (2.2); use again (3.3) to conclude
that d is also optimal.

Conversely, let d ∈ 'Q(q); then σQ(d) ! −1 and q!d = γQ(q), hence

σQ(d) ! −1 = d!q∗ . (3.4)

However, q∗ ∈ conv (Q) (Lemma 3.1 and Theorem 3.2). By definition of a support func-
tion, σQ(d) " d!q∗: equality holds in (3.4), i.e. q∗ lies in the face of Q exposed by d

(see (A.4) in the Appendix);

q∗ ∈ Fconv (Q)(d) , i.e. d ∈ Nconv (Q)(q
∗) ,

where the last equivalence is (A.6) in the Appendix. 01

Thus, a direction d ∈ 'Q(q) exposes q∗ in conv (Q). Said differently, d ∈ 'Q(q)

defines a hyperplane
{
x ∈ Rn : d!x = σQ(d)

}

supporting conv (Q) at q∗. The important property to characterize 'Q(q) is (3.2), which
expresses that it lies in the normal cone to Q at q∗ (the thick dashed arrow of Fig. 3.1);
while (3.3) just acts as a normalization (specifying the length of the arrow).

The constructions given in this section are intrinsic: they do not rely on any repre-
sentation of Q. It can be mentioned that the dilation effect revealed in (3.1) may result
in rather intricate calculations when Q is represented by nonlinear constraints – see
[7]. For affine constraints, the calculations considerably simplify – see §6 below, more
specifically Remark 6.5.

4. Normalizations

The reverse gauge can also be computed via a convex optimization problem with a single
linear constraint, namely

inf σQ(d) , q!d " −1 ; (4.1)
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observe that this problem would become very similar to (2.2) if the righthand side “−1”
were replaced by γQ(q). In fact, the aim of the present section is to show that the optimal
value κ∗ and optimal set D∗ in (4.1) are just proportional to the optimal value γ and
optimal set ' in Definition 2.2. The profound reason is positive homogeneity: replacing
“−1” by any κ < 0 in the definition (2.1) of the reverse polar would change essentially
nothing. As a result, changing the righthand side in (2.2) or (4.1) just amounts to dilat-
ing the picture. On Fig. 2.2, on could also shift q⊥ by a fixed amount, 'Q(q) could be
recovered by an appropriate dilation of Q− .

To prove equivalence between (2.2) and (4.1), we first show that their constraint can
be turned to an equality:

Lemma 4.1. Assume 0 /∈ conv (Q) and let q ∈ conv (Q). Then:
(i) γQ(q) and 'Q(q) are the optimal value and optimal set of

max q!d , σQ(d) = −1 ;

(ii) κ∗ < 0 and D∗ are the optimal value and optimal set of

min σQ(d) , q!d = −1 .

Proof. Let d be feasible in (2.2): σQ(d) =: α ! −1; by definition of a support function,
q!d ! σQ(d) < 0. By positive homogeneity, σQ

(
d
−α

)
= −1 and q! d

−α " q!d , with
strict inequality if −α > 1. This proves (i). The proof of (ii) goes the same way. 01

This enables us to make the equivalence precise:

Theorem 4.2. Assume 0 /∈ conv (Q) and let q ∈ conv (Q). Then

γQ(q) = 1
κ∗

and 'Q(q) = D∗

−κ∗
.

Proof. We use the shortened notation γ :=γQ(q). Recall that γ !−1 (Theorem 2.3(iii)).
Let ε > 0. In view of Lemma 4.1(i), we can take dε such that σQ(dε) = −1 and

q!dε " γ − ε. Then set d := dε
−γ+ε , so that q!d " −1: d is feasible in (4.1), hence

κ∗ ! σQ(d) = 1
−γ + ε

σQ(dε) = 1
γ − ε

.

