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Abstract. The simulation of sports movements on ergometer can predict the effects of both material and 
technical changes. Our aim is to present a simulation model of paddling on an ergometer with sliding 
footrest-seat complex. The system “ergometer-athlete-paddle” has 31 degrees of freedom and 2 kinematic 
closed-loops. The input parameters are the geometrical and anthropometrical models and the trunk and 
paddle kinematics. The dynamic model of the ergometer is defined by functions of the generalized 
coordinates and their first and second time derivatives. The kayaker's kinematics are obtained by solving an 
inverse kinematics problem. The anteroposterior acceleration of the sliding complex depends on the state 
variables, the contact forces applied to the paddle tips and the tension of the bungee linking the ergometer to 
the sliding complex. The forward dynamics analysis solves for the state variables of the sliding complex. 
Subsequently the contact forces and the joint torques are estimated by solving an inverse dynamics problem. 
 
1. Introduction 
Mathematical modelling and computer simulation play an increasingly important role in the search for 
answers to questions that cannot be addressed experimentally. The main purposes are the analysis of 
musculo-skeletal co-ordinations (e.g. van Soest et al., 2005), the explanation of sports techniques (e.g. 
Yeadon and Hiley, 2000) or the optimization of the performance (e.g. Yeadon and Brewin, 2003). Often the 
movement is considered as 2D motion and the number of degrees of freedom is restricted.  

The ergometers are also used when the in situ experimental conditions are a problem. In aquatic activities 
like kayaking or rowing, the main difficulty is the 3D kinematics acquisition. Before any interpretation may 
be made, the ergometer has to respect the kinematics and the dynamics of the actual movement. An 
experimental validation is necessary. However an analysis of the differences is not enough for ergometer 
improvement. The simulation becomes a helpful tool also for optimizing ergometer design.  

The kinematic tasks of the activity can be acquired in situ. Then the results of the ergometer simulation 
driven by these kinematic tasks can be compared with actual results (e.g. acceleration of the system athlete-
boat or the external forces). The purpose of this study is to present the simulation of paddling on a kayak 
ergometer with a sliding footrest and seat complex. The aim of the sliding complex is to reproduce the kayak 
acceleration in order to respect the kayaking dynamics.  

Section 2 presents briefly the ergometer and section 3 describes the geometrical model. Sections 4, 5 and 
6 focus on the three steps of the simulation: the inverse kinematics problem to obtain the kayaker kinematics 
from kayaking tasks, the forward dynamics problem to simulate the sliding complex kinematics and the 
inverse dynamics problem to calculate the joint torques.  
 
2. Ergometer with a sliding footrest and seat complex 
A kayak ergometer was designed using a static frame on which a trolley (i.e. footrest and seat complex) 
moved back and forth (Fig. 1). A bungee cord linked the back of the frame with the trolley. An air brake 
simulated the water drag on the blade. The paddle was linked to the air brake by two ropes. Because of 1the 
freewheel pulley, the rope drove the flywheel if its angular velocity was higher than the shaft velocity. When 
the rope unwound, an elastic cord wound round the pulley. During the return of the blade, the tension of the 
elastic cord wound the rope. Between two strokes, the flywheel resistance decelerated the shaft.  



 

 
Figure 1. Schematic diagram and notations of the ergometer with sliding trolley and the air brake  

(upper view). 
 
3. Ergometer-kayaker model 
The model “ergometer-kayak” was implemented under HuMAnS (Wieber et al., 2006). The dynamics was 
represented as Lagrangian dynamics with Lagrange multipliers for introducing the contacts forces: 
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where the vector qqq &&& and ,  represent the generalized coordinates, their speed and acceleration. 

),(),( qqNqM &  and )(qG  are the inertia matrix, the other inertial nonlinear effects (Coriolis and centrifugal 
forces) and the gravity effects respectively. The vector τ represents the joint torques and ëC

T  the contact 
forces. The analytical models of the dynamics were based on state-of-art algorithms described in 
Featherstone and Orin (2000).  

