

Bifurcation and Chaos in Non-smooth Mechanical Systems

Remco Leine March 2006

CEA-EDF-INRIA SCHOOL

"NONSMOOTH DYNAMICAL SYSTEMS. ANALYSIS, CONTROL, SIMULATION AND APPLICATIONS"

INRIA Rocquencourt 29 May to 2 June 2006

Dr. ir. R.I. Leine Center of Mechanics - IMES CH-8092 ETH Zürich SWITZERLAND remco.leine@imes.mavt.ethz.ch

<u>1 Introduction</u>

Contents

1. Introduction	2
2. Non-smooth Dynamical Systems	3
3. Steady-state Behaviour	7
4. Definitions of Bifurcation	15
5. Bifurcations of Equilibria	18
6. Bifurcations of Fixed Points	29
7. Bifurcations of Periodic Solutions	44
8. Literature	61

Aim

To give a brief introduction to Nonlinear Dynamics & Bifurcations of

- smooth systems
- non-smooth systems

2 Non-smooth Dynamical Systems

A dynamical system is a system whose state evolves with time. The evolution is governed by a set of rules (usually differential equations).

A dynamical system can be non-smooth...

2.1 Continuous-time Dynamical Systems

smooth system

 $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t))$ rhs is differentiable up to any order

non-smooth continuous system

 $\dot{m{x}}(t) = m{f}(t, m{x}(t))$ rhs is continuous but non-smooth

Example:

$$m\ddot{x} + kx = f_0\cos(\omega t) - f(x)$$

$$f(x) = \begin{cases} 0, & x \le 0\\ k_f x, & x > 0 \end{cases}$$

Filippov system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t)) = \begin{cases} \boldsymbol{f}_{-}(t, \boldsymbol{x}(t)), & \boldsymbol{x} \in \mathcal{V}_{-} \\ \boldsymbol{f}_{+}(t, \boldsymbol{x}(t)), & \boldsymbol{x} \in \mathcal{V}_{+} \end{cases}$$
not everywhere

rhs is discontinuous on hypersurfaces $\boldsymbol{\varSigma}$

replace with differential inclusion

$$\mathbf{F}(t, \mathbf{x}(t)) = \begin{cases} \mathbf{f}_{-}(t, \mathbf{x}(t)), & \mathbf{x} \in \mathcal{V}_{-} \\ \overline{\mathrm{co}}\{\mathbf{f}_{-}(t, \mathbf{x}(t)), \mathbf{f}_{+}(t, \mathbf{x}(t))\}, & \mathbf{x} \in \Sigma \end{cases}$$

$$\begin{split} \dot{\boldsymbol{x}}(t) \in \boldsymbol{F}(t, \boldsymbol{x}(t)) &= \begin{cases} \overline{\mathrm{co}} \{ \boldsymbol{f}_{-}(t, \boldsymbol{x}(t)), \boldsymbol{f}_{+}(t, \boldsymbol{x}(t)) \}, & \boldsymbol{x} \in \boldsymbol{\varSigma} \\ \mathbf{a} \text{lmost everywhere} & \boldsymbol{f}_{+}(t, \boldsymbol{x}(t)), & \boldsymbol{x} \in \boldsymbol{\mathcal{V}}_{+} \end{cases} \end{split}$$

attractive sliding mode

measure differential inclusion

 $d\boldsymbol{x} \in \boldsymbol{F}(t, \boldsymbol{x}(t)) dt + \boldsymbol{G}(t, \boldsymbol{x}(t)) d\eta$ or $d\boldsymbol{x} \in d\boldsymbol{\Gamma}(t, \boldsymbol{x}(t))$

with
$$d\boldsymbol{x} = \dot{\boldsymbol{x}}(t)dt + (\boldsymbol{x}^+(t) - \boldsymbol{x}^-(t))d\eta$$

A measure differential inclusion is able to describe discontinuities in the state.