Since ε > 0 is arbitrary, κ∗ ! 1/γ , i.e. κ∗γ " 1, i.e. γ ! 1/κ∗.
On the other hand, Lemma 4.1(ii) allows us to force ε ∈ ]0,−κ∗[ and to take d ′ε such

that q!d ′ε = −1 and σQ(d ′ε) ! κ∗ + ε < 0. Then set d := d ′ε
−κ∗−ε , so that σQ(d) ! −1:

d is feasible in (2.2), hence

γ " q!d = q!
d ′ε

−κ∗ − ε
= 1

κ∗ + ε
.

Since ε > 0 is arbitrarily small, γ " 1/κ∗. Altogether, γ = 1/κ∗.
Now d ∈ 'Q(q) means

q!d = γ and σQ(d) = −1 ,
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while d ∈ D∗ means

q!d = −1 and σQ(d) = 1
γ

.

The relation between 'Q(q) and D∗ follows by positive homogeneity. 01
With reference to our introduction, the constraint in (4.1) can be viewed as a normali-

zation: to construct a tightest cut d amounts to minimizing σQ and requires a bound on d.
The above result establishes that bounding q!d (from below) does the job: it imposes
the simplest possible constraint to give a meaning to the minimization of σQ. It does not
necessarily produce a separating direction, though: consider in R2 the circle

Q := {x = (ξ, η) : (ξ − 1)2 + (η − 1)2 ! 1}
and take q = (1, 0). Then γQ(q) = −1 (Theorem 3.2). However, no d ∈ (0, R−) =
NQ(q) satisfies d!q = −1: in fact 'Q(q) = ∅.

Remark 4.3. The proof of Theorem 3.2 shows that (3.1) is the Lagrangian dual of (2.2).
A similar interpretation applies to (4.1) through the following formulation of (3.1):

inf
x∈Q,t"0

t , tq = x .

Dualizing the constraint tq − x = 0 with multiplier d, we obtain the Lagrangian dual

sup
d∈Rn

inf
x∈Q,t"0

t + d!(tq − x) .

The internal inf-problem can be solved separately in x and t . Remembering the definion
of σQ, we obtain

sup
d∈Rn

−σQ(d) , q!d + 1 " 0 ,

which is nothing other than (4.1).
Note also the optimality condition of

inf
x∈Q

−d!x ,

which is d ∈ NQ(x) and “explains” Theorem 3.4. 01

q = q∗

q∗ + NQ(q∗)Q−

0

Q

Fig. 4.1. No separator exposes q∗
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5. The case of a disjunction

Let Q0 and Q1 be two nonempty subsets of Rn. In this section, we take Q = Q0 ∪Q1
and we apply the above results to compute the reverse elements of Q in terms of the data
Q0 and Q1.

Lemma 5.1. Denote by σi and γi the support function and reverse gauge of Qi , i = 0, 1.
There holds

σQ = max {σ0, σ1} , Q− = Q−
0 ∩Q−

1 , γQ = conv (min {γ0, γ1}) .

Proof. See the Appendix for σQ. The formula for Q− follows easily. See again the
Appendix for γQ = σQ− . 01

In the following result, the notation S is used for the closure of a set S.

Theorem 5.2. Assume 0 /∈ conv (Q) and let q ∈ conv (Q). Then−γQ(q) is the optimal
value of






sup t0 + t1
t0 " 0, t1 " 0

q ∈ t0conv (Q0) + t1conv (Q1) .

Proof. Apply Theorem 3.2: −γQ(q) is the optimal value of (3.1). Now t conv (Q) is
clearly conv (tQ), which is the closure of St := conv (tQ). Using associativity of con-
vex combinations, we can write

St = {αtq0 + (1− α)tq1 : α ∈ [0, 1], q0 ∈ conv (Q0), q1 ∈ conv (Q1)} .

