
HuMAnS User Documentation

October 23, 2006

2

This documentation is under construction. The different parts are not finalized and the
links between them do not exist yet.

Contents

1 General Principles of the simulation in HuMAnS 7
1.1 General Principles of the simulation in HuMAnS 8

1.1.1 Dynamic modelisation of a free system 8
1.1.2 Contact model . 8
1.1.3 Dynamic with contacts . 9
1.1.4 Impacts . 9
1.1.5 Quadratic Problems used in HuMAnS 10

1.2 Muscle modelisation in HuMAnS . 11
1.2.1 Command signal . 11
1.2.2 Recruiting rate . 11
1.2.3 Muscle model and Force-Length relation 12
1.2.4 Muscle dynamic . 14
1.2.5 Knee articulation . 15

2 Computation of Lagrangian Model 17
2.1 Kinematic Model . 19

2.1.1 Geometric modelisation of a jointed system 19
2.1.2 Tag model: the Tags.c file . 23
2.1.3 Contact model . 24

2.2 Dynamical Model . 26
2.2.1 Definition of the inertial parameters . 28
2.2.2 Inertia matrix: the Inertia.c file . 28
2.2.3 Non-linear effects: the NLEffects.c file 28

2.3 VRML animation computation . 28

3 A Biomecanic Model of a Human : Human36 29
3.1 Kinematic Model Definition . 30

3.1.1 Joints definition . 30
3.1.2 Anatomic Model Lengths and zero-position 31

3

4 CONTENTS

3.2 Tags Model . 41
3.2.1 Anthropometric data . 41
3.2.2 Tags to Joint centers lengths setting and getting 53

3.3 Dynamical Model . 55
3.3.1 Segment Masses . 55
3.3.2 Segments centers of mass . 57
3.3.3 Inertia computation . 59

4 Model of a biped robot :
Kondo KHR-1 63
4.1 Kinematic Model Definition . 64

4.1.1 Joints definition and zero-position . 64
4.1.2 Model Lengths . 65

4.2 Tags Model . 65
4.3 Dynamical Model . 69

4.3.1 Segment Masses . 69
4.3.2 Segments centers of mass . 69
4.3.3 Inertia computation . 70
4.3.4 VRML representation . 72

5 Simulation 73
5.1 Introduction . 74
5.2 Description of the ordinary differential equation corresponding to the dynamic

system . 75
5.2.1 The CompleteDynamics function . 75

5.3 Integration of the dynamic system and events detection 76
5.3.1 The ode function . 76
5.3.2 The EventDetection function . 77
5.3.3 The Event Handling . 77

6 Contacts and Actuations 79
6.1 The different states in HuMAnS . 80

6.1.1 z State in the simulation with muscle model 80
6.1.2 Contact states in the different applications 80
6.1.3 Actuation states in the different applications 82

6.2 Initialization of state variables . 84
6.2.1 Contact states initialization in the different applications 84
6.2.2 Actuation states initialization in the different applications 85

6.3 Detection of state changes in HuMAnS . 85

CONTENTS 5

6.3.1 Detection of change of contact state in the different applications 85
6.3.2 Detection of change of actuation state in the different applications 86

6.4 Handling of state changes in HuMAnS . 87
6.4.1 Handling of contact state changes in the different applications 87
6.4.2 Handling of actuation state changes in the different applications 88

6.5 The ActuationStateReset function . 92

7 Position Observer 93
7.1 Position Observer . 94

8 The Task Function and its inverse 97
8.1 The Task Function and its inverse . 98

8.1.1 Generation of the C files . 98
8.1.2 The InverseTaskFunction function . 100

8.2 Trajectory Generation . 100
8.2.1 WriteTrajectoryFile function . 100
8.2.2 .traj3 format . 101
8.2.3 ReadTrajectoryFile function . 101

9 Reconstruction from Optical Sensors 103
9.1 Introduction . 104
9.2 Getting started . 104
9.3 Reconstruction from optical sensors theory . 104

9.3.1 About the reconstruction . 106
9.3.2 Notations . 107
9.3.3 Optimization problem . 109

9.4 Global view of the Reconstruction module . 109
9.5 KinematicModel directory . 110

9.5.1 The KinematicModel/Human36/MapleCodeGeneration directory 110
9.5.2 The VRML visualization . 111

9.6 OpticalSensors directory . 112
9.6.1 Set of Aquisition Data . 112
9.6.2 The MenuReconstruction.sci script 113
9.6.3 The StaticTrajectoriesReconstruction.sci script 118
9.6.4 The data conversion and filtering: the ConvertFromCsvToTags function . 121
9.6.5 The Reconstruction.sci function . 124
9.6.6 The AllSubjectsTrajectoriesReconstruction.sci script 125
9.6.7 Utility functions . 125

6 CONTENTS

Chapter 1

General Principles of the simulation in
HuMAnS

7

8 CHAPTER 1. GENERAL PRINCIPLES OF THE SIMULATION IN HUMANS

1.1 General Principles of the simulation in HuMAnS

1.1.1 Dynamic modelisation of a free system

The dynamic modelisation of a free system can be set in the form:

M(q)q̈ + N(q, q̇)q̇ + G(q) = T (q)u

where q is the system state variable, M(q) the system inertia, N(q, q̇) a non-linear effects matrix,
G(q) the forces differential of a potential (for example the gravity), u a command vector and
T (q) a matrix describing the effect of this command on the system.

Howewer, when a bipede is walking, it is supported by contact points and constraints due
to these contacts occur. That is why a contact model must be developped in order to describe
the dynamic of a system with these constraints.

1.1.2 Contact model

The contact model is based on the two following hypothesis, developped in the next paragraphs:

• the contact points cannot penetrate the ground or the environment;

• when a contact exists, the contact points do not slide on the ground or on the environment.

Unilateral constraints

The solids which compose the system cannot penetrate the ground or the environment. So we
have a set of inegalities on the position of the model (the robot or the human), that is, on the
state vector q:

ϕn(q) ≥ 0

If we consider the points in contact with the environment at time t and if we indicate them
with an ∗, we can write:

ϕ∗

n(q) = 0

with ϕ∗

n the set of active constraints at t. None of these points of contacts penetrate the
ground, neither before nor after the time t. The velocity and acceleration of these points must
be directed in order to avoid penetration. These constraints on velocities and accelerations are
obtained by successive differentiation:

Cn(q)q̇ = 0 (1.1)

Cn(q)q̈ + sn(q, q̇) = 0 (1.2)

1.1. GENERAL PRINCIPLES OF THE SIMULATION IN HUMANS 9

with Cn(q) = ∂ϕ∗

n/∂q the jacobian of ϕ∗

n and sn(q, q̇) the other terms appearing in the differ-
ential.

For each enabled unilateral constraint, that is to say for each component of ϕn equal to
zero, two bilateral constraints are added in order to prevent the sliding of the corresponding
contact point. Naturally, these two constraints are disabled when the contact is broken.

Bilateral constraints

We suppose that points in contact with the environment do not slide on it. Then they do not
move directions parallel with the ground or environment. So, we have constraints on the state
vector q:

ϕ∗

t (q) = 0

and on the velocity and the acceleration of the system which are obtained by successive differ-
entiation:

Ct(q)q̇ = 0 (1.3)

Ct(q)q̈ + st(q, q̇) = 0 (1.4)

with Ct(q) = ∂ϕ∗

t /∂q the jacobian of the non-sliding constraints and st(q, q̇) the other terms
appearing in the differential.

1.1.3 Dynamic with contacts

We can write the system dynamic with contact in the form:







M(q)q̈ + N(q, q̇)q̇ + G(q) = T (q)u + Cn(q)
T λn + Ct(q)

Tλt

ϕn(q) ≥ 0

ϕ∗

t (q) = 0

(1.5)

with Cn(q)T λn the interaction forces due to the unilateral constraints ϕn(q) and Ct(q)
T λt

thoses due to the bilateral constraints ϕ∗

t (q).

1.1.4 Impacts

Such a dynamic system generates impacts involving discontinuities of the velocity which follow
the law below:







M(q)(q̇+ − q̇−) = Cn(q)
T Λn + Ct(q)

T Λ

Cn(q)q̇+ = 0

C
(
t q)q̇+ = 0

(1.6)

10 CHAPTER 1. GENERAL PRINCIPLES OF THE SIMULATION IN HUMANS

this law connects the velocity after impact q̇+ to the one before impact q̇− under the im-
pulsive forces Cn(q)T Λn and Ct(q)

TΛt where Cn(q) and Ct(q) are the jacobian of unilateral and
bilateral enabled constraints at the impact time. This law does not allow unilateral constraints
to break during an impact, that is not always correct but that was necessary to avoid the
appearance of points of impacts accumulation which would prevent any simulation.

1.1.5 Quadratic Problems used in HuMAnS

The dynamic system (1.5) can be set in the form of a quadratic problem:







min
q̈

1

2
q̈T M(q)q̈ + q̈T [N(q, q̇)q̇ + G(q) − T (q)u]

Cn(q)q̈ + sn(q, q̇) ≥ 0

Ct(q)q̈ + st(q, q̇) = 0

(1.7)

And in a same way, the impact law can be set in the form:







min
q̇+

1

2
q̇T
+M(q)q̇+ − q̇T

+M(q)q̇−

Cn(q)q̇+ = 0

Ct(q)q̈+ = 0

(1.8)

These two quadratic problems are used during the simulation to compute at each time the
acceleration and velocity of the system after impact.

1.2. MUSCLE MODELISATION IN HUMANS 11

1.2 Muscle modelisation in HuMAnS

1.2.1 Command signal

The command signal u(t) is shown on the figure 1.1. It fluctuates between two values Up and
Um. Its different states correspond to different activations:

• After a stimulation, the command signal jump to state 2 for a period τ1 which correspond
to the stimulation time. It’s value is Up during this phasis;

• At the first tick of clock, the command signal enters in a relaxation phasis of duration τ2.
This state is called 1 in HuMAnS;

• When the impulse stops (ie at the second tick of clock), the command signal falls in state
0 in which it is equal to Um. When an impulse is sent again, a delay τ elapses it before
the signal command get back again in state 2.

Clock Ticks

2

1

0

τ1 τ

Up

Um

u(t)

t

τ2

Figure 1.1: Command signal. The number corresponds to the signal state numbering.

The Up, Um, τ , τ1 and τ2 values used in HuMAnS are given in the table 1.1. This values are
stocked in the DefaultConstants.sci files of the ActuationModel/StaticCalciumKneeMuscles
and ActuationModel/StaticCalciumRightKneeMuscles modules.

1.2.2 Recruiting rate

...laius sur ce que c’est...

12 CHAPTER 1. GENERAL PRINCIPLES OF THE SIMULATION IN HUMANS

Up 5 s−1

Um 5 s−1

τ 50 ms
τ1 20 ms

tau2 10 ms

Table 1.1: Parameters values of command signal.

The recruiting rate depends on the width and intensity of the impulsion. Its value is given
by:

α =
1

2
+

1

2

tanh(5 (
pwi

pwmaximax

− 1

2
))

tanh(
5

2
)

with pw and i the width and the intensity of the impulse and pwmax and imax the maximum
width and intensity of the impulse. These maxima are defined in the DefaultConstants.sci
files of the ActuationModel/StaticCalciumKneeMuscles and ActuationModel/StaticCalciumRightKneeMuscles
modules. Their values are given by the table 1.2

pwmax 1.4 ms
imax 200 mA

Table 1.2: Maximum width and intensity of an impulse.

1.2.3 Muscle model and Force-Length relation

The muscle model used in HuMAnS is described on the figure 1.2.

The model considers that the muscle is composed of:

• a contractile component stimulated by the command signal u(t). We note kc its variable
stiffness, Fc its force and Lc0 its lenght at rest.

• a series linear spring which stiffness is ks;

• and a parallel exponential spring which rest lenght is L0 and which stiffness is????kp

et kep ??

1.2. MUSCLE MODELISATION IN HUMANS 13

u(t)

L0(ε + 1)

Lc0εc

Figure 1.2: Muscle model

The stiffness and the force of a muscle depends on its length:

k0 = km(1 − (
ε

0.4
)2) (1.9)

F0 = Fm(1 − (
ε

0.4
)2) (1.10)

for 1.6 ≤ ε ≤ 2.4.

For the thigh muscles (the quadriceps and ischio), the km, Fm, ks, kp, kep, Lc0 and L0 values
are given in the table 1.3. These values are defined in the DefaultConstants.sci files of the Ac-
tuationModel/StaticCalciumKneeMuscles or ActuationModel/StaticCalciumRightKneeMuscles
modules.

quadriceps ischio
km 104 N.m−1 104 N.m−1 ms
Fm 500 N 500 N
ks 104 N.m−1 104 N.m−1 ms
kp 0 N.m−1 0 N.m−1 ms
kep 1 N.m−1 1 N.m−1 ms
Lc0 8.2 cm 10.7 cm
L0 49.2 cm 49.2 cm

Table 1.3: Maximum stiffness and force of quadriceps and ischio muscles

14 CHAPTER 1. GENERAL PRINCIPLES OF THE SIMULATION IN HUMANS

1.2.4 Muscle dynamic

Let εc be the elongation of the contractile component of the figure 1.2. The dynamic model of
contractile component coupled with the linear series spring is:







k̇c = −(|u| + |ε̇c|)kc + αk0|u|+
Ḟc = −(|u| + |ε̇c|)Fc + αF0|u|+ + kcLc0ε̇c

Ḟc = ks(L0ε̇ − Lc0ε̇c)

(1.11)

where k̇c, Ḟc and ε̇c are the unknown variables.
The relation between Ḟc and ε̇c in the last two equations consist of a straight line and of

two straight half line. These straight lines are represented on the figure 1.3.

ε̇c

kcLc0 − Fc slope

−ksLc0 slope

αF0|u| + −Fc|u|

ksLc0ε̇

Ḟc

kcLc0 + Fc slope

Figure 1.3: computation of the dynamics

In order to have one and only one solution to the system (1.11), the slope of the second
half-line (for ε̇c ≥ 0) must be strictly greater than the slope of the straight line. So, we must
verify that:

ksLc0 + kcLc0 − Fc > 0.

Then, we can compute ε̇c from the command u, the recruiting rate α, the forces Fc and F0,
the stiffness kc and the differential of elongation ε̇ with the following equation:

ε̇c =
ksL0ε̇ + Fc|u| − αF0|u|+
ksLc0 + kcLc0 − Sε̇c

Fc

with Sε̇c
the sign of ε̇c. Then we can compute k̇c and Ḟc with the first and last equations of the

system (1.11).

1.2. MUSCLE MODELISATION IN HUMANS 15

The total force developped by the muscle is:

F = Fc +
kp

kep

(ekepε − 1)

with the second part of the right hand side corresponding to the force developped by the parallel
exponential spring.