2.2 Discrete-time Dynamical Systems

A discrete-time dynamical system is described by a mapping $m{P}:\mathbb{R}^n
ightarrow\mathbb{R}^n$

 $\boldsymbol{y}_{i+1} = \boldsymbol{P}(\boldsymbol{y}_i)$

The iteration parameter i defines a "discrete time". The mapping can be iterated:

$$y_{i+2} = P(y_{i+1}) = P(P(y_i)) =: P^2(y_i)$$

Example: Predator-Prey Model

 x_i number of rabbits on Malta in year i y_i number of foxes on Malta in year i

<u>3 Steady-state Behaviour</u>

A dynamical system expressed by

 $\dot{oldsymbol{x}} = oldsymbol{f}(t,oldsymbol{x})$ or $\dot{oldsymbol{x}} \in oldsymbol{F}(t,oldsymbol{x})$ or $\mathrm{d}oldsymbol{x} \in \mathrm{d}oldsymbol{\Gamma}(t,oldsymbol{x})$

with initial condition $\boldsymbol{x}(t_0) = \boldsymbol{x}_0$ defines a solution curve or trajectory in the state-space which we denote by $\boldsymbol{\varphi}(t, t_0, \boldsymbol{x}_0)$ or simply by $\boldsymbol{x}(t)$.

A solution of an initial value problem of a non-smooth system is not always unique and might even not exist!

Some special solutions

equilibria, (quasi)-periodic solutions and chaotic solutions are called steady-states of the system.

A limit point/set is a point or set of points in the state-space which can be approached in forward or backward time.

attracting, repelling or saddle-type of steady-states are limit points/sets.

3.1 Equilibria

An equilibrium x^* is a point for which there exists a solution curve $\varphi(t, t_0, x^*) = x^*$ for all $t \ge t_0$ i.e. an equilibrium is a constant solution of the system and it holds that

 $\mathbf{0}=oldsymbol{f}(t,oldsymbol{x}^*)$ or $\mathbf{0}\in oldsymbol{F}(t,oldsymbol{x}^*)$ or $\mathbf{0}\in \mathrm{d}\Gamma(t,oldsymbol{x}^*)$

Types of equilibria of a linear planar system

 $\dot{oldsymbol{x}}=oldsymbol{A}oldsymbol{x},\quadoldsymbol{x}\in\mathbb{R}^2,\quad(\lambda_1,\lambda_2)= ext{eig}(oldsymbol{A})$

Node $\lambda_1,\lambda_2<0~~\text{or}~~\lambda_1,\lambda_2>0~~\text{real}$

stable $\lambda_1 < 0, \lambda_2 < 0$

unstable $\lambda_1 > 0, \, \lambda_2 > 0$

Focus $\lambda_1 = \overline{\lambda}_2$, $\operatorname{Im}(\lambda_{1,2}) \neq 0$, $\operatorname{Re}(\lambda_{1,2}) \neq 0$

not a limit point!

Saddle λ_1, λ_2 real, $\lambda_1 < 0, \lambda_2 > 0$ (or $\lambda_1 > 0, \lambda_2 < 0$)

3.2 Periodic Solutions

Non-autonomous systems $\dot{\boldsymbol{x}} = \boldsymbol{f}(t, \boldsymbol{x})$

A trajectory for which holds

 $\varphi(t, t_0, \boldsymbol{x}_0) = \varphi(t + T, t_0, \boldsymbol{x}_0)$

is called a periodic solution. (t_0, x_0) is a point on the periodic solution. *T* is the period time and is the minimal period for which the periodicity property holds.

Differentiation:
$$\dot{\boldsymbol{\varphi}}(t, t_0, \boldsymbol{x}_0) = \dot{\boldsymbol{\varphi}}(t + T, t_0, \boldsymbol{x}_0)$$

 $\Rightarrow \boldsymbol{f}(t, \boldsymbol{x}(t)) = \boldsymbol{f}(t + T, \boldsymbol{x}(t))$

System is also periodic!

Generally
$$\boldsymbol{f}(t, \boldsymbol{x}(t)) = \boldsymbol{f}(t + \tau, \boldsymbol{x}(t))$$

with $k\tau = T$, $k = 1, 2, 3, ...$

A periodic solution with $T = k\tau$ is a called a period-k solution.

Autonomous systems $\dot{x} = f(x)$

A trajectory for which holds

$$\varphi(t, t_a, \mathbf{x}_0) = \varphi(t + T, t_a, \mathbf{x}_0) \qquad \forall t_a \ \forall t_a$$

is called a periodic solution. x_0 is a point on the periodic solution. T is the period time and is the minimal period for which the periodicity property holds.

A periodic solution of an autonomous system can be k -periodic with respect to a Poincaré map (as we will see..).