Introduce the notation t0 := αt , t1 := (1− α)t . When α describes the segment [0, 1], t0
and t1 describe the corresponding segment dilated by t " 0, so that

St = {t0 conv (Q0) + t1 conv (Q1) : t0 " 0, t1 " 0, t0 + t1 = t} . 01

Introducing the visible pointq∗ of Definition 3.3 allows the characterization of'Q(q)

in terms of normal cones (see (A.5) in the Appendix):

Theorem 5.3. Assume 0 /∈ conv (Q) and let q ∈ conv (Q). Then 'Q(q) is the set of d

satisfying

d!(x − q∗) ! 0 for all x ∈ Q0 ,

d!(x − q∗) ! 0 for all x ∈ Q1 ,

and q!d = γQ(q) .

Proof. Use Theorem 3.4 and observe that, if d satisfies d!(x − q∗) ! 0 for all x ∈ Qi ,
i = 0, 1, then the same inequality holds
– for all x ∈ conv (Q0 ∪Q1) by convex combinations,
– and for all x in the closure of the latter set, by continuity.
Altogether, (3.2) is satisfied. The converse is obvious. 01
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Qi

q∗
NQ∗

i
(q∗)

Fig. 5.1. Apexed convex hull and corresponding normal cone

Remark 5.4. This result suggests that the normal cone NQ(q∗) (where Q is a union) is
the intersection of two appropriate normal cones, as illustrated by Fig. 5.1: for i = 1, 2,
we have

Q∗
i := conv (Qi ∪ {q∗}) =

{
(1− α)q∗ + αx : x ∈ Qi, α ∈ [0, 1]

}

= q∗ + {α(Qi − q∗) : α ∈ [0, 1]} .

It follows that the directions d satisfying

d!(x − q∗) ! 0 for all x ∈ Qi ,

or equivalently

d!α(x − q∗) ! 0 for all x ∈ Qi and α ∈ [0, 1]

just make up the normal cone NQ∗
i
(q∗) to Q∗

i at q∗. As a result, d ∈ 'Q(q) means

d ∈ NQ∗
0
(q∗) ∩ NQ∗

1
(q∗)

and q!d = γQ(d) .

The whole issue when dealing with a disjunction is thus to characterize a normal cone
of the type Nconv (S∪{0})(0), for some set S (here S = Qi − q∗). Such a cone can also be
viewed as the polar of cone (S). 01

One can also compute the reverse elements of a disjunction using a normalization,
as in §4:

Theorem 5.5. Denote by κ∗ and D∗ the optimal value and optimal set (possibly empty)
of

inf κ , κ " σ0(d) , κ " σ1(d) , q!d = −1 .

Then γQ(q) = 1
κ∗

and 'Q(q) = D∗

−κ∗
.

Proof. Use Lemma 5.1 in (4.1): the result is a straigtforward application of Theorem 4.2.
01
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6. Polyhedra

A polyhedron can be described in two different ways: as a convex hull (Theorem 6.1
below), or as an intersection of half-spaces, as in §6.1. The case of a disjunction (§6.2)
is somewhat intermediate.

Theorem 6.1. Let Q be a nonempty closed convex polyhedron not containing the ori-
gin. Then Q− is also a nonempty closed convex polyhedron; in particular, if Q =
conv (x1, . . . , xk) + cone (r1, . . . , r%), then

d ∈ Q− ⇐⇒
{

d!xi ! −1 for i = 1, . . . , k ,

d!rj ! 0 for j = 1, . . . , % .

Furthermore, γQ is a piecewise linear function in the domain where it is finite; 'Q(q)

is a closed convex polyhedron, nonempty if q ∈ cone (Q) = cone (Q).

Proof. Everything is rather clear; in particular, (2.2) is a linear program, which has a
nonempty optimal set if it has a finite optimal value. 01

Now comes a result motivating this theory.

Theorem 6.2. The face FQ(d) exposed by d ∈ Q− is a facet of Q if and only if

d∗ := d

−σQ(d)

is an extreme point of Q− ∩ lin (Q).

Proof. The points x ∈ Q that lie in FQ(d) are those such that d!x = σQ(d), i.e.
(d∗)!x = −1.