1.2.5 Knee articulation

In order to compute ε̇c, we must compute the differential of the elongation of the parallel
exponential spring ε̇. This differential is given by the geometric modelisation of the knee which
is shown on the figure 1.4.

L00

r

Lii

Liq

Fq

Fi

q

quadriceps

ischio

Figure 1.4: Geometric modelisation of the knee articulation

This geometric modelisation gives us:






Lquadriceps = rq +
√

L2
00 − r2 +

√

L2
iq − r2 + r sin−1(

r

L00
) + r sin−1(

r

Liq

)

εischio =
√

L2
00 + L2

ii + 2L00Lii cos(q)

ε̇quadriceps = rq̇

ε̇ischio = − L00Lii sin(q)
√

L2
00 + L2

ii + 2L00Lii cos(q)
q̇

(1.12)

16 CHAPTER 1. GENERAL PRINCIPLES OF THE SIMULATION IN HUMANS

and we have:
Lquadriceps = L0quadriceps

(εquadriceps + 1)

Lischio = L0ischio
(εischio + 1)

(1.13)

Then we can compute from the muscular forces the torque applied on the knee axis:

Torques = rFq −
L00Lii sin(q)

√

L2
00 + L2

ii + 2L00Lii cos(q)
Fi − Fv q̇

...donnees r, L00...

Chapter 2

Computation of Lagrangian Model

17

18 CHAPTER 2. COMPUTATION OF LAGRANGIAN MODEL

In this chapter, the general way to construct Lagrangian Models in the HuMAnS toolbox
is explained.

The Lagrangian Models already put in the HuMAnS toolbox are placed in a directory
name after the model under the LagrangianModel directory. The existing models are:

• the Bip model, in the LagrangianModel/Bip directory;

• the Human model, which joints and lengths are the same that for the Bip model, is
placed in the LagrangianModel/Human directory;

• the Human36 model which is a biomechanical model with 42 degrees of freedom and
with anthropometric lengths, is placed in the LagrangianModel/Human36 directory.

It has been shown in section 1.1.5 that the dynamic system can be set in the form of a quadratic
problem: 





min
q̈

1

2
q̈T M(q)q̈ + q̈T [N(q, q̇)q̇ + G(q) − T (q)u]

Cn(q)q̈ + sn(q, q̇) ≥ 0

Ct(q)q̈ + st(q, q̇) = 0

(2.1)

where q is the state variable of the system, M(q) the inertia, N(q, q̇) a non-linear effects matrix,
G(q) the forces differential of a potential (for example the gravity), u a command vector, T (q)
a matrix describing the effects of this command on the system, Cn(q) and Ct(q) the jacobians
of respectively non-penetrating and non-sliding constraints and sn(q, q̇) and st(q, q̇), the other
terms appearing in the differential of these constraints (see section 1.1.2).

Defining the Lagrangian Model mean computing these different vectors and matrices. The
functions which allows to compute them are C-functions generated by maple programs. These
C-functions are placed in the LagrangianModel/ModelName directory, where ModelName is the
name of the considered model. The maple files allowing to generate these C-files are placed in
the corresponding LagrangianModel/ModelName/MapleCodeGeneration directory. Maple files
are always considered to be in this directory.

First of all, we will see how to compute the kinematic model. Then, the computation
of the dynamical model will be explained. Finally, we will define the files allowing the creation
of a vrml animation corresponding to a simulation.

2.1. KINEMATIC MODEL 19

2.1 Kinematic Model

In this section, we will first define the two ways implemented in HuMAnS to specify the geo-
metric modelisation of a jointed system. Then, we will see the model of the tags (which are a
set of characteristic points or markers on the model). Finally, the way to compute the different
vectors and matrices describing the contact model is explained.

2.1.1 Geometric modelisation of a jointed system

In this section, we will see the two ways implemented in HuMAnS to compute the position of
the jointed model, that is to say the position and orientation of each solid which compose it.
The state vector q specifying the position and the orientation of one of these solids and the
articular positions is sufficient to describe the position of the articular model. This modelisation
is implemented in the KinematicData.maple files.

The first way consist of using the modified Denavit-Hartenberg. The second one consist of
using the Cardan angles.

Modified Denavit-Hartenberg parameters

We used the Denavit-Hartenberg notation modified by Khalil and Kleinfinger for the Bip and
the Human models.

Figure 2.1: The Khalil and Kleinfinger representation describes the transformation from the
refk frame to the k frame by making a translation rk and a rotation αk along Xrefk

axis, and
then a translation λk and a rotation θk along Zk axis.

An (Ok, Xk, Yk, Zk) frame is attached to each solid k. The position and the orientation of
the frame k is given in the frame refk of the solid it is attached to. To described this position

20 CHAPTER 2. COMPUTATION OF LAGRANGIAN MODEL

and orientations, four parameters are used corresponding to a translation rk and a rotation αk

along Xrefk
axis, and then a translation λk and a rotation θk along Zk axis (figure 2.1). So the

matrix which allows us to pass from a frame to an other is (in homogeneous coordinates):






cos θk − sin θk 0 rk

cos αk sin θk cos αk cos θk − sin αk −λk sin αk

sin αk sin θk sin αk cos θk cos αk λk cos αk

0 0 0 1







Describing the position and orientation of an jointed model amounts to specify each of the
parameters rk, αk, λk and θk from the geometry of the solids which compose the model and
from the vector q components. The figure 2.2 shows a part of the KinematicData.maple file
in which these parameters are specified.

Nombre de solides

NSOL := 17+6:

Nombre de degrés de liberté

NDDL := 15+6:

Définition des coordonnées et vitesses généralisées

q := vector(NDDL):

qdot := vector(NDDL):

Repère 1 : translation Y haut

ref_1 := 0:

r_1 := 0:

lambda_1 := 0.903+q[17]:

alpha_1 := -Pi/2:

theta_1 := 0:

Repère 2 : translation Z droite

ref_2 := 1:

r_2 := 0:

lambda_2 := q[18]:

alpha_2 := Pi/2:

theta_2 := Pi/2:

Repère 3 : translation X avant

ref_3 := 2:

r_3 := 0:

lambda_3 := q[16]:

alpha_3 := Pi/2:

theta_3 := Pi/2:

Repère 4 : rotation Y lacet

ref_4 := 3:

r_4 := 0:

lambda_4 := 0:

alpha_4 := Pi/2:

theta_4 := Pi/2+q[20]:

Repère 5 : rotation Z tangage

ref_5 := 4:

r_5 := 0:

lambda_5 := 0:

alpha_5 := Pi/2:

theta_5 := Pi/2+q[21]:

.

.

.

.

.

.

Repère 18 : cardan gauche

ref_18 := 17:

r_18 := 0.410:

lambda_18 := 0:

alpha_18 := 0:

theta_18 := -q[6]:

Repère 19 : pied gauche

ref_19 := 18:

r_19 := 0:

lambda_19 := 0:

alpha_19 := -Pi/2:

theta_19 := q[5]:

Repère 20 : (inexistant)

ref_20 := 0:

r_20 := 0:

lambda_20 := 0:

alpha_20 := 0:

theta_20 := 0:

Repère 21 : levier lombaires

ref_21 := 6:

r_21 := 0:

lambda_21 := 0.128:

alpha_21 := Pi/2:

theta_21 := Pi+q[13]:

Repère 22 : cardan armoire

ref_22 := 21:

r_22 := 0:

lambda_22 := 0:

alpha_22 := Pi/2:

theta_22 := Pi/2+q[14]:

Repère 23 : support armoire + armoire

ref_23 := 22:

r_23 := 0:

lambda_23 := 0:

alpha_23 := -Pi/2:

theta_23 := q[15]:

Figure 2.2: Part of KinematicData.maple file which describes the position and the orienta-
tion of a jointed model with the modified Denavit-Hartenberg parameters.

2.1. KINEMATIC MODEL 21

Cardan angles or pitch-roll-yaw angles

We used the Cardan representation for the Human36 model.

Yk

Orefk

Xrefk

Yrefk

Zk

xk

Txk

Tyk

Tzk

Zrefk

Ok
Xrefk

Zrefk

Xk

zk

yk

Yrefk

Z0

X0
X1

Z1

Y0

Y1

Figure 2.3: The yaw-pitch-roll or Cardan representation describes the transformation from the
refk frame to the k frame by making a translation (Txk, T yk, T zk) and then a rotation of zk

around zrefk
(roll), a rotation of yk (pitch) around the resulting y-axis, which is the Y0-axis,

and finally a rotation of xk (yaw) around the resulting x-axis, which is the X1-axis

An (Ok, Xk, Yk, Zk) frame is attached to each solid k. The position and the orientation of
the frame k is given in the frame refk of the solid it is attached to. To described this position
and orientations, six parameters are used corresponding to a translation (Txk, T yk, T zk) and
then a rotation of zk around zrefk

(roll), a rotation of yk around the resulting y-axis (pitch) and
finally a rotation of xk around the resulting x-axis (yaw) (see figure 2.3). So the matrix which

22 CHAPTER 2. COMPUTATION OF LAGRANGIAN MODEL

allows to pass from a frame to an other is (in homogeneous coordinates):







cos zk cos yk cos zk sin yk sin xk − sin zk cos xk cos zk sin yk cos xk + sin zk sin xk Txk

sin zk cos yk sin zk sin yk sin xk + cos zk cos xk sin zk sin yk cos xk − cos zk sin xk Tyk

− sin yk cos yk sin xk cos yk cos xk Tzk

0 0 0 1







Describing the position and orientation of a jointed model amounts to specify each parameters
xk, yk, zk, Txk, Tyk and Tzk from the geometry of the solids which compose the model and
from the vector q components. The figure 2.4 shows a part of the KinematicData.maple file
in which these parameters are specified.

#solids number

NSOL := 17:

#degrees of freedom number

NDDL := 36+6:

#measured lengths number

NLANAT := 31:

#generalized coordinates and speed definition

q := vector(NDDL):

qdot := vector(NDDL):

#anatomical lengths definitions

L := vector(NLANAT):

Frame 1 : LPT: Orientation and position

ref_1 := 0:

z_1 := q[42]:

y_1 := q[41]:

x_1 := q[40]:

Tx_1 := q[37]:

Ty_1 := L[14] + L[15] + L[16]+ q[38]:

Tz_1 := q[39]:

Frame 2 : right thigh

ref_2 := 1:

z_2 := q[6]:

y_2 := -q[5]:

x_2 := -q[4]:

Tx_2 := 0:

Ty_2 := 0:

Tz_2 := L[3]/2:

Frame 3 : right shank

ref_3 := 2:

z_3 := q[3]:

y_3 := 0:

x_3 := 0:

Tx_3 := 0:

Ty_3 := -L[6]:

Tz_3 := 0:

.

.

.

.

.

.

Frame 14 : left humerus

ref_14 := 13:

z_14 := q[29]:

y_14 := q[28]:

x_14 := q[27]:

Tx_14 := -L[22]:

Ty_14 := L[20]:

Tz_14 := -L[21]:

Frame 15 : left forearm

ref_15 := 14:

z_15 := q[31]:

y_15 := q[30]:

x_15 := 0:

Tx_15 := 0:

Ty_15 := -L[23]:

Tz_15 := 0:

Frame 16 : left hand

ref_16 := 15:

z_16 := q[33]:

y_16 := 0:

x_16 := q[32]:

Tx_16 := 0:

Ty_16 := -L[25]:

Tz_16 := 0:

Frame 17 : head

ref_17 := 8:

z_17 := q[36]:

y_17 := q[35]:

x_17 := q[34]:

Tx_17 := L[2]:

Ty_17 := L[26]:

Tz_17 := 0:

Figure 2.4: Part of KinematicData.maple file which describes the position and the orienta-
tion of a jointed model with the yaw-pitch-roll angles.

2.1. KINEMATIC MODEL 23

2.1.2 Tag model: the Tags.c file

Some characteristic points were put on the model. These points are called tags. Their spec-
ification is made in the AdditionnalData.maple file. For each tag, the user must give the
number of the segment it is attached to, that is to say the number of the segment relative
to which the tag does not move (reftag_i in the figure 2.5), and its position in the frame
attached to this segment (tag_i in the figure 2.5). The figure 2.5 shows an example of an
AdditionnalData.maple file (which is the AdditionnalData.maple file of the Bip model).

Definition de quelques points importants (tags)

Points de contact choisis parmi les tags

points_contact := [1, 2, 3, 4, 11, 12, 13, 14, 22, 23, 24, 25]:

#Definition des solides de contact

ContactSolids := matrix([[1, 4], [5, 8], [9, 12]]):

#Definition nombre de solides de contact

NCONTSOL := 3:

#Definition Nombre de Contacts

NCONT := 12:

#Definition vecteur Lambda:

Lambda := vector(3*NCONT):

Nombre de tags

NTAG := 19:

Tag 1 : pied droit

reftag_1 := 12:

tag_1 := vector([83, -90, 170]*1e-3):

Tag 2 : pied droit

reftag_2 := 12:

tag_2 := vector([83, 90, 170]*1e-3):

Tag 3 : pied droit

reftag_3 := 12:

tag_3 := vector([83, -60, -120]*1e-3):

Tag 4 : pied droit

reftag_4 := 12:

tag_4 := vector([83, 60, -120]*1e-3):

Tag 5 : cheville droite

reftag_5 := 11:

tag_5 := vector([0, 0, 0]*1e-3):

Tag 6 : genou droit

reftag_6 := 10:

tag_6 := vector([0, 0, 0]*1e-3):

.

.

.

.

.

.

Tag 15 : lombaires

reftag_15 := 21:

tag_15 := vector([0, 0, 0]*1e-3):

Tag 16 : tronc

reftag_16 := 23:

tag_16 := vector([0, 0, 110]*1e-3):

Tag 17 : tronc

reftag_17 := 23:

tag_17 := vector([0, 0, -110]*1e-3):

Tag 18 : tronc

reftag_18 := 23:

tag_18 := vector([660, 0, 110]*1e-3):

Tag 19 : tronc

reftag_19 := 23:

tag_19 := vector([660, 0, -110]*1e-3):

Tag 20 : centre pied droit

reftag_20 := 12:

tag_20 := vector([83, 0, 0]*1e-3):

Tag 21 : centre pied gauche

reftag_21 := 19:

tag_21 := vector([83, 0, 0]*1e-3):

Tag 22 : attache tronc

reftag_22 := 23:

tag_22 := vector([660, 150, 110]*1e-3):

Tag 23 : attache tronc

reftag_23 := 23:

tag_23 := vector([660, 150, -110]*1e-3):

Tag 24 : attache tronc

reftag_24 := 23:

tag_24 := vector([660, -150, -110]*1e-3):

Tag 25 : attache tronc

reftag_25 := 23:

tag_25 := vector([660, -150, 110]*1e-3):

Figure 2.5: Part of AdditionnalData.maple file which describes the positions of the tags in
their attached segment frame.