An <u>isolated</u> periodic solution of a system (autonomous or non-autonomous), which is a limit set, is called a <u>limit cycle</u>.

Example:

3.3 Quasi-Periodic Solutions

Two frequencies ω_1 and ω_2 are incommensurate if ω_1/ω_2 is an irrational number.

A quasi-periodic solution is characterised by two or more incommensurate frequencies.

Example:

3.4 Chaos

not very constructive / definition

smooth dynamical systems:

Chaos in a deterministic dynamical system is bounded steady-state behaviour that is not a equilibrium, periodic solution or quasi-periodic solution.

A chaotic limit set is, when it is attracting, called a chaotic attractor or strange attractor.

aperiodic oscillation with sensitive dependence on initial conditions; fractal structure

Lyapunov exponents: $e_{Li} = \lim_{t \to \infty} \frac{1}{t} \ln |\lambda_i(t)|$ Floquet multiplier

non-smooth dynamical systems: ??

3.5 Fixed Points

A fixed point y^* of a system $y_{i+1} = P(y_i)$ is a point which is mapped to itself

$$oldsymbol{y}^* = oldsymbol{P}(oldsymbol{y}^*)$$

A point y^* which satisfies

$$oldsymbol{y}^* = oldsymbol{P}^k(oldsymbol{y}^*)$$

is called a period *k*-point and is a fixed point of $P^k(y^*)$. Quasi-periodic and chaotic solutions are also possible in a discrete-time system.

4 Definitions of Bifurcation

Geometric Definition of Bifurcation A bifurcation of a dynamical system

Poincaré (1905)

 $\dot{\boldsymbol{x}} = \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{\mu}), \ \dot{\boldsymbol{x}} \in \boldsymbol{F}(\boldsymbol{x}, \boldsymbol{\mu}), \ \mathrm{d}\boldsymbol{x} \in \mathrm{d}\boldsymbol{\Gamma}(\boldsymbol{x}, \boldsymbol{\mu}), \ \boldsymbol{y}_{i+1} = \boldsymbol{P}(\boldsymbol{y}_i, \boldsymbol{\mu})$

is a change in the number of steady-states under influence of parameter μ .

A diagram depicting some scalar measure [x] of $x \in \mathbb{R}^n$ versus μ , where (x, μ) is on a steady state, is called a bifurcation diagram.

Examples

change: 3-1-1 \Rightarrow bifurcation

change: 2-1-2 \Rightarrow bifurcation

Homeomorph = identical after stretching and scaling

A homeomorphism is a continuous invertible map.

Topological Definition of Bifurcation The appearance of topologically nonequivalent phase portraits under variation of a parameter μ is called a bifurcation.

The geometric definition and the topological definition agree for smooth dynamical systems.

topological definition \neq geometric definition for non-smooth dynamical systems

In the following, we use the geometric definition of bifurcation.

5 Bifurcations of Equilibria

An equilibrium branch is described by

$$oldsymbol{0}=oldsymbol{f}(oldsymbol{x},\mu)$$

Along an equilibrium branch it holds that

$$\mathbf{0} = \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}\boldsymbol{\mu}} + \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{\mu}}$$

slope of the branch:

$$s = \frac{\mathrm{d}[\boldsymbol{x}]}{\mathrm{d}\mu} = \frac{\mathrm{d}[\boldsymbol{x}]}{\mathrm{d}\boldsymbol{x}}\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}\mu} = -\frac{\mathrm{d}[\boldsymbol{x}]}{\mathrm{d}\boldsymbol{x}}\left(\frac{\partial\boldsymbol{f}}{\partial\boldsymbol{x}}\right)^{-1}\frac{\partial\boldsymbol{f}}{\partial\mu}$$

with $oldsymbol{J}(oldsymbol{x},\mu)=rac{\partial oldsymbol{f}}{\partial oldsymbol{x}}$ regular $\Rightarrow \det(oldsymbol{J})
eq 0$

If $det(\boldsymbol{J}) = 0$, then s is undefined

5.1 Saddle-Node Bifurcation (Turning Point Bif.)

normal form: $\dot{x}=f(x,\mu)=\mu-x^2$ equilibria: $x_1^*=\sqrt{\mu}$ $x_2^*=-\sqrt{\mu}$ for $\mu>0$

19

non-smooth continuous system:

$$\dot{x} = f(x,\mu) = \mu - |x|$$

equilibria: $x_1^* = \mu$ $x_2^* = -\mu$ for $\mu > 0$

eigenvalue jumps though 0!

or, eigenvalue is set-valued at bif.point with 0 in its set.