Let p denote the dimension of lin (Q)⊥. Suppose FQ(d) is a facet of Q and let
x1, . . . , xn−p be n−p affinely independent points in FQ(d). Then d∗ satisfies a system
of n− p independent equations (d∗)!xi = −1 which uniquely determines it up to the
linear space lin (Q)⊥. Conversely, if d∗ is an extreme point of Q− ∩ lin (Q), there exist
n−p affinely independent points x1, . . . , xn−p in Q that satisfy (d∗)!xi = −1. These
points lie in FQ(d), therefore FQ(d) is a facet of Q. 01

6.1. Explicitly described polyhedra

Assume that Q is described by a set of constraints:

Q = {x ∈ Rn : Ax ! b ∈ Rm} . (6.1)

A simple way of computing γQ is then as follows:

Theorem 6.3. Assume Q of (6.1) does not contain the origin and let q ∈ Q; denote by
Aj the j th row of A. Then

−γQ(q) = max
bj <0

Ajq

bj
.

Calling J (q) the set of j realizing the above max, 'Q(q) is the set of directions in
cone (Aj )j∈J (q), normalized by the constraint d!q = γQ(q).
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Proof. Just apply Theorems 3.2 and 3.4: (3.1) takes the form

max t , t " 0 , Aq ! tb .

Then use the known expression for the normal cone to a polyhedron. 01

6.2. Union of polyhedra

Now take the situation of §5: Q := conv (Q0 ∪Q1), where

Qi :=
{
x ∈ Rn : Aix ! bi ∈ Rmi

}
for i = 0, 1 (6.2)

are nonempty closed convex polyhedra. Of course, all the constructions of the present
section can be obtained via appropriate linear programs. However, we will keep close
to our convex-analysis point of view.

We start by a characterization of the closed convex hull Q described above.

Lemma 6.4. With the notation (6.2), x ∈ Q if and only if there are y0, y1 ∈ Rn and
α0,α1 ∈ R such that

x = y0 + y1 , α0 + α1 = 1 , Aiyi − αibi ! 0 and αi " 0 for i = 0, 1 . (6.3)

Proof. Consider the set

S := {α0x0 + α1x1 : α0 + α1 = 1, Aixi ! bi and αi > 0 for i = 0, 1} .

Clearly enough, S ⊂ conv (Q0 ∪Q1) and any point in conv (Q0 ∪Q1) can be approx-
imated to any accuracy by a point in S. It follows that Q is the closure of S.

Now set yi := αixi for i = 0, 1, so that we have

S = {y0 + y1 : α0 + α1 = 1, Aiyi ! αibi and αi > 0 for i = 0, 1} ,

whose closure is clearly the set described by (6.3). 01

This result will be used to characterize tQ in §3 by appropriate constraints.

Remark 6.5. The above proof makes more precise our comments at the end of §3. In
fact, suppose Q = {x : c(x) ! 0} (with c convex but not necessarily affine). Then the
feasible set in (3.1) is given by c(q/t) ! 0, a nasty nonconvex constraint (with respect
to the variable (q, t)). Here comes a trick: with t > 0 we can also write tc(q/t) ! 0
and this reveals the so-called perspective function of c (see [10]):

Rn×] 0, +∞[ 2 (q, t) 3→ c̃(q, t) := tc
(q

t

)
,

which happens to be convex (and even sublinear, see the Appendix). When c is affine,
c̃ is linear, which results in the simple formula (6.3). Otherwise, c̃ is rather involved,
which explains the technicalities developed in [7]. 01
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Theorem 6.6. With the notation (6.2), assume 0 /∈ Q and let q ∈ Q. Then −γQ(q) is
the optimal value of






max t0 + t1
q0 + q1 = q

Aiqi − tibi ! 0 for i = 0, 1
ti " 0 for i = 0, 1 .

(6.4)

Proof. Just dilate the set (6.3) by t " 0, replacing αi by ti := tαi . 01

It remains to characterize 'Q(q), i.e. the normal cone to Q at q∗. The following
result, inspired by Remark 5.4, will allow the application of Theorem 5.3.