The ModelGeneration.maple file generates the Tags.c file. After the linking in Scilab
of this C-function, the user can call the Tags function with the state vector q in input and
a matrix T of (NumberOfTags + 1) rows and 3 columns on output. NumberOfTags is the
number of tags in the model. The row i (i ≤ NumberOfTags) of this matrix is the position
(x, y, z) of the tag i in the reference frame. The last row (the (NumberOfTags + 1) row) is

24 CHAPTER 2. COMPUTATION OF LAGRANGIAN MODEL

the position of the model global center of mass. Then, T is on the form:

T =










x0
tag1

y0
tag1

z0
tag1

x0
tag2

y0
tag2

z0
tag2

...
...

...
x0

tagNumberOfTags
y0

tagNumberOfTags
z0

tagNumberOfTags

x0
CenterOfMass y0

CenterOfMass z0
CenterOfMass










where the 0 represents the reference frame.

The call of the Tags function in Scilab is in the following form:

> T = Tags(q);

2.1.3 Contact model

Contact vector: the Contact.c file

The ModelGeneration.maple file contains the ContactVector function which returns a
vector composed of three parts of same size:





ϕ1
t (q)

ϕn(q)
ϕ2

t (q)





These parts are used to specify the unilateral and bilateral constraints which appear in the
dynamic:

ϕn(q) ≥ 0 (unilateral constraints)

ϕ∗

t (q) =

(
ϕ1

t (q)
ϕ2

t (q)

)

− Constant = 0 (bilateral constraints)

The * symbol indicates that these bilateral constraints can be active or not, according to
the state of the system. This particular structure results from the choice to simulate constraints

2.1. KINEMATIC MODEL 25

on the space position of points rigidly bound to the system. So, if this vector is of the form:



















x1

x2
...
y1

y2
...
z1

z2
...



















(2.2)

the unilateral constraints are directly y ≥ 0, and the bilateral constraints are of the form
(x, z) = Constante.

The ContactVector function returns a vector in this form, with (xk, yk, zk) the position of
the point of contact k. The points of contact are choosen among the tags. The tags choosen
as contact points are specified in the vector points_contact defined in the Additionnal-
Data.maple file (see figure 2.5). The position of the contact points depend only of the posi-
tion and the orientation of the different segments of the model, that is to say depends only of
the state vector q. We will call “Contact vector” the vector returned by the ContactVector
function.

The ContactVector function is used to generate the Contact.c file. After the linking
of this function in Scilab, the user can call the Contact function as showed in the following
example:

> C = Contact(q);

where q is the state vector and C is the vector of size 3 ∗ NumberOfContacts defined in the
equation 2.2.

Contact jacobian: the ContactJacobian.c file

The ModelGeneration.maple file contains the ContactJacobianMatrix function which
returns the jacobian of the Contact vector defined in the equation 2.2. The returned value is
a matrix which has the same structure as the Contact vector. It is composed of three parts of
same size: 



C1
t

Cn

C2
t



 (2.3)

26 CHAPTER 2. COMPUTATION OF LAGRANGIAN MODEL

where C1
t = ∂ϕ1

t /∂q and C2
t = ∂ϕ2

t /∂q are the jacobians of the bilateral constraints and
Cn = ∂ϕn/∂q is the jacobian of the unilateral constraints. Because the Contact vector depends
only of the state vectror q, jacobian depends only of q too.

The ContactJacobianMatrix function is used to generate the ContactJacobian.c file.
After its linking in Scilab, the user can call the ContactJacobian function as shown in the
following example:

> C = ContactJacobian(q)

where q is the state vector and C is the matrix of 3 ∗ NumberOfTags rows and NDOF
columns (NDOF is the number of degrees of freedom and is equal to the size of q) defined in
the equation 2.3.

Contact hessian: the ContactHessian.c file

The ModelGeneration.maple file contains the ContactHessian procedure which computes
the following vector the structure being the same than the Contact vector:





s1
t (q, q̇)

sn(q, q̇)
s2

t (q, q̇)



 (2.4)

with

st(q, q̇) =

(
s1

t (q, q̇)
s2

t (q, q̇)

)

(2.5)

and sn(q, q̇) are terms appearing in the second differential of the bilateral and unilateral con-
straints respectively. The definition of these terms is made in section ??.

The ContactHessianMatrix function is used to generate the ContactHessian.c file.
After its linking in Scilab, the user can call the ContactHessian function as shown in the
following example:

> s = ContactHessian(q, qdot)

where q and qdot are the state vector and its differential and s is the vector of 3∗NumberOfTags
rows defined in the equation 2.4.

2.2 Dynamical Model

The dynamical model is meanly defined in the DynamicData.maple file. In this file, the
inertials parameters (the gravity vector, the mass of the segment, the position of the segments

2.2. DYNAMICAL MODEL 27

centers of mass and the inertia matrix of these segments relative to the centers of their attached
frames) are defined. The figure 2.6 shows an example of this file.

The inertial parameters are explained in the section 2.2.1. Then, the computation of the
inertia matrix and of the vector of non-linear effects is explained in sections 2.2.2 and 2.2.3.

Vecteur gravité

Gravity := vector([0, -9.81, 0]):

Solide 1 : (inexistant)

m_1 := 0:

G_1 := vector([0, 0, 0]*1e-3):

IO_1 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 2 : (inexistant)

m_2 := 0:

G_2 := vector([0, 0, 0]*1e-3):

IO_2 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 3 : (inexistant)

m_3 := 0:

G_3 := vector([0, 0, 0]*1e-3):

IO_3 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 4 : (inexistant)

m_4 := 0:

G_4 := vector([0, 0, 0]*1e-3):

IO_4 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 5 : (inexistant)

m_5 := 0:

G_5 := vector([0, 0, 0]*1e-3):

IO_5 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 6 : pelvis

m_6 := 8.8:

G_6 := vector([0, 12, -68]*1e-3):

IO_6 := matrix([[13, 0, 0],[0, 14, 2],[0, 2, 5]]*1e-2):

Solide 7 : equerre hanche droite

m_7 := 3.2:

G_7 := vector([5, -29, -107]*1e-3):

IO_7 := matrix([[6, 0, 0],[0, 5, -1],[0, -1, 1]]*1e-2):

.

.

.

.

.

.

Solide 18 : cardan gauche

m_18 := 0.18:

G_18 := vector([0, 0, 0]*1e-3):

IO_18 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 19 : pied gauche

m_19 := 2.34:

G_19 := vector([59, 0, 19]*1e-3):

IO_19 := matrix([[2, 0, 0],[0, 3, 0],[0, 0, 1]]*1e-2):

Solide 20 : (inexistant)

m_20 := 0:

G_20 := vector([0, 0, 0]*1e-3):

IO_20 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 0]]*1e-2):

Solide 21 : levier lombaires

m_21 := 1.05:

G_21 := vector([0, 47, -25]*1e-3):

IO_21 := matrix([[0, 0, 0],[0, 0, 0],[0, 0, 1]]*1e-2):

Solide 22 : cardan armoire

m_22 := 0.46:

G_22 := vector([0, 0, 46]*1e-3):

IO_22 := matrix([[1, 0, 0],[0, 0, 0],[0, 0, 1]]*1e-2):

Solide 23 : support armoire + armoire

m_23 := 48:

G_23 := vector([405, 13, 9]*1e-3):

IO_23 := matrix([[126, 6, -6],[6, 1075, 0],[-6, 0, 1026]]*1e-2):

Figure 2.6: The DynamicData.maple file describes different inertial parameters of the model.

28 CHAPTER 2. COMPUTATION OF LAGRANGIAN MODEL

2.2.1 Definition of the inertial parameters

The DynamicData.maple file defines the following inertial parameters:

• the vector Gravity gives the gravity in the reference frame (see figure 2.6);

• the segment masses m_i where i is the number of the considered segment (see figure 2.6);

• the positions G_i (i is the segment number) of the segment centers of mass in the frame
attached to these segments (see figure 2.6);

• the inertia matrix relative to the center of the frame attached to the segment, IO_i where
i is the segment number (see figure 2.6).

2.2.2 Inertia matrix: the Inertia.c file

The ModelGeneration.maple file contains the GenerateInertiaMatrix procedure which
uses the InertiaRecursion function to generate the Inertia.c file. After its linking in Scilab,
the user can call the Inertia function as shown in the following example:

> M = Inertia(q);

where q is the state vector and M is the inertia matrix defined in the equation 2.1. This inertia
matrix is a square matrix of size NDOF × NDOF where NDOF is the number of degrees of
freedom of the model.

2.2.3 Non-linear effects: the NLEffects.c file

The ModelGeneration.maple file contains the GenerateNLEffectsVector procedure which
uses the NLEffectsRecursion function to generate the NLEffects.c file. After its linking in
Scilab, the user can call the NLEffects function as shown in the following example:

> N1 = NLeffects(q, qdot);

where q and qdot are the state vector and its differential and N1 is the vector composed of the
non-linear effects and of the effects of the gravity:

N1 = N(q, q̇)q̇ + G(q) (2.6)

N(q, q̇) and G(q) are defined in the equation 2.1. The NLEffects vector N1 is a vector of size
NDOF which is the number of degrees of freedom of the model.

2.3 VRML animation computation

to be completed

Chapter 3

A Biomecanic Model of a Human :
Human36

29

30 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

3.1 Kinematic Model Definition

3.1.1 Joints definition

The Human36 model has the following 36 joints drawn on figure 3.1. These 36 joints are:

• ankle flexion/extension and internal/external rotation: 2dof;

• knee flexion/extension: 1dof;

• hip flexion/extension, internal/external rotation and abduction/adduction: 3dof;

• thorax (joint center = vertebra T10) flexion/extension, internal/external rotation and
abduction/adduction: 3dof;

• sterno-clavicular articulation: elevation/lowering and antepulsion/retropulsion : 2dof

• shoulder flexion/extension, internal/external rotation and abduction/adduction: 3dof;

• elbow flexion/extension, internal/external rotation: 2dof;

• wrist flexion/extension and abduction/adduction: 2dof;

• head (joint center = vertebra C7) flexion/extension, internal/external rotation and ab-
duction/adduction: 3dof;

According to the figure 3.1, the position vector q is:

q =



















q1
...
q36

q37
...
q39

q40
...
q42
























Articular coordinates






Global translation






Global rotation

The frame between the feet of the model is the reference frame. Its origin is the projection
on the ground of the middle of the centers of the ankle joints when the model is in the zero-
position. The Human36 model is in the zero-position when the body is standing up, the feet
flat on the ground spaced apart about the same distance as the width of the hips, the arms

3.1. KINEMATIC MODEL DEFINITION 31

are straight and parallel with the sides of the body and the palms of the hands are facing to
the front. The x-axis of the reference frame is the direction to front of the model, the y-axis
is vertically upward and the z-axis is to the right of the model. In zero-position, each frame
attached to a segment is oriented as the reference frame and its origin is the joint center of
this segment. For example, in the zero-position, the frame attached to the right shoulder is the
frame which origin is on the right sternoclavicular joint and which is oriented as the reference
frame.The origin of the different segments of the Human36 model are given in table 3.1.

(0, 0, q9)

(q7, 0, q8)

(q10, q11, q12)

(0, 0, q3)

y

z x

r_elbow

r_hip

r_knee

r_acromioclavicular

r_sternoclavicular

r_ankle

r_hand

Tr.

Ro.

vC7

(q27, q28, q29)

(q25, q26, 0)

(0, q30, q31)

(q32, 0, q33)

(q34, q35, q36)

(q37, q38, q39)

(q40, q41, q42)

(q13, q14, q15)vt10

(q1, 0, q2)

(q4, q5, q6)

(q23, 0, q24)

(0, q21, q22)

(q16, q17, 0)

(q18, q19, q20)

Figure 3.1: Articular notations of Human36. The notation is (rotation around x, rotation
around y, rotation around z) or (translation along x, translation along y, translation along z)
for the global position (cf Tr.) We followed the ISB recommendations [9, 10] for the components
q1...36

3.1.2 Anatomic Model Lengths and zero-position

The figures 3.2 and 3.3 give the zero-position (the position for which q is the null vector) and the
31 anatomical lengths (L(1 . . . 31)) necessary to the construction of the model. These lengths

32 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Segment name Origin of the attached frame
Right thigh right hip
Right shank right knee
Right foot right ankle
Left thigh left hip
Left shank left knee
Left foot left ankle

Upper Part of Trunk (Thorax) vt10
Right shoulder (Clavicule/Scapula) right sternoclavicular

Right upper-arm right shoulder joint
Right forearm right elbow
Right hand right wrist

Left shoulder (Clavicule/Scapula) left sternoclavicular
Left upper-arm left shoulder joint
Left forearm left elbow
Left hand left wrist

Head (and neck) vc7

Table 3.1: Name of the segments and origin of the frame attached to these segments

correspond to the positions of the center of the joints relatively to an adjacent one and to other
lengths used to compute the inertia characteristics of the extremities (hand, feet and head).

These lengths are not fixed on the model. The user can modify them by giving :

• either the values of all lengths (that is to say by defining the L(1 . . . 31) vector);

• or the value of the size of the model. The lengths will be computed from anthropometric
data which are explained below.

The way to set these lengths is explained in the section 3.1.2.

Anthropometric Data

Most of the choosen anthropometric data have been founded in the De Leva paper [6], but
other anthropometric sources have been used. All the choices are explained below. Lengths
relative to the size of the body are given in percentage. The implemented model is a male.

De Leva [6] has adjusted the Zatsiorsky data in order to consider as references the cen-
ters of joints or other commonly anatomical landmarks rather than the rarely used Zatsiorsky

3.1. KINEMATIC MODEL DEFINITION 33

zhip = L(3)

ytibiaR = L(5)

zshoulderR = L(11)

ytibiaL = L(15)

zshoulderL = L(21)

yfemurR = L(6) yfemurL = L(16)

zsternoclavR + zsternoclavL = L(8) + L(18)

yhandR = L(27)

yforearmR = L(24)

yhumerusR = L(13)

yhandL = L(28)

yforearmL = L(25)

yhumerusL = L(23)

Figure 3.2: Zero Position (front view) and lengths notations of Human36

34 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

yfoot(R or L) = L(4 or 14)

xvt10 = L(2)

yshoulder(R or L) = L(10 or 20)

xsternoclav(R or L) = L(9 or 19)yvt10 = L(1)

yvC7 = L(26)

xfoot(R or L) = L(30 or 31)

xshoulder(R or L) = L(12 or 22)

yhead = L(29)

ysternoclav(R or L) = L(7 or 17)

Figure 3.3: Zero Position (side view) and lengths notations of Human36

3.1. KINEMATIC MODEL DEFINITION 35

original landmarks. De Leva [6] gives some mean longitudinal lengths for females(mean mass
= 61.9kg and mean stature = 1.735m) and males (mean mass = 73.0kg and mean stature
= 1.741m). But he gives only longitudinal lengths. Other anthropometric data sources have
been used to compute the non-longitudinal lengths.