5.2 Transcritical Bifurcation

smooth: $\dot{x} = f(x, \mu) = \mu x - x^2$ x = 0 $\lambda = 0$ $\lambda = 0$ $\lambda = 0$ $\lambda > 0$ $\lambda > 0$ asymmetric buckling $\frac{1}{2}$ 0 -2 μ

non-smooth:
$$\dot{x} = f(x, \mu) = |\frac{1}{2}\mu| - |x - \frac{1}{2}\mu|$$

21

5.3 Pitchfork Bifurcation

non-smooth:
$$\dot{x} = f(x, \mu) = -x + |x + \frac{1}{2}\mu| - |x - \frac{1}{2}\mu|$$

discontinuous pitchfork bifurcation

5.4 Hopf Bifurcation

normal form:

$$\dot{x}_1 = \mu x_1 - \omega x_2 + (\alpha x_1 - \beta x_2)(x_1^2 + x_2^2)$$

$$\dot{x}_2 = \omega x_1 + \mu x_2 + (\beta x_1 + \alpha x_2)(x_1^2 + x_2^2)$$

$$\alpha = -1$$

Jacobian at equilibrium: $\boldsymbol{J} = \begin{bmatrix} \mu & -\omega \\ \omega & \mu \end{bmatrix}$

eigenvalues: $\lambda_{1,2} = \mu \pm i\omega$

creation of periodic solutions

eigenvalues go as a complex conjugated pair through the imaginary axis

Transformation: $x_1 = r \cos \theta$ $x_2 = r \sin \theta$ $\dot{r} = \mu r + \alpha r^3$ normal form pitchfork bifurcation $\dot{\theta} = \omega + \beta r^2$ Non-smooth continuous counter part:

$$\dot{x}_{1} = -x_{1} - \omega x_{2} + \frac{x_{1}}{\sqrt{x_{1}^{2} + x_{2}^{2}}} (|\sqrt{x_{1}^{2} + x_{2}^{2}} + \frac{1}{2}\mu| - |\sqrt{x_{1}^{2} + x_{2}^{2}} - \frac{1}{2}\mu|)$$

$$\dot{x}_{2} = \omega x_{1} - x_{2} + \frac{x_{2}}{\sqrt{x_{1}^{2} + x_{2}^{2}}} (|\sqrt{x_{1}^{2} + x_{2}^{2}} + \frac{1}{2}\mu| - |\sqrt{x_{1}^{2} + x_{2}^{2}} - \frac{1}{2}\mu|)$$
somewhat strange
$$\int \frac{x_{1}}{\sqrt{x_{1}^{2} + x_{2}^{2}}} \int \frac{|\sqrt{x_{1}^{2} + x_{2}^{2}} + \frac{1}{2}\mu| - |\sqrt{x_{1}^{2} + x_{2}^{2}} - \frac{1}{2}\mu|)}{\sqrt{x_{1}^{2} + x_{2}^{2}} - \frac{1}{2}\mu|}$$

discontinuous Hopf bifurcation

after transformation in polar coordinates:

 $\dot{r}=-r+|r+\frac{1}{2}\mu|-|r-\frac{1}{2}\mu| \quad \mbox{discontinuous pitchfork bif.} \\ \dot{\theta}=\omega$

An easier example of a discontinuous Hopf bifurcation

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -x_{2} - \frac{3}{2}|x_{2} - \mu| - x_{1}$$
equilibrium: $x_{1} = -\frac{3}{2}|\mu|$, $x_{2} = 0$
generalised Jacobian: $J(x, \mu) = \begin{bmatrix} 0 & 1 \\ -1 & -1 - \frac{3}{2}\operatorname{Sign}(x_{2} - \mu) \end{bmatrix}$

$$J(0) = \{J_{q}, q \in [0, 1]\}$$

$$J_{q} = qJ_{+} + (1 - q)J_{-}$$
convex combination
$$J_{+} = \begin{bmatrix} 0 & 1 \\ -1 & -\frac{5}{2} \end{bmatrix}$$