Proposition 6.7. With the notation (6.2) and q∗ of Definition 3.3, the cone

N0 :=
{
d ∈ Rn : d!(x − q∗) ! 0 for all x ∈ Q0

}

is the set of d = A!
0 u0, where u0 " 0 ∈ Rm0 satisfies (A!

0 q∗ − b0)
!u0 " 0.

Proof. Using an artificial multiplication by α > 0, we can write that d ∈ N0 if and only
if

αd!(x − q∗) ! 0 for all x such that A0x ! b0 and all α " 0

which, setting y := αx − αq∗, can also be written

d!y ! 0 for all
(

y

α

)
∈ K0 ;

here K0 ⊂ Rn+1 is the cone defined by
(

A0 A0q
∗ − b0

0! −1

) (
y

α

)
! 0. This means that

(
d

0

)
∈ K◦

0 .

Now K◦
0 is classically the set described by

(
d

r

)
=

(
A!

0 0
(A0q

∗ − b0)
! −1

) (
u0
v0

)
with

(
u0
v0

)
" 0 ∈ Rn+1 .

Fixing r = 0 introduces the constraint

(A0q
∗ − b0)

!u0 − v0 = 0 , i.e. (A0q
∗ − b0)

!u0 " 0 . 01

The characterization of 'Q(q) is now easy:

Theorem 6.8. With the notation (6.2), assume 0 /∈ Q and let q ∈ Q; introduce γQ(q)

of (6.4) and q∗ of Definition 3.3. Up to the normalization d!q∗ = γQ(q), 'Q(q) is the
set of d = A!

0 u0 = A!
1 u1, with (u0, u1) ∈ Rm0

+ × Rm1
+ satisfying the set of constraints

A!
0 u0 = A!

1 u1 and (Aiq
∗ − bi)

!ui " 0 , i = 0, 1 .

Proof. Straightforward from Theorem 5.3 and Proposition 6.7. 01
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Remark 6.9. It has been observed in Remark 4.3 that 'Q(q) could also be obtained by
applying duality to (3.1), which is here (6.4). Indeed, multiply the objective function of
(3.1) by some normalizing coefficient κ > 0 and call d the multiplier associated with
q0 + q1 = q. This gives the dual






min−q!d

d = A!
i ui for i = 0, 1

κ + b!i ui ! 0 for i = 0, 1
u " 0 .

Its solution depends multiplicatively on κ , which can be adjusted so as to reproduce
q!d = γQ(q). The “correct” value is a posteriori κ = −(A0q

∗)!u0 = −(A1q
∗)!u1. 01

7. Conclusion: toward efficient cut generation

This paper has studied the construction of cutting planes defined by (d, σQ(d)) ∈ Rn×R,
separating the origin from (the closed convex hull of) a set Q.With regard to our introduc-
tion, this is also the problem of separating a point x̄ from (the closed convex hull of) a set
P : it suffices to set Q := P − x̄, and to use the obvious relation σQ(d) = σP (d)−d!x̄.

The d-part of a cut is conveniently computed with the help of some q ∈ conv (Q), or
rather its corresponding visible point q∗. We solve (2.2) or (4.1) which, in the translated
context, take the form

sup
σP (d)−d!x̄!−1

d!(x − x̄) or inf
d!(x−x̄)"−1

σP (d)− d!x̄

(here x − x̄ stands for q, with x ∈ P ).
We have not considered the problem of choosing q in Q – i.e. x in P ; but some

suggestions can be made. A guide for this choice might be the depth of a cut, defined as
follows.