Mean longitudinal lengths (along the y-axis) :

Some longitudinal lengths are directly given by De Leva in [6]. They are given in millimeters.
We have divided these lengths by the mean stature (1.741 m) to obtain longitudinal lengths
relative to the model size in percent.

The following longitudinal lengths have been computed from De Leva [6]:

• Lower part of trunk:
This lower part is delimited by the horizontal plane containing the centers of the hip joints
(plane1) and by the one containing the Xyphoid process and the T10 vertebra (plane2).
We assume that the Xyphoid process is in the same horizontal plane as the T10 vertebra
(see figure 3.4). Then we can compute the mean length between these two planes by
computing the sum of the length between plane1 and the horizontal plane containing the
omphalion (center of the navel) and of the length between this last plane and plane2.
Then, we have:

yvt10 = L(1) =
length(LPT) + length(MPT ∗)

mean stature
Size

=
145.7 + 215.5

1741
Size

= 0.2075 Size

with the De Leva [6] notations (LPT and MPT are the De Leva [6] Lower and Middle
Parts of Trunk).

• Upper part of trunk :
This upper part is delimited by the horizontal plane containing the Xyphoid process and
the T10 vertebra and the one containing the suprasternale. This mean measure is given
by De Leva [6].

36 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Figure 3.4: The Xyphoid process and the T10 vertebra can be considered in the same horizontal
plane. Scheme realized by the Pr. NGUYEN HUU (Brest Medecine Faculty) [7].

• Longitudinal length between the T10 and the C7 vertebra :
This mean length corresponds to the distance between the horizontal plane containing
the Xyphoid process and the T10 vertebra and the one containing the C7 vertebra. This
length is given by Zatsiorsky et al.

• Vertical length between the centers of sterno-clavicular joint and the shoulder
joint :
De Leva [6] gives the Zatsiorsky mean longitudinal lengths between the trochanterion
and the suprasternale and between the trochanterion and the acromion. The longitudinal

3.1. KINEMATIC MODEL DEFINITION 37

distance between the suprasternale and the acromion is:

yshoulder(right or left) = L(10 or 20)

=
(Troch.-acromion) − (Troch.-suprasternale)

mean stature
Size

=
(553.2 − 535.1)

1741
Size

= 0.0104 Size

• Foot Heigth :
De Leva gives the following distances:

– VERT/CERV: longitudinal distance between the Vertex and the Cervicale;

– CERV/MIDH: longitudinal distance between the Cervicale and the hip joint center
middle point;

– HJC/KJC: longitudinal distance between the hip joint center and the knee joint center;

– KJC/LMAL: longitudinal distance between the knee joint center and the lateral malle-
olus.

Then, we have:

yfoot = L(4 or 14)

= (1 − VERT/CERV + CERV/MIDH + HJC/KJC + KJC/LMAL

mean stature
) Size

= (1 − 242.9 + 603.3 + 422.2 + 434.0

1741
) Size

= 0.022 Size

The mean longitudinal lengths are shown in table 3.2.

Mean transversal lengths (along the z-axis) :

In paper [6], De Leva combines different sources of anthropometric data, and uses particu-
lary the Clauser et al [4]. That is why we tried to find most lengths in Clauser studies. Other

38 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Longitudinal length specification Length Notation Length Bibliographic
in Human36 (% of Size) origin

Lateral malleolus/Knee Joint Center L(5)/L(15) 24.93 De Leva
Knee Joint Center/Hip Joint Center L(6)/L(16) 24.25 De Leva
Hip Joint Center/T10 vertebra L(1) 20.75 De Leva
T10 vertebra/Suprasternale L(7)/L(17) 9.80 De Leva
Suprasternale/Shoulder Joint Center L(10)/L(20) 1.04 De Leva
Shoulder Joint Center/Elbow Joint Center L(13)/L(23) 16.18 De Leva
Elbow Joint Center/Wrist Joint Center L(24)/L(25) 15.44 De Leva
T10 vertebra/C7 vertebra L(26) 13.9 De Leva
Foot heigth L(4)/L(14) 2.22 De Leva
Wrist Joint Center/3rd Dactilion L(27)/L(28) 10.91 De Leva
C7 vertebra/Vertex L(29) 13.95 De Leva

Table 3.2: Longitudinal lengths between center of joints.

lengths were found in Dempster studies [2].

The three following lengths are required:

• horizontal length between the centers of hip joints :
The mean distance between the center of hip joints was computed from a report by
Clauser et al [4], based on the analysis of 13 male cadavers(mean age = 49 ans, mean
stature = 1.7272m). Clauser et al [4] measured the mean data HIP BREADTH which is
the mean “horizontal distance across the greatest lateral protusion of the hips”. We
assume that the centers of hip joints are on the centers of the thighs (along the z-axis).
Then we assume that the distance between the centers of the two hip joints is equal to
the horizontal length at the upper part of the thigh which is equal to the HIP BREADTH

mean value. Then the distance between the centers of the hip is set to the half of the
HIP BREADTH mean value. We divided this result by the mean stature in order to have it
depending on the model size. Then, we have:

zhip =
HIP BREADTH

2 ∗ ESTIMATED STATURE
Size = 0.1002 Size

• horizontal length between the centers of the two sternoclavicular joints :

This length was found in the Dempster studies [2]. Dempster measured a distance of one

3.1. KINEMATIC MODEL DEFINITION 39

inch between the sternoclavicular joints. Then, we have:

zsternoclav(right or left) = L(8 or 18) =
(one inch)

2

• horizontal length between the centers of the sternoclavicular joint and the
shoulder joint :

This length was found in the Dempster studies [2]. Dempster set the horizontal distance
between the centers of the two shoulder joints to 0.259 ∗ Size. Then, we have:

zshoulder(right or left) = L(11 or 21) =
0.259 Size

2
− zsternoclav(right or left)

Mean depth lengths (along the x-axis) :

The following depth lengths were computed:

• depth length between the middle point of the center of the two hip joints and
the T10 vertebra :

We assume that the depth distance between the centers of the hip joints middle point
and the T10 vertebra is the Clauser et al [4] WAIST DEPTH/OMPH half length. This length
is the vertical distance between the measuring table and the anterior surface of the body
at the level of omphalion. Then, we have:

xvt10 = L(2) =
WAISTDEPTH/OMPH

2
= 90.85 mm

• depth length between the T10 vertebra and the center of the sternoclavicular
joint :

We assume that the T10 vertebra and the center of the sternoclavicular joint are at the
same distance as the vertical plane containing the center of the hip joints and the y-axis
of the reference frame. Then, the depth length between the T10 vertebra and the centers
of the two sternoclavicular joints are :

xsternoclav(right or left) = L(9 or 19) = WAIST DEPTH/OMPH = 181.7 mm

40 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

• depth length between the centers of the sternoclavicular and the shoulder
joint :

We assume that the center of the shoulder jointxs lay on the vertical plane containing the
center of the hip joint and the y-axis of the reference frame (see [3, page 25]). Then, the
depth lengths between the centers of the sternoclavicular joints and the shoulder joints
are:

xshoulder(right or left) = L(12 or 22) =
WAIST DEPTH/OMPH

2
= 90.85 mm

Anatomical lengths getting and setting

Anatomical lengths setting:

The user can modify the model anatomical lengths L(1 . . . 31) by two ways:

• If the user knows only the size of the subject, he can set it in the model and the anatomical
lengths will be computed from the anthropometric data explained in the section 3.1.2. In
this case, the user set the model size by calling the SetModelSize function. The size is
given in meter. The following example shows the use of this function:

> ModelSize = 1.80;

> SetModelSize(ModelSize);

• The user can set straightly the different anatomical lengths by calling the SetAnatomi-
calLengths function. The lengths are given in meter. The following example shows the
use of this function:

> AnatLengths =

>....

> SetAnatomicalLengths(AnatLengths);

Anatomical lengths getting :

There are default anatomical lengths in the model. These default lengths have been com-
puted with the preceding anthropometric data and a size of 1.741m.

The user can get these lengths from the model by calling the GetAnatomicalLengths
function. This function returns the L(1 . . . 31) row vector. The following example shows how
to use it:

3.2. TAGS MODEL 41

> AnatLengths = GetAnatomicalLengths();

The user can also get the size used in the model by calling the GetModelSize function:

>ModelSize = GetModelSize();

3.2 Tags Model

The figures 3.5 and 3.6 show the anatomic landmarks corresponding to the tags. The number
and the name of the tags are specified in the table 3.3. The model construction needs the
position (x, y, z) of the tags in their attached segment frame (see section 3.1.1 for the definition
of these segment frames). We have 28 tags, then the model construction needs 84 lengths. The
ERGODATA measures dictionnary [5] describes most of these anatomical landmarks.

For a given position q, we can compute the position of the tags in the reference frame by
calling the Tags function. This function returns a matrix T of (NumberOfTags+1) rows and
3 columns. The row i (i ≤ NumberOfTags) of this matrix is the position (x, y, z) of the tag
i in the reference frame. The last row (the (NumberOfTags + 1) row) is the position of the
model global center of mass. Then, T is on the form:

T =










x0
tag1

y0
tag1

z0
tag1

x0
tag2

y0
tag2

z0
tag2

...
...

...
x0

tagNumberOfTags
y0

tagNumberOfTags
z0

tagNumberOfTags

x0
CenterOfMass y0

CenterOfMass z0
CenterOfMass










where the 0 represents the reference frame. The following example shows the use of the Tags
function:

> exec Load.sci;

> q = zeros(33,1);

> T = Tags(q);

3.2.1 Anthropometric data

The model needs the position (x, y, z) of the tags in their attached segment frame. Then, it
needs 3 ∗ NumberOfTags lengths.

Anthropometric data from different sources give us these lengths relativly to the subject
height Size. We used mainly three sources:

42 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

l_knee

l_hip

l_elbow

l_sternoclavicular

l_shoulder

+

+

+

+

+

l_ankle

substernale

suprasternale

+

r_acromion

+

3

7

+

+

+

+

+

+
14

16

18

17

+

+ +

+ +

21

22

r_radial_styloid l_wrist

26

28
vertex

cervicale

r_metarsal_pha5

r_metarsal_pha1

12

8

r_trochanterion

r_iliocristale
15

r_fibula_tuberosity

5 13
r_lateral_malleolus

4 11

r_dactylion

+
25

+

+r_humeral_lateral_epicn
20 + 24

23+
19 + 27

vt10

vc7

6

Figure 3.5: Front view of Human36. Tags names, tags numbers and names of articulations.

3.2. TAGS MODEL 43

+

+

+(r ou l)_fibula_tuberosity

+

+substernale

+
+

+

+ ++

+

+

+

vt10

(r or l)_elbow

(r or l)_hip

(r or l)_wrist

(r or l)_knee

(r or l)_sternoclavicular
(r or l)_shoulder
vc7

+

+

(r ou l)_metarsal_pha1(r ou l)_metarsal_pha5

(r ou l)_digit2 (r ou l)_calcaneous_post

(r ou l)_lateral_malleolus
1(r), 9(l) 2(r), 10(l)

(r ou l)_dactylion

(r ou l)_trochanterion
(r ou l)_radial_styloid

(r ou l)_iliocristale

(r ou l)_humeral_lateral_epicn

suprasternale

(r ou l)_acromion
cervicale

Figure 3.6: Profile view of Human36

44 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Anatomic names H-anim tags names tags number attached segment
Right second digit r digit2 1 right foot

Right Calcaneous post r calcaneous post 2 right foot
Right fifth metatarsal r metatarsal pha5 3 right foot
Right first metatarsal r metatarsal pha1 4 right foot
Right lateral malleolus r lateral malleolus 5 right shank

Right femoral lateral epicondyle r femoral lateral epicn 6 right thigh
Right great trochanterion r trochanterion 7 right tigh

Right iliocristale r iliocristale 8 lower part of trunk
Left second digit l digit2 9 left foot

Left Calcaneous post l calcaneous post 10 left foot
Left fifth metatarsal l metatarsal pha5 11 left foot
Left first metatarsal l metatarsal pha1 12 left foot
Left lateral malleolus l lateral malleolus 13 left shank

Left femoral lateral epicondyle l femoral lateral epicn 14 left thigh
Left great trochanterion l trochanterion 15 left thigh

Left iliocristale l iliocristale 16 lower part of trunk
Xyphoid process substernale 17 upper part of trunk
Suprasternale suprasternale 18 upper part of trunk

Right acromion r acromion 19 right shoulder
Right humeral lateral epicondyle r humeral lateral epicn 20 right arm

Right radial styloid r radial styloid 21 right forearm
Right third dactylion r dactylion 22 right hand

Left acromion l acromion 23 left shoulder
Left humeral lateral epicondyle l humeral lateral epicn 24 left arm

Left radial styloid l radial styloid 25 left forearm
Left third dactylion l dactylion 26 left hand

Cervicale cervicale 27 upper part of trunk
Vertex vertex ∗ 28 head

Table 3.3: Correspondence between anatomic names, H-anim names [1], tags numbers and the
segments the tags are attached to

• the De Leva one [6];

• the Clauser et al [4] one. In this case the ESTIMATED STATURE mean measure is used. It
is the mean stature of the Clauser sample subjects;

• An other anthropometric data source are obtained by experiments for motion capture
(see the Tools/Reconstruction directory). In this experiments, measurements of some

3.2. TAGS MODEL 45

anatomical landmarks positions were made. The set of the measurements used to compute
our anatomical landmarks positions are given in the table 3.4.

Subject 1 2 3 4 5 6 7 8 9 10 11
age 20 26 24 25 23 24 25 24 25 26 23
height 170 182 170 183 172 187 193 180 170 180 178
x digit 2 20.5 23 24 ? 25 ? 23.5 20.5 ? 20.5 19
x pha5 12.5 10 12 14.5 10 12.5 11.5 15 11.5 10.5 10
z right pha5 4.5 6 5 6 5 6 7 5 5.5 5 5
z right lateral malleolus 4.5 4.5 4.5 6.5 3.5 5.5 4 4.5 4 3.5 4

Table 3.4: Anatomical landmarks positions measured in motion capture experiments. These
positions are given in the frame attached to these landmarks. The age is in years and the
lengths in cm.