$$\int_{0}^{1} \frac{\sqrt{q}}{\sqrt{q}} = \frac{1}{6}$$

$$\int_{0}^{1} \frac{\sqrt{q}}{\sqrt{q}} = 1$$

$$J_{-} = \begin{bmatrix} 0 & 1 \\ -1 & \frac{1}{2} \end{bmatrix}$$

$$\int_{0}^{1} \frac{\sqrt{q}}{\sqrt{q}} = 1$$

$$\int_{0}^{1} \frac{\sqrt{q}}{\sqrt{q}} = 1$$

5.5 Multiple Crossing Bifurcations

Single crossing bifurcation:

one (pair) of eigenvalue(s) of the set-valued generalised Jacobian crosses the imaginary axis once

Much like classical bifurcations in smooth dynamical systems

Multiple crossing bifurcation:

one (pair) of eigenvalue(s) of the set-valued generalised Jacobian crosses the imaginary axis more than once

Much more complicated than single crossing bifurcations

Combined Hopf and turning point behaviour

$$\dot{x}_1 = x_2 \dot{x}_2 = -x_1 + |x_1 + \mu| - |x_1 - \mu| - x_2 - |x_2 + \mu| + |x_2 - \mu|$$

generalised Jacobian:

$$\boldsymbol{J}(\boldsymbol{x},\mu) = \begin{bmatrix} 0 & 1 \\ J_{21} & J_{22} \end{bmatrix} \quad \begin{array}{l} J_{21} = -1 + \operatorname{Sign}(x_1 + \mu) - \operatorname{Sign}(x_1 - \mu) \\ J_{22} = -1 - \operatorname{Sign}(x_2 + \mu) + \operatorname{Sign}(x_2 - \mu) \end{array}$$

smooth approximating system

$$\mu = -1$$

$$\mu = -1$$

$$\mu = 1$$

<u>6 Bifurcations of Fixed Points</u>

Nonlinear map: $\boldsymbol{P}: \mathbb{R}^n \to \mathbb{R}^n$

$$\boldsymbol{y}_{i+1} = \boldsymbol{P}(\boldsymbol{y}_i)$$

Fixed point: $oldsymbol{y}^* = oldsymbol{P}(oldsymbol{y}^*)$

6.1 Linearisation around a Fixed Point

Perturbation:

 $\boldsymbol{y}_i = \boldsymbol{y}^* + \boldsymbol{x}_i \qquad \|\boldsymbol{x}_i\| \ll 1$

Substitution and linearisation:

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

Study the linear map:

$$\Longrightarrow oldsymbol{x}_{i+1} = oldsymbol{A} oldsymbol{x}_i \qquad oldsymbol{A} = rac{\partial oldsymbol{P}}{\partial oldsymbol{y}}igg|_{oldsymbol{y}^*}$$

6.2 One-dimensional Linear Maps

 $y_{i+1} = ay_i \qquad a \in \mathbb{R} \quad y^* = 0$ $y_1 = ay_0$ $y_2 = ay_1 = a^2 y_0$ $y_n = a^n y_0$

6.3 Turning Point Bifurcation

 $y_{i+1} = y_i + \mu - y_i^2$

fixed points: $y^* = y^* + \mu - (y^*)^2 \implies y^*_{1,2} = \pm \sqrt{\mu}$

non-smooth continuous map:

$$y_{i+1} = y_i + \mu - |y_i|$$

fixed points: $y^* = y^* + \mu - |y^*| \implies y^*_{1,2} = \pm \mu \ge 0$

6.4 Flip Bifurcation

$$y_{i+1} = -(1+\mu)y_i + y_i^3$$
 $|y_i| < 1$ $|\mu| < 1$

 $y^*=0$ unique fixed point for $|\mu|<1$ eigenvalue: $\lambda=-(1+\mu)$

eigenvalue goes through -1

stability is exchanged... is there a bifurcation?

A flip bifurcation of the period-1 map is a pitchfork bifurcation of the period-2 map

discontinuous flip bifurcation

eigenvalue jumps through -1

6.5 Naimark-Sacker Bifurcation (2nd Hopf bifurcation)

$$x_{i+1} = \delta x_i - \nu y_i + \gamma x_i (x_i^2 + y_i^2)$$

$$y_{i+1} = \nu x_i + \delta y_i + \gamma y_i (x_i^2 + y_i^2)$$

$$\omega = \arctan\left(\frac{\nu}{\delta}\right)$$

complex pair of eigenvalues crosses the unit cricle

If ω and 2π are commensurate, $k\omega = n \cdot 2\pi$, $k, n \in \mathbb{N}$ then a period-k solution is created/destroyed.