The kayaker-paddle-trolley model was composed of 18 bodies (Fig. 2). 22 degrees of freedom (DoF) 
described the kayaker movement (q1=[q1…q22]T). Due to the numerous contacts with the trolley and the 
paddle, there were 2 closed-loops (i.e. the upper and lower limbs). Two half-paddles were modelled. They 
were linked by a revolute joint that it used to close the kinematic loop of the upper limbs.  

 
Figure 2. Schematic diagram of the system “athlete-trolley”:  

qi represents the degrees of freedom et Ti the tags for describing the segments. 
 
6 additional DoF represented the position and orientation of the trolley (q2=[q23…q28]T= [0 0 0 q26 0 0]T). 

On the present ergometer, only the anteroposterior translation of the root could vary. The state of the air 
brake (the flywheel and the two pulleys) was given by 3 extra DoF. 
 
4. Inverse kinematics problem: calculation of q1 
4.1 Kinematic tasks 
The kinematic tasks have to characterize the performance and the technique of the kayakers. The 
performance is associated with the paddle trajectory. This trajectory was defined by the time histories of the 
spatial position of the paddle middle and the spherical coordinates (azimuth and elevation) of the paddle. 
According to a kinematics analysis of 12 elite kayakers, the main difference was the rotation of the pelvic 
and scapular girdles. Both parameters (q1 and q10) were chosen. The tasks (x) for each kayaker were fitted by 
Fourier series: 
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4.2 Lower limbs solving 
The lower limbs closed-loop has as many DoF (7) as the task defined by the pelvis rotation and the 3D 
position of the feet. The generalized coordinates were solved by an iterative procedure, based on the 
Newton-Raphson approach. By inversion of the Jacobian matrix (Ji,j= ∂xi/qj), q were adjusted until satisfying 
the task equation. The Jacobian matrix was computed by analytical differentiation.  
 
4.3 Upper limbs solving 
For the upper limbs the control space is larger than the task space. The problem was solved by introducing a 
damped pseudo-inverse of J (J+λ) and an optimization term. The damped pseudo-inverse was calculated from 
a trimmed-down version of the singular value decomposition. The null space of the Jacobian matrix was 
used to optimize a secondary task by projection of its gradient. The chosen function (Fournier, 1980) kept the 
joint angles as far as possible to the joint limits. The adjustment of q was expressed by: 
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where α is the weighting between the first and the second tasks; Δqi is the range of motion of the joint i and 
i
q  its average position.  
 
5. Forward dynamic problem: calculation of q2 
5.1 Dynamic model of the kayaker 
The aim of the simulation was to calculate the state of the trolley ( )2qq2 &,  according to the kayaker 
movement. The trolley acceleration had to be determined from the dynamics and then integrated.  

The inertia parameters (mass, position of the centre of mass and moment of inertia) of the segments were 
calculated using the table of de Leva (1996). The segment length and the mass of the body were measured 
for each kayaker.  
 
5.2 Dynamic model of the ergometer 
The contact forces of the system “athlete-paddle-trolley” are forces applied on the paddle tips (λ2 and λ3) and 
the tension of the bungee cord linking the trolley to the frame (λ1). This last force was expressed as a 
function of the trolley position: 
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According to the mechanism of the air brake described in section 2 (Fig. 1), the paddle tip force comes from 
the tension of elastic cord, the air brake resistance, the pulley radius and the time derivative of the air brake 
angular momentum. The time derivatives of the angular momentum of the air brake (δ29, δ30 and δ31) were 
written according 3 different cases: 
• The shaft is driven by the right pulley: 
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• The shaft is driven by the left pulley: 
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• The shaft is not driven: 
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where I is the inertia of each part (Fig. 1), τ29, τE30 and τE31 are the air brake resistance torque and the torque 
due to the elastic tension for the right and left pulleys of radius Rad30 and Rad31 respectively. ux

14 and ux
19 

represent the anteroposterior component of the unit vector of the right and left ropes.  
Series of measurements with a torque transducer and an angular velocity sensor were carried out in order to 
determine the models. Firstly, the moment generated by the elastic cord (τE) depends on the number of turns 
around the pulley (NE): 
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NE is calculated from the pulley rotation (q30 or q31). The physics of the air brake resistance is defined by:  

 
0291

2

29229
pqpqp ++= &&!  (9) 