Second digit position

The second digits attached segment is the foot.
We assume that the second digit lays on the ground plane (and then its y component is the

height of the foot) and on the frontal plane containing the center of the corresponding ankle joint
(and then its z component is null). The measurements of the experiments (see table 3.4) allow
us to compute the mean second digit position relative to the height of the subject. The mean
measure of the second digit position x component is 22 and the mean stature corresponding is
178.125. Then the position of the right or left second digit in respectively the right or left foot
frame is:

(xDIGIT2, yDIGIT2, zDIGIT2) = (
mean x measure

mean stature
Size,−L(4 or 14), 0)

= (
22

178.125
Size,−L(4 or 14), 0)

= (0.1235 Size,−L(4 or 14), 0)

Calcaneous post position

The Calcaneous post attached segment is the feet.
As for the second digit landmark, we assume that the calcaneous post landmark lays on

the ground plane (and then its y component coorespond to the height of the foot) and on the

46 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

frontal plane containing the center of the corresponding ankle joint (and then its z component
is null).

De Leva [6] gives us the mean length of the foot from the heel to the tip of the longest toe.
Then the x component of this landmark is:

xCALC = −(
De Leva mean length foot

De Leva mean stature
Size − xDIGIT2)

= −(
258.1

1741
Size − 0.1235 Size)

= −0.0248 Size

Then the right or left calcaneous post positions in the respective rigth or left foot frame are:

(xCALC , yCALC , zCALC) = (−0.0248 Size,−L(4 or 14), 0)

Fifth metatarsal position

The fifth metatarsal attached segment is the foot. We assume (even if it is wrong for a real
human) that the fifth metatarsal landmark lays on the ground. Then its y component core-
sponds to the height of the foot. The x and z components of the fifth metatarsal position were
computed from measurements of motions capture experiments. For the right fifth metatarsal
the computed mean measures are:

• x mean measure = 11.82cm and the corresponding mean stature is equal to 178.64cm;

• z mean measure = 5.45cm and the corresponding mean stature is equal to 178.64cm;

Then the right fifth metatarsal position in the right foot frame is:

(xPHA5, yPHA5, zPHA5) = (
11.82

178.64
Size,−L(4),

5.45

178.64
Size)

= (0.0662 Size,−L(4), 0.0305 Size)

and the left one in the left foot frame is:

(xPHA5, yPHA5, zPHA5) = (0.0662 Size,−L(14),−0.0305 Size)

3.2. TAGS MODEL 47

First metatarsal position

The first metatarsal attached segment is the foot. We assume (even if it is wrong for a real
human) that the first metatarsal landmark lays on the ground. Then its y component core-
sponds to the height of the foot. We assume for simplicity that the first metatarsal landmark is
symmetrical to the fifth by the sagittal plane containing the center of the corresponding ankle
joint. Then the right and left first metatarsal positions in the respective right and left foot
frames are given by:

(xPHA1, yPHA1, zPHA1) = (xPHA5, yPHA5,−zPHA5)

= (0.0662 Size,−L(4),−0.0305 Size) (right)

= (0.0662 Size,−L(14), 0.0305 Size) (left)

Lateral malleolus position

The lateral malleolus attached segment is the shank. We assume that the lateral malleolus
landmarks lay on the transversal and the frontal plane containing their cooresponding (right
or left) ankle joint center. Then their x component is null and their y component corresponds
to the length of the shanks.

The z components were computed from measurements of motion capture experiments (see
table 3.4). The mean measure of this z component is 4.45cm and the corresponding mean
stature is 178.64cm. Then the right lateral malleolus position in the right shank frame is:

(xMALL, yMALL, zMALL) = (0,−L(5),
experiences mean z measure

experiences mean stature
Size)

= (0,−L(5), 0.0249 Size)

and the left one in the left shank frame is:

(xMALL, yMALL, zMALL) = (0,−L(15),−0.0249 Size)

Femoral lateral epicondyle position

The femoral lateral epicondyle attached segment is the thigh. We assume that this anatomical
landmark lays on the transversal and the frontal planes containing the center of the knee joint.
Then the x component of this landmark is null and the y one is the length between the centers
of the hip joint and the knee joint.

48 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Clauser et al [4] gives the mean KNEE BREADTH(BONE) measurement corresponding to the
mean “maximum distance between the right femoral epicondyles by exerting sufficient pressure
to compress the tissue overlying the femur”. Then the position of the right femoral lateral
epicondyle (FEM) in the right thigh frame is:

(xFEM , yFEM , zFEM) = (0,−L(6),
KNEE BREADTH(BONE)

2 ∗ (ESTIMATED STATURE)
Size)

= (0,−L(6),
10.01

172.72
Size)

= (0,−L(6), 0.0290 Size)

and the position of the left femoral lateral epicondyle in the left thigh frame is:

(xFEM , yFEM , zFEM) = (0,−L(16),−0.290 Size)

Great trochanterion position

The right and left great trochanters attached segment are the the right and left thigh respec-
tively. We assume that the great trochanters lay on the transversal and the frontal planes
containing the centers of the hip joints. Then the x and y component of their position in the
lower part of trunk frame are null.

Clauser et al[4] gives the mean Bitrochanteric Breadth(Bone) measurement correspond-
ing to the mean “horizontal distance between the maximum protusion of the right and left
greater trochantor exerting sufficient pressure to compress the tissue overlying the femurs”.
Then the z component of the right great trochanter position is:

(xTROCH , yTROCH , zTROCH) = (0, 0,
Bitrochanteric Breadth(Bone)

2 ∗ (ESTIMATED STATURE)
Size − L(3)

2
)

= (0, 0,
32.51

2 ∗ 172.72
Size − L(3)

2
)

= (0, 0, 0.0941 Size − L(3)

2
)

and those of the left great trochanter position is:

(xTROCH , yTROCH , zTROCH) = (0, 0,−0.0941 Size +
L(3)

2
)

3.2. TAGS MODEL 49

Iliac crest position

The iliac crest landmarks attached segment is the lower part of trunk.
Clauser et al [4] gives the BI-SPINOUS BREADTH measurement which is the mean “horizontal

distance between the right and left anterior-superior iliac spines”. We have then, for the right
iliac crest:

zILIA =
BI-SPINOUS BREADTH

2 ∗ (ESTIMATED STATURE)
Size

=
24.08

2 ∗ 172.72
Size

= 0.0697 Size

De Leva [6] gives the mean vertical distance between the center of the hip joint and the
iliospinale for the men (63.7mm).

The x component of the iliospinale is computed from measurement of movement recon-
struction data (see table 3.4). We use the mean of the measure for each subject. We have
then:

mean measure = 4.83cm

mean stature = 178.33cm

xILIA =
mean measure

mean stature
Size

= 0.0271 Size

The right and left iliac crest positions in the lower part of trunk frame are:

(xILIA, yILIA, zILIA)(right or left) = (0.0271 Size, 0.0366 Size, (+ or −)0.0697 Size)

Xyphoid process position

The Xyphoid process attached segment is the thorax. We assume that the y and z components
of the position of the Xyphoid process in the thorax frame are null (see figure 3.4).

Clauser et al [4] gives the CHEST DEPTH measurement corresponding to the “vertical distance
between the measuring table and the anterior surface of the body at the level of the thelion”.

50 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

The thelion is the center of the nipples. The Xyphoid x component is approximated by this
measure. Then the Xyphoid process position in the thorax frame is:

(xXY P , yXY P , zXY P) = (
CHEST DEPTH

ESTIMATED STATURE
, 0, 0)

= (
21.06

172.72
Size, 0, 0)

= (0.1219 Size, 0, 0)

Suprasternale position

The suprasternale landmark attached segment is the thorax. It lays between the center of the
right and left sternoclavicular joints. Then we have:

(xSUPR, ySUPR, zSUPR) = (
L(9) + L(19)

2
,
L(7) + L(17)

2
, 0)

Acromion position

The acromion landmark attached segment is the shoulder. De Leva [6] gives the mean longitu-
dinal length from acromion to the center of the corresponding shoulder joint. We assume that
the acromion is at the verticale of the center of the corresponding shoulder joint. The figure
3.7 shows the position of the acromions in their attached frame (which are the corresponding
sternoclavicular frames).

Then we have for the right acromion:

(xACR, yACR, zACR) = (−L(12), L(10) +
De Leva mean length(acromion-shoulderJCs)

mean stature
Size, L(11))

= (−L(12), L(10) +
34.5

1741
Size, L(11))

= (−L(12), L(10) + 0.0198 Size, L(11))

and for the left one:

(xACR, yACR, zACR) = (−L(22), L(20) + 0.0198 Size,−L(21))

3.2. TAGS MODEL 51

+ +

L(11) L(21)
L(12 or 22)

sternoclavicular JCs

shoulder JCs

L(10 or 20) + length(acromion−shoulderJC)

Figure 3.7: Position of the acromion landmarks relative to the center of sternoclavicular joint
(JC corresponds to Joint Center).

Humeral lateral epicondyle position

The humeral lateral epicondyle attached segment is the corresponding upper-arm. We assume
that this landmark lays on the transversal and on the frontal (palm upwards) planes containing
the center of the elbow joint. Then the x component of its position in the upper-arm frame is
null. And the y one corresponds to the upper-arm length.

Clauser et al [4] gives the ELBOW BREADTH/BONE measurement corresponding to the mean
“maximum dixtance between the humeral epicondyles exerting sufficient pressure to compress
the tissue overlying the humerus”. Then the position of the right humeral lateral epicondyle in
the right arm frame is:

(xHUM , yHUM , zHUM) = (0,−L(13),
ELBOW BREADTH/BONE

2 ∗ (ESTIMATED STATURE)
Size)

= (0,−L(13),
7.27

2 ∗ 172.72
Size)

= (0,−L(13), 0.0211 Size)

and the position of the left humeral lateral epicondyle in the left arm frame is:

(xHUM , yHUM , zHUM) = (0,−L(23),−0.0211 Size)

52 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Styloid position

The styloid landmark attached segment is the forearm. De Leva [6] gives the mean longitudinal
length from the elbow joint center (EJC) and the normal projection on the forearm longitudinal
axis of the Styloid. Then, for the right and left styloid, the y component is:

ySTY L = −EJC-StyloidProjection

mean stature
Size

= −266.9

1741
Size

= −0.1533 Size

We assume that the right and left styloid lay on the frontal plane. Then, their x component
are null. Clauser et al [4] gives the WRIST BREADTH/BONE measurement corresponding to the
“maximum distance between the radical and ulnar styloid process exerting sufficient pressure
to compress the tissue overlying the radius and ulna”. Then we have for the right styloid:

zSTY L =
WRIST BREADTH/BONE

ESTIMATED STATURE
Size

=
5.72

172.72
Size

= 0.0331 Size

The right and left styloid position are:

(xSTY L, ySTY L, zSTY L)(right or left) = (0,−0.1533 Size, (+ or −)0.0331 Size)

Third dactylion position

The third dactylion attached segment is the hand. We assume that the x and z components
are null. De Leva [6] gives the mean longitudinal length from the 3rd dactylion (DAC3) to the
center of the Wrist Joint (WJC). Then, we have for the right and left third dactylion:

(xDAC3, yDAC3, zDAC3) = (0,− WJC-DAC3

mean stature
Size, 0)

= (0,−189.9

1741
Size, 0)

= (0,−0.1091 Size, 0)

3.2. TAGS MODEL 53

Cervicale position

The cervicale attached segment is the thorax. The Cervicale landmark lays on the back and
on the base of the neck (at the same height than the C7 vertebra). Then the z component of
the position is null and the y one is the vertical length between the T10 and the C7 vertebra,
that is to say the length L(26). We assume that in the sagittal plane the cervicale landmark is
between the C7 and the T10 vertebra.

Clauser et al [4] gives the Neck Depth measurement. This measure is the maximum depth
of the neck perpendicular to the long axis of the neck. Then the x component of the cervicale
position is:

xCerv. = L(2) − Neck Depth

2 ∗ ESTIMATED STATURE
Size

= L(2) − 0.0392 Size

The Cervicale position in the thorax frame is:

(xCerv., yCerv., zCerv.) = (L(2) − 0.0392 Size, L(26), 0)

Vertex position

The vertex tag lays on the y-axis of its attached segment frame. De Leva [6] gives the longi-
tudinal length of the head (from cervicale to vertex). This length was divided by the mean
stature in order to have the length, in percentage, relative to the model size. Then the position
of the tag in its attached segment frame is:

(xV ertex, yV ertex, zV ertex) = (0, 0.1395 Size, 0)

Landmarks positions recapitulated table

The table 3.5 recapitulates the position of the tags in their attached frames.

3.2.2 Tags to Joint centers lengths setting and getting

The preceding section gives the anatomical landmarks position in their attached segment frame.
These positions are relative to the model height and were computed from anthropometric
sources. By default, the tags’ positions are computed as in the preceding section with a model
size of 1.741m (this size is the De Leva [6] mean stature data). The user can modify these
positions by setting them in the model as explained in the following section.

54 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Tag name Tag x component Tag y component Tag z component
Right second digit 0.1235*Size -L(4) 0
Right Calcaneous post -0.0248*Size -L(4) 0
Right fifth metatarsal 0.0662*Size -L(4) 0.0305*Size
Right first metatarsal 0.0662*Size -L(4) -0.0305*Size
Right lateral malleolus 0 -L(5) 0.0249*Size
Right femoral lateral epicondyle 0 -L(6) 0.0290*Size

Right great trochanterion 0 0 0.0941*Size - L(3)
2

Right iliocristale 0.0271*Size 0.0366*Size 0.0697*Size
Left second digit 0.1235*Size -L(14) 0
Left Calcaneous post -0.0248*Size -L(14) 0
Left fifth metatarsal 0.0662*Size -L(14) -0.0305*Size
Left first metatarsal 0.0662*Size -L(14) 0.0305*Size
Left lateral malleolus 0 -L(15) -0.0249*Size
Left femoral lateral epicondyle 0 -L(16) -0.0290*Size

Left great trochanterion 0 0 -0.0941*Size + L(3)
2

Left iliocristale 0.0271*Size 0.0366*Size -0.0697*Size
Xyphoid process 0.1219*Size 0 0

Suprasternale L(9)+L(19)
2

L(7)+L(17)
2

0
Right acromion -L(12) L(10) + 0.0198*Size L(11)
Right humeral lateral epicondyle 0 -L(13) 0.0211*Size
Right radial styloid 0 -0.1533*Size 0.0331*Size
Right third dactylion 0 -0.1091*Size 0
Left acromion -L(22) L(20) + 0.0198*Size -L(21)
Left humeral lateral epicondyle 0 -L(23) -0.0211*Size
Left radial styloid 0 -0.1533*Size -0.0331*Size
Left third dactylion 0 -0.1091*Size 0
Cervicale L(2) - 0.0392*Size L(26) 0
Vertex 0 0.1395*Size 0

Table 3.5: Anatomical landmarks positions in their attached segment frame

Tags to Joint centers lengths setting

The user can modify the tags positions by:

• setting the size of the model. In this case, the new tags positions will be computed as
in the preceding section with the size set by the user. The function allowing to set the
model size is the SetModelSize function described in section 3.1.2;

3.3. DYNAMICAL MODEL 55

• setting all the positions by calling the SetTag2JointLengths function. This function’s
input is a row vector of size 3 ∗ NumberOfTags of the following form:

Tag2JointLengths = (x1, y1, z1
︸ ︷︷ ︸

tag 1

, x2, y2, z2
︸ ︷︷ ︸

tag 2

, . . . , xnbtags
, ynbtags

, znbtags
︸ ︷︷ ︸

tag NumberOfTags

)

where the number of the tags are specified in section 3.2. The following example shows
the use of this function:

> Tag2JointLengths = []...