If ω and 2π are incommensurate, then a quasi-periodic solution is created/destroyed.

6.5 The Logistic Map

A simple nonlinear map can have very complicated dynamics $y_{i+1} = P(y_i) = ry_i(1 - y_i) \qquad 0 \le y \le 1 \quad r \ge 1$

 λ_2 goes through -1 at $r=3 \Longrightarrow$ flip bifurcation

2nd iterated Logistic map, r = 3.4

2nd iterated Logistic map, r = 3.5

3rd iterated Logistic map, r = 3.8

Logistic map, brute force diagram

Logistic map, brute-force diagram zoom

3rd iterated Logistic map, r = 3.835

6.6 The Tent Map

eigenvalue jumps through +1 and -1

multiple crossing bifurcation

7 Bifurcations of Periodic Solutions

7.1 Stability of Periodic Solutions

Fundamental solution matrix $\Phi(t)$ describes the influence of small perturbations:

$$\Delta \boldsymbol{x}(t) = \boldsymbol{\Phi}(t) \Delta \boldsymbol{x}(t_0) + H.O.T.$$

Smooth systems: $\dot{\Phi}(t) = \frac{\partial f}{\partial x} \Big|_{x_p(t)} \Phi(t) \qquad \Phi(t_0) = I$

 ${\bf \Phi}(t)$ is a local linearsation around the periodic solution! Monodromy matrix: ${\bf \Phi}_T = {\bf \Phi}(T)$

Floquet multipliers: $(\lambda_1, \ldots, \lambda_n) = \operatorname{eig} \Phi_T$

describe the exponential convergence/divergence of the perturbed solution w.r.t. the periodic solution Autonomous systems: phase of the periodic solution is not fixed

if
$$\Delta \boldsymbol{x}(t_0) = \boldsymbol{f}(\boldsymbol{x}^p(t_0))$$
 then
 $\Delta \boldsymbol{x}(t_0) = \Delta \boldsymbol{x}(t_0 + T) = \boldsymbol{\Phi}_T \Delta \boldsymbol{x}(t_0)$
 $\boldsymbol{f}(\boldsymbol{x}^p(t_0)) = \boldsymbol{\Phi}_T \boldsymbol{f}(\boldsymbol{x}^p(t_0))$

 $\boldsymbol{f}(\boldsymbol{x}^p(t_0))$ is an eigenvector of $\boldsymbol{\Phi}_T$ with eigenvalue $\lambda_1 = 1$

If all Floquet multipliers, which are not associated with the freedom of phase, are within the unit circle, then the periodic solution is stable and attractive.

7.2 The Poincaré Map

period-2 solution $\ {m y}^* = {m P}({m P}({m y}^*))$

The Poincaré map transforms a

continuous-time system into a discrete-time system.

The n-1 eigenvalues of

$$oldsymbol{A} = rac{\partial oldsymbol{P}}{\partial oldsymbol{y}}igg|_{oldsymbol{y}^*}$$

are identical to the n-1 Floquet multipliers $\lambda_2, \ldots, \lambda_n$

discontinuous turning-point bifurcation in the Poincaré map the discontinuous fold bifurcation of the periodic solution

If the eigenvalues of the Poincaré map jump, then also the Floquet multipliers jump!

7.3 Overview of Bifurcations

Bifurcation in the Poincaré map	Bifurcation in the continuous-time system
turning-point bifurcation	saddle-node bifurcation (eq.) or fold bifurcation (per.sol.)
transcritical bifurcation	transcritical bifurcation (eq.)
pitchfork bifurcation in the period-1 map	pitchfork bifurcation (eq.) or Hopf bifurcation (eq.+per.sol.)
flip bifurcation in the period-1 map = pitchfork bifurcation in the period-2 map	period-doubling bifurcation (per.sol.)
Naimark-Sacker bifurcation	Naimark-Sacker bifurcation (per.sol.+quasi-per.sol.)

can all be discontinuous!