Definition 7.1. The depth of a cut separating x̄ from a closed convex set P is the Euclid-
ean distance between x̄ and the separating hyperplane. If the cut is defined by

d!x = σP−x̄ (d) , where σP−x̄ (d) = σP (d)− d!x̄ < 0 ,

its depth is
−σP−x̄ (d)

‖d‖
. 01

In fact, P. Bonami [5] performed experiments in the context of lift-and-project cuts
to solve max c!x over S = {x ∈ {0, 1}n : Ax ! b}. He compared two choices of
q = x − x̄ by choosing x ∈ S in two different ways: in the first, x was chosen to be a
good heuristic solution to the integer program and in the second x was a bad solution
(obtained by minimizing c!x instead of maximizing it). One would expect the direction
q to be more central in cone (Q) in the second case. On 15 instances of Miplib 3.01, the
average depth of a cut generated by the first choice of x was 0.026 whereas it was 0.084

1 http://www.caam.rice.edu/#bixby/miplib/miplib3.html
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with the second choice. Adding cuts for all 0-1 variables xj where x̄j was fractional gave
an average improvement in objective value of 6% (of the gap between the linear and
integer program objective values) in the first case and 6.6% in the second case. When
the cuts were added to Ax ! b and this strengthened linear program was solved again
to compute a new solution x̄, this process being repeated iteratively for one minute of
CPU, the difference was even more significant (38% versus 53%).

This small experiment suggests that it seems preferable to choose deep cuts, and one
may therefore wish to find the deepest one; this corresponds to projecting x̄ onto P :

Proposition 7.2. With the above notation, call x∗ the solution of

min
x∈P

‖x − x̄‖ .

Then d∗ := x̄ − x∗ defines the deepest cut between x̄ and P .

Proof. Using positive homogeneity, the d-part of a cut can be restricted to a normalized
d. Thus, a deepest cut is a solution of

min
‖d‖=1

σP−x̄ (d)

where, because the optimal objective value is negative, the constraint ‖d‖ = 1 can be
replaced by ‖d‖ ! 1. Thus, a deepest cut is a solution of

min
‖d‖!1

sup
x∈P

d!(x − x̄) .

This is the min-maximization of a bilinear function over a product of closed convex sets,
one of which (the unit ball) is compact. Using a standard minimax theorem, for example
[12, Corollary 37.3.2], we can equivalently solve

sup
x∈P

min
‖d‖!1

d!(x − x̄) .

For given x ∈ P (and hence different from x̄), the internal minimization has the unique
solution

d(x) := Argmin
‖d‖!1

d!(x − x̄) = − x − x̄

‖x − x̄‖

and our minimax problem boils down to

sup
x∈P

d(x)!(x − x̄) = sup
x∈P

−‖x − x̄‖ ,

whose unique solution is clearly the projection x∗ of x̄ onto P . 01

Thus, to construct the deepest cut between a closed convex set P and a point x̄ /∈ P ,
one needs to project x̄ onto P . When P is a polyhedron, this amounts to solving a
linear-quadratic problem.

When solving an integer program by a cutting plane approach, generating just one
cut is usually not enough, even the deepest one. A better strategy is to generate many cuts
at once; and as already mentioned, these should preferably be facets of P . An attractive
approach is therefore to operate as follows:
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(i) Compute the projection x∗ of x̄ onto P . Set d∗ = x̄ − x∗.
(ii) Construct cuts, say

(
dk, σP (dk)− x̄!dk

)
, k = 1, . . . , K

corresponding to facets of P passing through x∗.
(iii) Append to the above list

(
d∗, σP (d∗)− x̄!d∗

)
(this step is useless if (ii) has pro-

duced enough cuts, so that d∗ is a positive combination of the dk’s).
Let us mention that Bonami [4] used the following idea for generating facets of P

that define the optimum of maxx∈P c!x. First find x̄ solving the relaxation maxx∈R c!x

(we use the notation of the introduction). Then solve the linear program based on (6.4)
to find a cut

(
d1, σP (d1) − x̄!d1

)
separating x̄ from P (any q ∈ Q will do in (6.4):

for example q = x∗ − x̄ where, as above, x∗ is the projection of x̄ onto P ). Let R1 be
the relaxation obtained by adding this cut to R, and let x1 maximize c!x over R1. The
procedure is then repeated: the kth iteration generates
– a cut