> SetTag2JointLengths(Tag2JointLengths);

Tags to Joint centers lengths getting

The user can get the tags positions in their attached segment frames by calling the Get-
Tag2JointLengths function. This function returns the Tag2JointLengths row vector defined
in the preceding section. The following example shows how to use it:

> Tag2JointLengths = GetTag2JointLengths();

3.3 Dynamical Model

The segments masses and the position of the centers of mass relative to joint position of the
segment are found from anthropometrical data

The segments numerotation in HuMAnS is given in the table 3.6.

3.3.1 Segment Masses

De Leva [6] gives the segment masses relative to the body mass. The table 4.2 gives the
proportions. The shoulders are not take into account in the dynamical model. Then their
masses are set to 0.

Segments masses and global mass setting

The user can modify the body mass with the SetMass function. The mass must be given in
kg. This function set the user input mass in the model. The following example shows the use
of this function:

56 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Segment name Segment number
Lower Part of Trunk 1

Right thigh 2
Right shank 3
Right foot 4
Left thigh 5
Left shank 6
Left foot 7

Upper Part of Trunk (Thorax) 8
Right shoulder (Clavicule/Scapula) 9

Right upper-arm 10
Right forearm 11
Right hand 12

Left shoulder (Clavicule/Scapula) 13
Left upper-arm 14
Left forearm 15
Left hand 16

Head (and neck) 17

Table 3.6: Segment numerotation in HuMAnS

> subjectMass = 63;

> SetMass(subjectMass);

When the body mass is modified with this function, the segment masses are modified as
specified in the preceding section.

Segments masses and global mass getting

The user can get the body mass by using the GetMass function. The default body mass is
73kg (the mean male mass found by De Leva [6]). The following example shows the use of this
function:

> subjectMass = GetMass();

3.3. DYNAMICAL MODEL 57

Segment name Mass (%)
Lower Part of Trunk 27.5

Right thigh 14.16
Right shank 4.33
Right foot 1.37
Left thigh 14.16
Left shank 4.33
Left foot 1.37

Upper Part of Trunk (Thorax) 15.96
Right shoulder (Clavicule/Scapula) 0

Right upper-arm 2.71
Right forearm 1.62
Right hand 0.61

Left shoulder (Clavicule/Scapula) 0
Left upper-arm 2.71
Left forearm 1.62
Left hand 0.61

Head (and neck) 6.94

Table 3.7: Segment masses relative to the body mass

3.3.2 Segments centers of mass

We assume that the segment center of mass lay on the respective segment longitudinal axis.
De Leva [6] gives the segments center of mass longitudinal position relative to the respective
segment longitudinal length. In De Leva [6], segments center of mass longitudinal position is
referenced either to proximal or cranial points. The table 3.8 gives the relative longitudinal
position of the center of mass.

In order to compute the longitudinal Center of mass position of our lower part of trunk
(between hip joints center and Xyphoid process/T10 vertebra), we use :

mO1G = mLPT O1GLPT + mMPT O1GMPT

and
mTrunkO1GTrunk = mLPT O1GLPT + mMPT ∗O1GMPT ∗ + mUPTO1GUPT

where m, mLPT , mMPT ∗, mUPT and mTrunk, G, GLPT , GMPT ∗, GUPT and GTrunk are respec-
tively the mass and the centers of mass of our lower part of trunk, of the De Leva [6] Lower
Part of Trunk, of the Zatsiorsky Middle Part of Trunk and of the De Leva [6] Upper Part of

58 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Trunk and O1 the center of our lower part of trunk frame (which is the hip joint centers middle
point).

Longitudinal Bibliographic
Segment name Origin Point End Point COM Origin

Position (in %)
Head cervicale vertex 49.98 Zatsiorsky et al
Upper Part of Trunk xyphoid process suprasternale 70.01 De Leva [6]
Lower Part of Trunk hip JCs middle point xyphoid process 51.08 De Leva [6]
Thigh hip JC knee JC 40.95 De Leva [6]
Shank knee JC Lateral malleolus 44.59 De Leva [6]
Foot heel acropodion 44.15 De Leva [6]
Upper arm shoulder JC elbow JC 57.72 De Leva [6]
Forearm elbow JC wrist JC 45.74 De Leva [6]
Hand wrist JC 3rd dactilion 36.91 Zatsiorsky et al

Table 3.8: Longitudinal relative position of the segment center of mass. The acropodion is the
tip of the longest toe(first or second)

The y-axis of the lower part of trunk, thighs, shanks, upper-arms, forearms, hands and head
segments are the longitudinal axis of these segments. Then, the x and z components of the
position of these centers of masse are null.

We model the foot with a cylinder of diameter the foot height. Then the longitudinal axis
of the foot is parallel with the x-axis of the foot frame and contained in the xOy plane and at
a distance of half the foot height from the x-axis. Then the positions of the centers of mass of
the feet in the feet segment frames are:

(xG, yG, zG) = (0.4415 L(30) + xright heel,
−L(4)

2
, 0) (right foot)

(xG, yG, zG) = (0.4415 L(31) + xleft heel,
−L(14)

2
, 0) (left foot)

where L(30), L(31), L(4) andL(14) are respectively the lengths of the right and left foot and the
heights of the right and left foot (see section 3.1.2) and xright heel and xleft heel the x component
of the position of the right and left heels in the right and left foot frame.

We model the upper part of trunk with a cylinder of diameter the distance l between the
T10 vertebra and the projection of the suprasternale on the xOz plane. Then this longitudinal
axis is parallel with the y-axis of the upper part of trunk frame and distant to the y-axis of
half this distance l. Then the position of the upper part of trunk center of mass in its attached

3.3. DYNAMICAL MODEL 59

frame is:

(xG, yG, zG) = (
L(9) + L(19)

4
, 0.7001 L(7), 0)

where L(9), L(19) and L(7) are defined in section 3.1.2.

3.3.3 Inertia computation

We want to know the inertia matrix of each segment relative to the segment frame center. We
assume that the y-axis of the segments frames are their longitudinal segments and that it is an
axis of symetry of the segment. Then the non-diagonal components of these matrices are null.
Then we use the radii of gyration given by de Leva [6] and the Huygens theorem to compute
the diagonal components (in fact, the sagittal, transversal and longitudinal axes relative to
which the radii of gyration are given are the axes containing the segment center of mass G and
parallel respectively with the segment frame x, z and y axis). For example, the moment of
inertia about the x-axis of the segment frame is:

IO~x = IG~x + md2

where O, G, Ox, Gx are respectively the segment frame center, the segment center of mass,
the axis O~x and G~x, d is the perpendicular distance between the O~x and G~x axis and m the
segment mass. Furthermore, we have:

IG~x = mR2
G~x

with R the radius of gyration relative to the G~x-axis.

The x-axis can be replaced by the y and z axes. Finally, we have:

IO =





IO~x 0 0
0 IO~y 0
0 0 IO~z





The segment mass is computed as in the section 4.3.1 and the length d is computed from
the data contained in the preceding section. The radii of gyration RG(~x,~y or ~z) relative to their
segment longitudinal lengths are given in the table 3.9. The radii of gyration of our lower part
of trunk was not given by De Leva [6]. The following section shows how these radii of gyration
were computed.

Computation of our lower part of trunk raddi of gyration

Our lower part of trunk is composed of the De Leva [6] lower part of trunk (LPT) and the
Zatsiorsky middle part of trunk (MPT ∗). Then we can compute the moment of inertia IG~x on

60 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Segment name RG~x RG~y RG~z

(in %) (in %) (in %)
Lower part of trunk 27.22 26.28 22.6
Right thigh 32.9 14.9 32.9
Right shank 25.5 10.3 24.9
Rigth foot 12.4 25.7 24.5
Left thigh 32.9 14.9 32.9
Left Shank 25.5 10.3 24.9
Left foot 12.4 25.7 24.5
Upper part of trunk 71.6 65.9 45.4
Right shoulder 0 0 0
Right upper arm 28.5 15.8 26.9
Right forearm 27.6 12.1 26.5
Right hand 28.8 18.4 23.5
Left shoulder 0 0 0
Left arm 28.5 15.8 26.9
Left forearm 27.6 12.1 26.5
Left hand 28.8 18.4 23.5
Head 30.3 26.1 31.5

Table 3.9: Radii of gyration RG(~x,~y or ~z) relative to their segment longitudinal lengths (G is the
corresponding segment center of mass). We assume that the shoulder masses are null then the
radii of gyration are set to 0.

the G~x-axis of our lower part of trunk with:

IG~x = ILPT, G~x + IMPT ∗, G~x

= mLPT R2
LPT, G~x + mMPT ∗R2

MPT ∗, G~x

where G is the center of mass of our lower part of trunk, ILPT, G~x and IMPT ∗, G~x are respectively
the moment of inertia of the De Leva [6] lower part of trunk and of the Zatsiorsky middle part
of trunk on the G~x axis. The computation with the corresponding raddi of gyration is valid
because we assume that the center of mass of our lower part of trunk, of the De Leva [6] lower
part of trunk and of the Zatsiorsky middle part of trunk lay on the O~x axis where O is the
origin of our lower part of trunk (i.e the hip joint center middle point).

Then, we can compute the lower part of trunk radius of gyration rG~x relative to its mean
longitudinal length l with:

rG~x =
1

l

√
IG~x

mLPT + mMPT ∗

3.3. DYNAMICAL MODEL 61

The x-axis can be replaced with the y or z axis.

62 CHAPTER 3. A BIOMECANIC MODEL OF A HUMAN : HUMAN36

Chapter 4

Model of a biped robot :
Kondo KHR-1

63

64 CHAPTER 4. MODEL OF A BIPED ROBOT : KONDO KHR-1

4.1 Kinematic Model Definition

4.1.1 Joints definition and zero-position

The joints of the Kondo model are shown on the figure 4.1. The Kondo model has the following
17 joints:

• ankle flexion/extension and internal/external rotation: 2dof ((q2,q1) and (q7,q6));

• knee flexion/extension: 1dof (q3 and q8);

• hip flexion/extension and internal/external rotation : 2dof ((q4,q5) and (q9,q10));

• shoulder flexion/extension and internal/external rotation : 2dof ((q12,q11) and (q15,q14));

• wrist flexion/extension : 1dof (q13 and q16);

• head abduction/adduction: 1dof (q17);

Then, the position vector q is:

q =



















q1
...
q17

q18
...
q20

q21
...
q23
























Articular coordinates






Global translation






Global rotation

The frame between the feet of the model is the reference frame. Its origin is the projection
on the ground of the middle of centers of the ankle joints when the model is in the zero-position
(the position for which q is the null vector, see figure 4.1). Its x-axis is the direction to front
of the model, its y-axis is vertically upward and its z-axis is to the right of the model. In
zero-position, the frames attached to the segments are all oriented as the reference frame and
their origins are the center of the joint of this segment.

The direction of the rotation is normed, the rotation in the frontal plan is positive when the
solid moves away from the sagittal plan, and the rotation in the sagittal plan is positive when
the solid goes in the negative x-axis (see the figure 4.2). For the head, the norm chosen is that
the rotation is positive in the trigonometrical sense in top view.

4.2. TAGS MODEL 65

Tr.

Ro.

(q18, q19, q20)

(q21, q22, q23)

(0, 0, −q14)

(0, q17, 0)

(q15, 0, 0)

(q10, 0, 0)

(0, 0, −q9)

(0, 0, −q8)

(0, 0, −q7)

(q6, 0, 0)

(−q12, 0, 0)
(0, 0, −q11)

(−q5, 0, 0)

(0, 0, −q4)

(0, 0, −q3)

(0, 0, −q2)

(−q1, 0, 0)

(q16, 0, 0)(−q13, 0, 0)

y

x

z

Figure 4.1: Articular notations of Kondo on the left. The notation is (rotation around x,
rotation around y, rotation around z) or (translation along x, translation along y, translation
along z) for the global position (cf Tr.). Zero position in VRML on the right.

4.1.2 Model Lengths

The figure 4.3 gives the 24 mechanical lengths (l(1 . . . 24)) necessary to the construction of the
model. These lengths define the positions of the centers of joint relative to its parent joint and
other lengths used to compute the inertia characteristics of the extremities (hand, foot and
head).

4.2 Tags Model

The figure 4.4 shows the mechanical landmarks corresponding to the tags. The name of the
34 tags are specified in the table 4.1. The model construction needs the position (x, y, z) of
the tags in their attached segment frame (see section 4.1.1 for the definition of these segments
frames).

66 CHAPTER 4. MODEL OF A BIPED ROBOT : KONDO KHR-1

Frontal plan

Sagittal plan

+

+

Figure 4.2: The norm of rotation sense

l(2)

l(1)

l(23)
l(24)

l(25)
l(10)l(3)

l(11)l(4)

l(12)l(5)

l(13)l(6)

l(15)l(8)

l(14)l(7)

l(9) l(16)

l(22)l(19)

l(18) l(21)

l(20)l(17)

Figure 4.3: Zero Position and lengths notations of Kondo

4.2. TAGS MODEL 67

14

24

22
23

20 19

31

34 32 33

25 26

28

30
29

18

17

16

15

1110

12 13 3 4

 1 2

 5

 6

 7

 8

 9

21 27

Figure 4.4: Inclined view of Kondo with tags numbers.

For a given position q, we can compute the tags positions in the reference frame by calling
the Tags function. This function returns a matrix T of (NumberOfTags + 1) rows and 3
columns. The row i (i ≤ NumberOfTags) of this matrix is the position (x, y, z) of the tag
i in the reference frame. The last row (the (NumberOfTags + 1) row) is the position of the
global center of mass of the model. Then, T is of the form:

T =










x0
tag1

y0
tag1

z0
tag1

x0
tag2

y0
tag2

z0
tag2

...
...