The second step is to expressed the pulley acceleration with respect to the known parameters (i.e. 
1qqq &&& ,, ) and to the unknown parameter ( 2q&& ). Only the right side is emphasized here. The pulley velocity 

and acceleration depend on the paddle tip (T14) kinematics and on the rope orientation (u14):  
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By introducing a Jacobian matrix (J14=[J14,1 J14,2]= [∂T14/∂q1 ∂T14/∂q2]) and the Hessian vector (h14) which 
are computed by analytical differentiation, the time derivatives of T14 yield: 
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Eq. [10] is introduced into Eq. [9] and then 2q&&  is factorized and the expression simplified: 
 2q&&&&

141430
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Booleans (b30 and b31) are introduced into Eq. [5,6,7]. Hence the expression of the force applied to the right 
paddle tip yields:  
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Substituting for 
30
q&&  from Eq. [12] in Eq. [13], the expression of λ2 simplifies to: 
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5.3 Trolley acceleration solving 
If we consider then the structure of the vector q: q=[q1 q2]T, we can split the dynamics (Eq. [1]) to exhibit 
the same structure: 
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where the joint torques do not appear in the lower part: 
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By substituting the contact force by Eq. [4] and Eq. [14], the anteroposterior acceleration of the trolley 
yields: 
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This ordinary differential equation was solved with root finding (i.e. the 3 different air brake dynamics) 
under Scilab.  
 
6. Inverse dynamics problem  
The kinematics of the whole system has been determined. Due to the two closed-loops and the three contacts 
between the kayaker and the trolley (two feet and the pelvis), some assumptions have to be presented for the 
joint torque calculation. From the lower part of the dynamics of the system “athlete-paddle” (equation 
analogous to Eq. [15]), the contact forces yield:  
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where λa and λb represent the contact force applied to the paddle tips and to the settings, respectively. λa is 
calculated from Eq. [14] and λb can be estimated by introducing a weighted pseudo-inverse:  
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The weighting factors in W give penalties to anteroposterior and mediolateral components of the force 
applied to the seat in order to respect the unilateral contact.  
 
7. Results – Discussion 
7.1 Kayaker kinematics 
The present simulation can be a useful tool to test material and technical changes. The kayaker kinematics is 
calculated from tasks that are easily acquired on ergometer or in kayak with goniometer and inertial sensors. 
Fig. 3 illustrates the kinematics of some joints over one cycle. The generated movement from kinematics 
tasks is cyclic; the final position is similar to the initial one. The joint limits are respected except for the 
elbow and shoulder of some kayakers. The exceeded angles come from the assumptions of a built-in joint 
between the hand and the paddle. The athlete does not firmly hold the paddle to increase the range of motion. 
The flexion-extension and lateral bending of the thorax allow all tasks to be reached. Due to approximation 
of paddle trajectory by Fourier series, some positions would be unreachable despite the full elbow extension 
and cause singularity of the Jacobian matrix. The damping pseudo-inverse which is introduced in Eq. [3] 
avoids this algorithm instability.  
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Figure 3. Times histories of the joint angles over one cycle (right and left strokes). The horizontal dashed 

lines or the frame represent the joint limits.  



 

 
7.2 Trolley kinematics and paddle tips force 
The range of trolley oscillations is similar to experimental data. The average forces (n=26 trials) applied to 
paddle tips are comparable to actual forces. However on each curve, there is a peak of force just when a 
pulley drives the shaft. The peak of force comes from the rigidity of the system and the kinematics fitting. 
The rope could be modelled as a damped linear spring (Hiley and Yeadon, 2003) and the task kinematics 
could be fitted by phases (catch, drive, exit and recovery) to improve the fidelity of the paddle tips 
acceleration. 
 
7.3 Contact forces and joint torques 
Despite closing the kinematic loop of the upper-limbs, no contact forces were added between the two half-
paddles. With the present ergometer, these forces cannot be measured. Due to the distance between the 
middle of the paddle and the hand, a weak contact force has a large effect on the joint torque. The 
instrumentation has to be improved with a 3D force sensor between the hands. For the setting forces, the 
pseudo-inverse does not allow the experimental forces to be reproduced. Before any interpretation on the 
joint torque, some behaviour models of contact force distribution which are based on experimental data are 
necessary. 
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