(
dk, σP (dk)− x̄!dk

)
separating xk−1 from P ,

– an improved relaxation Rk obtained by adding this cut to Rk−1,
– and a point xk maximizing c!x over Rk−1.
The procedure terminates when xk ∈ P . Bonami tried this procedure on the Miplib
problems mentioned earlier, for the lift-and-project relaxation

PL&P :=
n⋂

j=1

conv ((R ∩ {xj = 0}) ∪ (R ∩ {xj = 1})) .

On average, maximizing c!x over PL&P closed 30% of the gap between R and conv (S).

Acknowledgements. We are grateful to anonymous referees for their careful reading, which helped improve
an earlier version of this paper.

A. Appendix: basic concepts from convex analysis

The convex-analysis aspects necessary for the understanding of this paper can be found
in any book on modern convex analysis. We summarize here some material mainly
extracted from [10, Chap. C], co-authored by the second author.

Support functions. An important object associated to a nonempty subset S of Rn is its
so-called support function

Rn 2 d 3→ σS(d) := sup
x∈S

d!x . (A.1)

In other words, σS is the result of optimizing a linear function over S.
A support function enjoys the following important properties:
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(i) It is convex (being a supremum of linear functions2).
(ii) It is positively homogeneous: σS(td) = tσS(d) for all t > 0, so that d in (A.1) can

be understood as a direction (knowing that σS(0) = 0).
Functions that are convex and positively homogeneous are called sublinear; they

are in particular subadditive, i.e.

σS(d1 + d2) ! σS(d1) + σS(d2) .

Note also that σS is linear if and only if S is a single point. Being convex, σS would
be continuous if it were finite everywere. However, we may have σS(d) = +∞
(when S is unbounded; for example σRn(d) is 0 if d = 0 and +∞ otherwise).

(iii) Nevertheless, a support function is lower-semicontinuous, or closed3.
The set of functions that are sublinear and closed is important, as it directly gener-

alizes the set of linear functions.

Correspondence between analysis and geometry. Let conv (S) denote the closed con-
vex hull of S, equivalently defined as
– the topological closure of the convex hull of S (the closure operation is superfluous if

S is already closed and bounded)
– or the intersection of all the half-spaces containing S.
Recall that a half-space associated to (d,β) ∈ Rn × R is defined as

{
x ∈ Rn : d!x ! β

}
.

It is clear enough that σS = σconv (S), and this is the starting remark for a funda-
mental result: the closed convex sets S in Rn are in one-to-one correspondence with the
functions σ from Rn to R ∪ {+∞} that are closed and sublinear. The correspondence
S 3→ σ is given by (A.1); its inverse is given by

σ 3→ S :=
{
x ∈ Rn : σ (d) " x!d for all d ∈ Rn

}
= ∂σ (0) , (A.2)

where the last equality is obvious, if one remembers the definition of a subdifferential:

∂σ
(
d̄
)

:=
{
x ∈ Rm : σ (d) " σ

(
d̄
)
+ x!

(
d − d̄

)
for all d ∈ Rn

}
.

From the definition (A.1) itself, d!x ! σS(d) for all d ∈ Rn whenever x ∈ conv (S).
The above result states that the converse is true:

x ∈ conv (S) ⇐⇒ ∀d ∈ Rn, d!x ! σS(d) , (A.3)

which is nothing other than the familiar separation theorem

x /∈ conv (S) ⇐⇒ ∃ d ∈ Rn : d!x > σS(d) .