...
x0

tagNumberOfTags
y0

tagNumberOfTags
z0

tagNumberOfTags

x0
CenterOfMass y0

CenterOfMass z0
CenterOfMass










where the 0 represents the reference frame. The following example shows the use of the Tags
function:

> exec Load.sci;

> q = zeros(23,1);

> T = Tags(q);

68 CHAPTER 4. MODEL OF A BIPED ROBOT : KONDO KHR-1

H-anim names Tags names Tags number
none right foot heel right 1
none right foot heel left 2
none right foot toe right 3
none right foot toe left 4
Kondo r ankle right foot ankle on foot 5
Kondo r ankleSagittal right foot ankle on leg 6
Kondo r knee right knee 7
Kondo r hip right great trochanter 8
Kondo r hipFrontal right iliac crest 9
none left foot heel right 10
none Left foot heel left 11
none Left foot toe right 12
none Left foot toe left 13
Kondo l ankle Left foot ankle on foot 14
Kondo l ankleSagittal Left foot ankle on leg 15
Kondo l knee Left knee 16
Kondo l hip Left great trochanter 17
Kondo l hipFrontal Left iliac crest 18
Kondo r shoulderSagittal right clavicular 19
Kondo r shoulder right shoulder 20
Kondo r elbow Right arm bone 21
none right fist 22
none right thumb tip 23
none right middle finger tip 24
Kondo l shoulderSagittal Left clavicular 25
Kondo l shoulder Left shoulder 26
Kondo l elbow Left arm bone 27
none Left fist 28
none left thumb tip 29
none left middle finger tip 30
Kondo vc7 neck 31
none nose 32
none left ear 33
none right ear 34

Table 4.1: Correspondence H-anim [1] names / model names and associated tags

4.3. DYNAMICAL MODEL 69

4.3 Dynamical Model

The Kondo weights 1.3 kilogrammes. The segments masses and the position of the centers of
mass (a vector relative to the solid reference) are found from experiment (this experiment is
explained in section 4.3.2).

4.3.1 Segment Masses

The mass of each solid is deduced from the mass of the motor and aluminium pieces (obtained
by weighing), the total robot mass (obtained by weighing too), and approximation of the wires
(80% of the wires mass is located on the trunk, and 10% is located on each thigh).

Solid name Mass (%)
Trunk 40.38

Right hip 0.77
Right thigh 7.69
Right leg 3.85

Right ankle 0.77
Right foot 5.38
Left hip 0.77

Left thigh 7.69
Left leg 3.85

Left ankle 0.77
Left foot 5.38

Right shoulder 0.77
Right arm 3.85
Right hand 5.00

Left shoulder 0.77
Left arm 3.85
Left hand 5.00

Head 3.46

Table 4.2: Segment masses relative to the body mass

4.3.2 Segments centers of mass

We model each solid as a parallelepipedon, in fact we reduce the solid to a motor. The center
of mass is given by one experiment on a motor. In fact, this experiment is very brief. We put

70 CHAPTER 4. MODEL OF A BIPED ROBOT : KONDO KHR-1

the motor on a thin ruler, in the 2 basic axis in 2 plan, and we search the equilibrium position.
It gives the 2 plans of equilibrium, and the intersection gives the position of center of mass.
The result is given on figure 4.5.

Figure 4.5: Position of mass center for motor.

For the solids more complicated as trunk and thigh , we make an approximation with the
different motors present in it (2 for the thigh and 4 for the trunk, the battery is considered on
center).

4.3.3 Inertia computation

We want to know the inertia matrix of each solid. As we said before, the solids are considered
as parallelepipedon. The inertia matrix is known for this kind of geometry. See the figure 4.6.

a
c

b

~y

~x

~z

Figure 4.6: Inertia matrix for parallelepipedon.

4.3. DYNAMICAL MODEL 71

Position of mass center
Segment

~x ~y ~z
Trunk 0 0.5 0
Right hip 0 -0.5 0
Right thigh 0 -0.5 0
Right leg 0 -0.6 0
Right ankle 0 -0.5 0
Right foot 0 0 0.25
Left hip 0 -0.5 0
Left thigh 0 -0.5 0
Left leg 0 -0.6 0
Left ankle 0 -0.5 0
Left foot 0 0 -0.25
Right shoulder 0 0 -0.5
Right arm 0 -0.4 0
Right hand 0 -0.5 0
Left shoulder 0 0 0.5
Left arm 0 -0.4 0
Left hand 0 -0.5 0
Head 0.4 0.6 0

Table 4.3: Different body mass center position in ratio of solid lengths, from the solid reference

Finally, we have:

IG =





IG~x 0 0
0 IG~y 0
0 0 IG~z





where IG~x, IG~y and IG~z are given by :







IG~x =
m × (b2 + c2)

12

IG~y =
m × (a2 + c2)

12

IG~z =
m × (a2 + b2)

12

72 CHAPTER 4. MODEL OF A BIPED ROBOT : KONDO KHR-1

4.3.4 VRML representation

A 3D visualization is available in VRML. It needs on input the articulations values and the
vrml geometry file and creates a realistic animation. The names of solids and articulations are
showen on figure 4.7.

Figure 4.7: VRML model, in zero position, with names and positions of joints

Chapter 5

Simulation

73

74 CHAPTER 5. SIMULATION

5.1 Introduction

HuMAnS is a simulator of the ”Event Driven” type. The dynamic system is handled as an
ordinary differential equations broken by evenments as impacts or unstickings of the constraints,
actuation events...

The ordinary differential equation integration with handling of evenments is implemented
in the simulation function which is the main procedure of HuMAnS is located in the Kernel

directory. This simulation function needs that the user specifies the initial and final time of
the simulation, the sampling period and the initial state of the system. Then it returns the
times of the sampling, the positions, the velocities and the corresponding states (z, Actuation
and Contact).

So the simulation call is of the following form:

[T, Q, QDOT, Z, ACTUATIONSTATE, CONTACTSTATE] = ...

Simulation(InitialTime,FinalTime,SamplingPeriod,InitialPosition,InitialVelocity)

ActuationState,
ContactState,

z.

representing the system dynamic.

no

Loop

t ≥ FinalT ime?

END

Initialisations of

yes

t = t + SamplingPeriod

yes no

Handling of

actuations
contacts and

events

Events
detected?

of the ordinary differential equation

t = InitialT ime

Integration on [t ; t + SamplingPeriod]

Stopping time

Figure 5.1: Simulation procedure scheme

The figure 5.1 describes the simulation function. After an initialization of the different
state variables, it makes a loop in which it integrates between two sampling times the differential

5.2. DESCRIPTION OF THE ORDINARY DIFFERENTIAL EQUATION CORRESPONDING TO THE DYNAMIC SYSTEM75

equation corresponding to the dynamic system. If events occur, the integration stops, the
simulator handles these events and restarts the integration at the stopping time. If no events
occurs, the simulator restarts the integration at the next sampling time. And so on until the
final time is reached.

5.2 Description of the ordinary differential equation cor-

responding to the dynamic system

We recall that the dynamic system can be considered as an ordinary differential equation
succession broken by events. Then, the dynamic system can be written in the form:

ẋ = f(t, x)

where t is the time and x the state vector:

x =





q
q̇
z





5.2.1 The CompleteDynamics function

In the simulator, the function f is the CompleteDynamics function. The call to this function
is:

[xdot] = CompleteDynamics(t, x)

were x, xdot and t are respectively the system state vector, the system state vector differential
and the time.

The CompleteDynamics function computes the system state vector differential in two steps:

• first the ActuationDynamics function computes the z differential ż and the Torques;

• then, the LagrangianDynamics function computes the acceleration q̈ from these Torques
and contact state.

So the CompleteDynamics function returns the system state vector differential:

ẋ =





q̇
q̈
ż



 = CompleteDynamics(t, x).

76 CHAPTER 5. SIMULATION

5.3 Integration of the dynamic system and events detec-

tion

5.3.1 The ode function

The simulator integrates this differential equation with the scilab function ode used with the
root option. This function with this option uses an ordinary differential equation solver with
roots’ detection. This solver is the lsodar solver of the ODEPACK package. It is a variable
time and order solver: the user specifies the times at which he wants the solution to be computed
but in fact the solver computes in internal way a variable optimal step.

The general call to this function with this option is of the form:

[x, DetectedEvents, w, iw] = ode(’root’, x0, t0, T, f, ng, g, w, iw);

where:

• the string root signifies that ode computes the solution of the differential equation ẋ =
f(t, x) until the state x(t) crosses the surface g(t, x) = 0;

• x0 is the initial condition;

• t0 is the initial time;

• T the times at which the solution is computed;

• f the function which define the differential equation;

• g is a function of syntax y = g(t, x) with y a vector of size ng, the goal being to cancel
out one of its component;

• w and iw are optionnal vectors for storing information returned by the integration routine.
When these vectors are provided in parameters of ode the integration re-starts with the
same parameters as in its previous stop;

• DetectedEvents is a vector which gives us the stopping time and which component of g
were canceled.

In the Simulation function, the differential equation is integrated from each sampling time
to the next sampling time and the function g corresponds to the events.
Futhermore, two calls to the ode one are made according to the WarmStart flag:

5.3. INTEGRATION OF THE DYNAMIC SYSTEM AND EVENTS DETECTION 77

1. If WarmStart is at False, either it is the first call to the ode function, or changes in actua-
tion (contractile switchs, clock ticks, states or pwi changes in StaticCalciumKneeMuscles

and StaticCalciumRightKneeMuscles modules and application of commands in the case
of BipActuators module) or in contact (lift-off or impacts) appeared since the last han-
dling of events. Then the optionnal parameter w and iw in the ode function are not
used;

2. If WarmStart is at True, neither events were detected at the preceding sampling period
nor changes in actuation or contact appeared since the last handling of events. Then
we can restart the integration with the same parameters as in its previous stop and the
parameter w and iw are used.

If an event is detected during the sampling period, the corresponding component of g reaches
or crosses zero. In HuMAnS, the function g is the EventDetection function located in the
Kernel directory.

5.3.2 The EventDetection function

The EventDetection function is used by the ode function to detect when an event occurs in
order to handle it before restarting the integration of the ordinary differential equation. The
call to this function is of the form:

[Events] = EventDetection(t, x)

where x is the system vector state computed by the ode function at time t and Events is a nu-
meric vector containing informations about contact and actuation events (see section Contacts
and Actuation State).

This function calls the ContactEventDetection and ActuationEventDetection functions
to detect these events. Then, the Events variable is of the form:

Events =

(
informations about contacts

informations about actuations

)

Then, if a component of the Events variable reachs or crosses zero, the integration of the
ordinary differential equation stops and events are handled.

5.3.3 The Event Handling

If events are detected, the simulator must handle them and call the ContactEventHandling or
the ActuationEventHandling functions according to the type of the events. If the ContactEventHandling
function is called and if impacts or lift-off appeared, or joints limits were reached (then WarmStart
has been set to False), the ActuationStateReset function is called in order to update the
ActuationState variable. For more informations, see the paragraph ??.

78 CHAPTER 5. SIMULATION

Chapter 6

Contacts and Actuations

79

80 CHAPTER 6. CONTACTS AND ACTUATIONS

6.1 The different states in HuMAnS

The states in HuMAnS are of three types:

• contact state;

• actuation state;

• forces state.

The last type (z variable in HuMAnS) is used only in the case of simulation with muscles
model.

The contact state (ContactState variable in HuMAnS) describes the state of the different
contacts. The contacts are points of contact which can touch their environment but cannot
penetrate it or an joint which cannot exceed joints limits.

The actuation state (ActuationState variable in HuMAnS) gives informations about every-
thing connected to the actuation as voltage commands in the case of the robot Bip, or impulses
to send in muscles in the case of human, or at which times to send these impulses or times to
call again the control law...

The contact and the actuation are respectively handled by the LagrangianDynamics and
the ActuationModel modules.

6.1.1 z State in the simulation with muscle model

Currently, the z variable is used only by the FESSitToStand and FESSwingUp applications.
The z State contains the stiffnesses kc of the muscles contractile component (see the para-

graph ??) and the forces Fc exerced by these contractile components. If we keep the notations
of the paragraph ??, we have:

z =
[kc] l Nmuscles
[Fc] l Nmuscles

6.1.2 Contact states in the different applications

Only two types of contacts are implemented in HuMAnS:

• contact between points defined in the lagrangian model and the environment;

• contact in the sense of joint limit.

6.1. THE DIFFERENT STATES IN HUMANS 81

Contact between points and environment
This type of contact is implemented in the BipOneStep, ChairSitToStand, SpaceWalk and

FESSitToStand applications. For each contact points, we check if the distance between this
contact point and the environment is less than

√
eps. If it is the case, the corresponding com-

ponent in the ContactState vector will be True. If not, it will be False. Then, ContactState
is a column vector of boolean of size the number of contact. The figure 6.1 shows two positions,
one implying contact and an other one with no contact.

���
���
���
���

���
���
���
���

d1 d2 d2

d1

d2 √
eps

Figure 6.1: There is no contact for the left robot and there is contact for the center and right
robot

Contact in the sense of joint limit
These type of contact is implemented in the FESSwingUp application. For each articulation,

82 CHAPTER 6. CONTACTS AND ACTUATIONS

we see if the body segment is in the limits ie the angle between it and its limits positions
is greater than

√
eps. If it is the case, the corresponding components in the ContactState

vector will be set to False. If not, we check for which limit this condition is not fulfilled and
the corresponding component in the ContactState vector will be set to True while the one
corresponding to the other limit will be set to False. The figure 6.2 shows different contacts
on the right knee appearing in the FESSwingUp application.

ContactState =

(
False
True

)

ContactState =

(
False
False

)

ContactState =

(
True
False

)

√
eps

α1

α2

α1
α2

√
eps

Figure 6.2: There is contact for the left and right human and there is no contact for the center
robot

6.1.3 Actuation states in the different applications

ActuationState in NoDynamics module
The NoDynamics module is used by the ChairSitToStand and the SpaceWalk applications.

The ActuationState variable is a vacuum vector.

6.1. THE DIFFERENT STATES IN HUMANS 83

ActuationState in StaticCalciumKneeMuscles module
The ActuationState variable has a variable size, but is always of the following form:

[Sε̇c
] l Nmuscles

[State] l Nmuscles
[pwi1] l Nmuscles
[Clock] l Nmuscles
[t1] l 1
[t2] l 1
[pwi2] l Nmuscles
[t3] l 1
[pwi3] l Nmuscles

[
...]

[StoppingTest] l 1

The different variables have the following meaning:

• Sε̇c
corresponds to the contractile switchs. It is the sign of εc and then it tells us if the

corresponding muscle is in contraction or in extension. Because it is a sign, it can only
take the values 1 (extension) and −1 (contraction). The size of the Sε̇c

vector is the
number of muscles. This sign is computed with the following formula:

Sε̇c
= sign(ksL0ε̇ + Fc|u| − αF0|u|+)

• State : Exp corresponds to the state of the command signal (see figure 1.1). It corresponds
to the calcium concentration. Then it can take for each muscle the values 0 (there is no
calcium), 1 (the calcium rate decreases) and 2 (the calcium rate is at its maximum). The
size of the State : Exp vector is the number of muscles.

• pwi1 is the product of the width pw and intensity i of the impulse applied at the actual
time.

• Clock contains the times at which the calcium rates will change of state. It is a vector of
size the number of muscles.