7.4 Saltation Matrix for Filippov Systems

Filippov system:

 $\dot{\boldsymbol{r}}(t) \subset \boldsymbol{F}(t \ \boldsymbol{r}(t))$

$$= \begin{cases} \boldsymbol{f}_{-}(t, \boldsymbol{x}(t)), & \boldsymbol{x} \in \mathcal{V}_{-} \\ \overline{\operatorname{co}}\{\boldsymbol{f}_{-}(t, \boldsymbol{x}(t)), \boldsymbol{f}_{+}(t, \boldsymbol{x}(t))\}, & \boldsymbol{x} \in \boldsymbol{\Sigma} \end{cases}$$

almost everywhere
$$\begin{cases} \mathbf{U}_{\mathbf{U}}(t) \in \mathbf{I}_{\mathbf{U}}(t, \mathbf{x}(t)) = \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \mathbf{J}_{\mathbf{U}}(t, \mathbf{x}(t)), \mathbf{J}_{\mathbf{U}}(t, \mathbf{x}(t)), \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t)), \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t, \mathbf{x}(t)), \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t, \mathbf{x}(t)), \\ \mathbf{f}_{\mathbf{U}}(t, \mathbf{x}(t, \mathbf{$$

variational equation: $\dot{\Phi}(t) = \frac{\partial f}{\partial x} \Big|_{x_p(t)} \Phi(t) \qquad \Phi(t_0) = I$

Jacobian: $\left. \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x}_p(t)}$ does **not** exist everywhere!

The fundamental solution matrix jumps $\Phi(t_{p+}) = S \Phi(t_{p-})$

with the saltation matrix $~~oldsymbol{S} = oldsymbol{I} + rac{(oldsymbol{f}_{p+} - oldsymbol{f}_{p-})oldsymbol{n}^{\mathrm{T}}}{oldsymbol{n}^{\mathrm{T}}oldsymbol{f}_{p-}}\,.$

$$\boldsymbol{S}_{BA} = \boldsymbol{S}_B \boldsymbol{S}_A$$

if A and B are infinitely close to each other: $S_A = S_B^{-1} \implies S_{BA} = I \implies$ no jump in Φ_T

 $oldsymbol{S}_A
eq oldsymbol{S}_B^{-1} \implies$ jump in $oldsymbol{\Phi}_T$

7.4 Trilinear Spring System

supports are massless

Vector field jumps if contact is made Filippov system

$$h_{1a}(x, \dot{x}) = x - x_c$$

$$h_{1b}(x, \dot{x}) = k_f(x - x_c) + c_f \dot{x}$$

$$h_{2a}(x, \dot{x}) = x + x_c$$

$$h_{2b}(x, \dot{x}) = k_f(x + x_c) + c_f \dot{x}$$

$$oldsymbol{S}_{1a} = oldsymbol{S}_{2a} = egin{bmatrix} 1 & 0 \ -rac{c_f}{m} & 1 \end{bmatrix} \quad oldsymbol{S}_{1b} = oldsymbol{S}_{2b} = oldsymbol{I}$$

saltation matrices on each side of the corner points are not each others inverse:

$$oldsymbol{S}_{1a}
eq oldsymbol{S}_{1b}^{-1} \qquad oldsymbol{S}_{2a}
eq oldsymbol{S}_{2b}^{-1}$$

7.5 Stick-slip System with External Excitation

Pfeiffer (1984) Glocker (1995,2005) Leine (2003)

The dynamics is described by a one-dimensional map

Map of period-1 solutions

Map of period-1 and -2 solutions

60

8 Literature

Non-smooth Systems

Brogliato, B. *Nonsmooth Mechanics*, 2ed., Springer, London, 1999.

Glocker, Ch. *Set-valued Force Laws, Dynamics of Non-smooth Systems*, Lecture Notes in Applied Mechanics Vol.1, Springer, Berlin, 2001.

Monteiro Marques, M.D.P. *Differential Inclusions in Nonsmooth Mechanical Problems. Shocks and Dry Friction*, Birkhäuser, Basel, 1993.

Nonlinear Dynamics

Leine, R.I. & Nijmeijer, H. *Dynamics and Bifurcations of Non-Smooth Mechanical Systems*, Lecture Notes in Applied and Computational Mechanics Vol.18, Springer, Berlin, 2004.

Strogatz, S. *Nonlinear Dynamics and Chaos*, Studies in Nonlinearity, Addison-Wesley, Reading, 1994.