2 The assumption S 7= ∅ is convenient. We may also define σ∅ ≡ −∞, although this is a somewhat
pathological “function”.

3 This means:
– its epigraph {(x, r) ∈ Rn × R : r " σS(x)} is a closed set in Rn+1,
– or equivalently: its sublevel sets {d : σS(d) ! β} are closed sets (possibly empty) in Rn, for any β,
– or equivalently: given arbitrary d ∈ Rn and dk → d, if σS(dk) → %, then % " σS(d) (note: this last

inequality must hold even if σS(d) = +∞).
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Isomorphism aspects. Not only closed convex sets and closed sublinear functions, but
also operations between them are in correspondence via (A.1) and (A.2), which is indeed
an isomorphism. For example,

σS1+S2 = σS1 + σS2 .

Two other important operations are as follows: given an index set J (possibly infinite),
consider closed convex sets {Sj : j ∈ J } and closed sublinear functions {σj : j ∈ J }
related by

{
σj is the support function of Sj ,
or equivalently: Sj = ∂σj (0) .

Form the following two pairs (S, σ ):
(i) Set S := conv (∪j Sj ) and σ := supj σSj .

(ii) Set S := ∩j Sj and let σ [:= conv (infj σj )] be the closed convex hull of the σj ’s:
this is the function whose epigraph is the closed convex hull of the union of the
epigraphs of the σj ’s4

Then, in both cases (i) and (ii) we have

{
σ is the support function of S,
or equivalently: S = ∂σ (0) .

Exposed faces and normal cones. Here S is assumed to be closed and convex. A half-
space {x : d!x ! β} contains S if and only if β " σS(d). If β = σS(d) and if the
supremum in (A.1) is attained, then the hyperplane {x : d!x = σS(d)} is said to support
S. The contact set

FS(d) := Argmax
x∈S

d!x =
{
x ∈ S : d!x = σS(d)

}
(A.4)

is called the face (of S) exposed by d (note: FS(0) = S).
Knowing that the normal cone to S at x ∈ S is

NS(x) := {d ∈ Rn : d!(x′ − x) ! 0 for all x′ ∈ S} , (A.5)

the following equivalence is clear:

x ∈ FS(d) ⇐⇒ d ∈ NS(x) . (A.6)

4 The epigraph of σ is thus the intersection of the half-spaces containing the epigraphs of all the σj ’s: the
property r " σ (d) means

r " α!d + β for all α,β such that
α!d ′ + β ! σj (d

′) for all d ′ ∈ Rn and all j ∈ J .
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Gauges and polar sets. The polar of a set S ⊂ Rn is

S◦ :=
{
y : y!x ! 1 for all x ∈ S

}
= {y : σS(y) ! 1} . (A.7)

Being an intersection of closed half-spaces, S◦ is always closed and convex.
Besides (A.1), another function associated with S is its gauge

γS(q) := inf
t>0,q∈tS

t

(knowing that γS(q) = +∞ if tq ∈ S for no t > 0). Polarity establishes a duality
correspondence between σ and γ :

If S is closed and convex, then γS = σS◦ and σS = γS◦

(note: if S is the unit-ball of some norm, (A.7) defines the dual norm, namely the one
having S◦ as unit-ball).

When S is a cone, (i.e. tx ∈ S whenever x ∈ S and t > 0), S◦ is not changed if
the righthand side “1” of (A.7) is replaced by any nonnegative number, say 0. Thus, the
polar cone of a cone K is the closed convex cone

K◦ :=
{
y : y!x ! 0 for all x ∈ K

}
= {y : σK(y) ! 0} (A.8)

of directions making an obtuse angle with all directions in K . Note: the polar of K is its
normal cone at 0.

The polar of K◦, i.e. the bipolar K◦◦ of K , is just the closed convex hull of K (i.e.
K◦◦ = K if K is a closed convex cone). The gauge and support function of a closed
convex cone are clearly either 0 or +∞: indeed

For a closed convex cone K , [γK◦(y) =] σK(y) =
{

0 if y ∈ K◦

+∞ otherwise .

When K is a polyhedral cone, namely K = {x ∈ Rn : Ax ! 0}, Farkas’ lemma
states that K◦ =

{
A!λ : λ ∈ Rm

+

}
.
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