• t1 is the time at which the control law must be called again.

• The following t2 and pwi2 parts are the time t2 at which to send the impulse described by
the pwi2 product. The time t2 is of the form t + τ with t the time at which this impulse
has been computed and τ the time needed by this impulse to be really effective. These
parts are optionnal and are successively stored and unstored. The t3 and pwi3 parts have
the same meaning. These optionnal parts form a stack.

84 CHAPTER 6. CONTACTS AND ACTUATIONS

• The StoppingTest variable allows the simulator to know when the stack ended. Its values
is InitialT ime − 1.

ActuationState in BipActuators module
The ActuationState variable in BipActuators module is a column vector of size 2 + 2 ∗

NMotors + NDDL with NMotors the number of motors, that is the number of joints. The
ActuationState variable is of the form:

ActuationState =

[t1] l 1
[t2] l 1
[V oltage1] l NMotors
[V oltage2] l NMotors
[q] l NDDL

The roles of the ActuationState parts are the following:

• The first ActuationState component t1 is the time at which the control law must be called
again. This call is made every ControlPeriod periods. ControlPeriod is a data given by
the user in the application script.

• The second component t2 is the time at which the previously computed voltage must be
applied. In fact, in real experiments, there is a delay between the computation of the
command and its effective application.

• The V oltage1 part is the voltage to send to motors at actual time.

• The V oltage2 part stocks the voltage computed to send it to the motors when t2 is reached,
that is to say that a ControlDelay period will be elapsed.

• The q part allows us to compute the gear ratios at each time. But as the gear ratios
slow down the simulation a lot, they are computed always with the same position q which
corresponds to the initial position.

6.2 Initialization of state variables

The ContactState and ActuationState variables initialization is made respectively by the
ContactInitialisation and ActuationInitialisation functions.

6.2.1 Contact states initialization in the different applications

The ContactState variable is initialized as it is explained in the paragraph 6.1.2.

6.3. DETECTION OF STATE CHANGES IN HUMANS 85

6.2.2 Actuation states initialization in the different applications

The ActuationInitialisation functions initialize not only the ActuationState variable but
also the z variable.

The call to the ActuationInitialisation function is made in the following form:

[State, z] = ActuationInitialisation(t, q, qdot)

with State the ActuationState variable.
The general scheme of this initialization is to call the ActuationEventHandling func-

tion with an Events vector set to False excepted for the components corresponding to the
flag given by the call to the ControlLaw function (see below the paragraph 6.4.2 on the
ActuationEventHandling function). Then an impulse to send to the muscles or a voltage
to send to the motors is computed and stored in order to apply it when the delay would be
elapsed.

The only differences between the ActuationInitialisation functions of all modules are
the following:

• In BipActuators module, the ActuationState is updated a second time after the call
to the ActuationEventHandling function in order to send the impulsion at initial time
(without any delay).

• In NoDynamics module, the ActuationState variable remains a vaccum vector during the
whole simulation. So the ActuationInitialisation does nothing.

6.3 Detection of state changes in HuMAnS

In order to deals with the changes of state, we must detect these changes. This detection is made
by the EventDetection function in Kernel directory which calls the ContactEventDetection

and the ActuationEventDetection functions.

6.3.1 Detection of change of contact state in the different applica-
tions

The call to the ContactEventDetection functions is made in the following form in all modules:

[Events] = ContactEventDetection(t, x, ContactState)

where Events is explained below and t, x and ContactState are respectively the actual time,
the actual system state and the preceding contact state.

The ContactEventDetection functions return a column vector containing

86 CHAPTER 6. CONTACTS AND ACTUATIONS

• for each points of contact either the distance between the contact point and its environ-
ment increased by

√
eps if the contact point was not in contact with this environment at

the preceding time, or the distance between the contact point and its environment if the
contact point was in contact with it at the preceding time. These distances d1 and d2 for
two contacts points are shown on figure 6.1.

• or, in the case of joints limits, the angle between the articulations and the limits of these
articulations if there was contacts at preceding time, or the angle between the articulations
and the positions defined by an angle of

√
eps from the limit positions if there was not

contacts at the preceding time. These angles α1 and α2 for the knee are shown on figure
6.2.

The size of this column vector is the number of possible contacts.

6.3.2 Detection of change of actuation state in the different appli-
cations

The ActuationEventDetection functions of all modules (excepted in the NoDynamics module
which is treated below) return an Events vector which has a base part corresponding to the
times at which the control law must be called and to the delay before the application of the
voltage command.

The call to the ActuationEventDetection functions is made in the following form in all
modules:

[Events] = ActuationEventDetection(t, x, State)

where Events is explained in the below paragraphs and t, x and State : Exp are respectively
the actual time, the actual system state and the preceding actuation state.

Detection of ActuationState changes in NoDynamics module
The ActuationState variable remains a vacuum in this module. Then no change appears and

the ActuationEventDetection function does nothing.

Detection of ActuationState changes in StaticCalciumKneeMuscles and StaticCal-
ciumRightKneeMuscles modules

The Events vector is a numeric column vector of size 2Nmuscles + 2. If t is the actual time
and Sε̇c

and Clock the parts of the preceding ActuationState, Events is given by:

Events =

[ksLc0 ε̇ + Fc|u| − αF0|u|+ +
√

epsSε̇c
] l Nmuscles

[t − Clock + 102eps] l Nmuscles
[t − t1] l 1
[(t − t2) or (t − StoppingTest)] l 1

6.4. HANDLING OF STATE CHANGES IN HUMANS 87

• The first part of Events corresponds to the detection of contractile switches. If the
ksLc0 ε̇ + Fc|u| − αF0|u|+ expression crosses zero, its sign changes and the muscle is con-
tracting or stretching itself;

• The second part corresponds to the detection of clock ticks. If the state of the calcium
concentration changes, there is a clock tick;

• The t − t1 part allows the simulator to know if the control law must be called or not;

• The last part corresponds to the unstorage of the stack. If there is not any stack, the
Events last component value is t − StoppingTest and is always positive and then does
not cross zero and no detection is made. If there is a stack, this value is t− t1 and test if
the impulse’s delay is elapsed or not.

Detection of ActuationState changes in BipActuators module
The Events vector is a numeric column vector of size two. If t is the actual time, Events is

given by:

Events =

(
t − ActuationState(1)

t − ActuationState(2) + 102eps

)

The first component corresponds to the ControlPeriod period. It contains the remaining
time to go to the time at which the control law must be called again. If this time is reached or
exceeded, there is detection of actuation state change.

The second component corresponds to the ControlDelay period. In fact, in real experiments
there is a delay between the computation of the voltage and the real application of this voltage
command. So the simulator computes at t1 the command for the time t1 + ControlDelay and
really applies it at time t1 + ControlDelay. The ActuationState(2) is this last time. Then the
second component of the Events vector will cross zero when the time will reach this last time
and we will have an actuation state change.

6.4 Handling of state changes in HuMAnS

The functions handling the state changes are the ContactEventHandling and the ActuationEventHandling
functions.

6.4.1 Handling of contact state changes in the different applications

The call to the ContactEventHandling function in all modules is:

[Newx, NewState, WarmStart] = ContactEventHandling(t, x, Events, OldState)

88 CHAPTER 6. CONTACTS AND ACTUATIONS

where Newx and x are the next and the actual vector state, NewState and OldState are
the next and the actual ActuationState , t is the actual time and Events is a boolean vector
corresponding to the actuation state changes.

The WarmStart variable is changed in the ContactEventHandling functions:

• in the Complete and SitToStand directories, WarmStart is set to False if impacts or
lift-offs occurred;

• in the RightKneeOnly directory, WarmStart is set to False if the right knee joint reached
one of its limits.

The ContactEventHandling functions are in the same form in all directories. They update
the ContactState variable and if an impact occured, they call the ImpactLaw function which
computes the velocity after the impact. If this function is very simple, it is implemented in the
ContactEventHandling function itself as it is the case in the StaticCalciumRightKneeMuscles
and StaticCalciumKneeMuscles directories.

The ImpactLaw function
...

6.4.2 Handling of actuation state changes in the different applica-
tions

The call to the ActuationEventHandling function in all modules is:

[Newx, NewState, WarmStart] = ActuationEventHandling(t, x, Events, OldState);

where Newx and x are the next and the actual vector state, NewState and OldState are
the next and the actual ActuationState , t is the actual time and Events is a boolean vector
corresponding to the actuation state changes.

Handling of ActuationState changes in NoDynamics module
The ActuationState variable is always a vacuum vector. So the ActuationEventHandling

function does nothing.

Handling of ActuationState changes in StaticCalciumKneeMuscles and StaticCal-
ciumRightKneeMuscles modules

As for the actuation state changes detection, the four following cases are treated:

1. First case: contractile switches appeared for some muscles.

6.4. HANDLING OF STATE CHANGES IN HUMANS 89

2. Second case: clock ticks appeared for some muscles.

3. Third case: a time NextT ime is elapsed since the last call of the control law. Then, we
must compute the new impulse to send in muscles.

4. Fourth case: the delay τ between the computation of the command and its effects on the
muscles is elapsed. The impulse must be applied.

First case:

In this case, the simulator must update the sign of ε̇c in ActuationState. Then the compo-
nents of Sε̇c

corresponding to the muscles that had contractile switches are multiplied by −1.
The Warmstart variable is set to False

Second case:

In this case, clock ticks appeared. Then the state of the signal command (or of the rate of
calcium) changed and the pwi1 to send to muscles too. Then we must update the State : Exp,
the pwi1 and the Clock parts of ActuationState. The ActuationState becomes:

[Sε̇c
]

[State − 1 for the concerned muscles]
[pwi1 ∗ (State − 1) for the concerned muscles]
[t + τ2(2(State − 1) − 1) for the concerned muscles]
[t1]
[t2]
[pwi2]
[t3]
[pwi3]

[
...]

[StoppingTest]

with State : Exp, Sε̇c
, pwii (i = 1, 2, 3), ti (i = 1, 2, 3) and StoppingTest the parts of the

preceding ActuationState. The changes are in bold.
WarmStart is set to False.

Third case:

In this case, a NextT ime time is elapsed since the last call to the control law. Then the
simulator calls this function to compute a new impulse. The ControlLaw function returns the
pwi and NextT ime variables. The pwi describes the impulsion and the NextT ime is the time
to wait before calling again the control law. This new impulse will be applied after a delay τ .

90 CHAPTER 6. CONTACTS AND ACTUATIONS

Then it is stored at the end of the stack. The part corresponding to the control of the periodic
calls to the control law function is updated too. So the ActuationState becomes:

[Sε̇c
]

[State]
[pwi1]
[Clock]
[t + NextTime]
[t2]
[pwi2]
[t3]
[pwi3]

[
...]

[t + τ]
[pwi]
[StoppingTest]

with t the actual time. The changes are in bold.
WarmStart is set to True.

Fourth case:

In this case, the delay to send the impulse is elapsed. Then it must be applied to the
concerned muscles. So for the concerned muscles,

• the State : Exp of the signal command becomes 2;

• the pwi1 corresponding to these muscles are updated with the one contained in the stack;

• the clocks ticks corresponding to these muscles are set to t + τ1 (with t the actual time)
because the signal commands are in state 2.

And this impulse is removed from the stack. So the new ActuationState is:

[Sε̇c
]

[State = 2 for the concerned muscles]
[pwi1 = pwi2 for the concerned muscles]
[Clock = t + τ1 for the concerned muscles]
[t1]
[t3]
[pwi3]

[
...]

[StoppingTest]

6.4. HANDLING OF STATE CHANGES IN HUMANS 91

with t the actual time. The changes are in bold.
If a state or a pwi product changes occurred, then WarmStart is set to True. If not,
WarmStart is set to False.

Handling of ActuationState changes in BipActuators module
The ActuationEventHandling function treats the two following cases:

1. first case: a ControlPeriod time is elapsed since the last call to the control law. So we
must compute the new voltage to send to the motors.

2. second case: a ControlDelay time is elapsed since the last computing of the command.
This last one must be really applied.

First case:
In this case, the simulator compute a new command to send to the motors. It is made in

three steps:

1. first, the BipSensors function is called to simulate the Bip sensors. This function returns
the articular variables q1(given by the motors) and the six forces on the feet at time t.

2. Then the ControlLaw function is called to compute the voltage to send to the motors at
time t + ControlDelay.

3. Finally, the ActuationState is modified:

• The first component is increased of ControlPeriod to know the next time at which
to call the control law;

• The second component is the actual time increased of ControlDelay to know the
next time at which to apply the computed voltage;

• The V oltage1 part is unchanged. The last command must remain applied for a
ControlDelay period;

• The V oltage2 part is updated with the computed voltage.

• and the last part of ActuationState is unchanged.

Second case:

In this case, the simulator updates the ActuationState variable in order to apply the com-
mand computed at time t−ControlDelay. The ActuationState variable is modified as follow-
ing:

92 CHAPTER 6. CONTACTS AND ACTUATIONS

• The second component is decreased of ControlDelay;

• The voltage computed at time t − ControlDelay must be applied. Then, the V oltage1

part of ActuationState is updated with this computed voltage;

• The other parts remain unchanged.

The WarmStart variable is modified in the two cases. In the first one, it is set to True and
in the second one, to False.

6.5 The ActuationStateReset function

In the main procedure of HuMAnS (the simulation procedure), when an event on the con-
tact occurs, the ContactEventHandling function is called and then the ActuationStateReset
is called or not depending on the WarmStart flag returned by the ContactEventHandling

function (see paragraph ??).
If this flag is at False, ie if impacts, lift-offs or joints limits reaching occurred, the ActuationStateReset

is called. If not, this function is not called.
The ActuationStateReset function call is of the form:

[NewState] = ActuationStateReset(t, x, OldState)

where x is the system state vector at the time t, OldState and NewState respectively the old
and new actuations state.

The ActuationStateReset function does nothing in the BipActuators and NoDynamics

modules.

ActuationStateReset in StaticCalciumRightKneeMuscles and StaticCalciumKneeMus-
cles modules

A knee joints limits has been reached. Then, the velocity of the knee articulation has changed
and then the elongation differential too. Then...

Chapter 7

Position Observer

93

94 CHAPTER 7. POSITION OBSERVER

7.1 Position Observer

The BIP robot does not have any sensors giving him his global position and orientation q2. An
observer was created in order to reconstruct these position and orientation from the articular
position q1 and the feet sensors.

This observer uses the RightFootObserver, LeftFootObserver, SuspensionObserver,
RightFootJacobian, LeftFootJacobian and SuspensionJacobian functions. These functions
are linked in scilab from C-files of same names. They are generated from the maple files in the
ObserverGeometry/MapleCodeGenerator repertory.

1. The RightFootObserver function returns a vector of size 6 that specify the position of
the right foot. This vector is:

RightFoot(q) =











x1

x2

y1

y2

y4

z1











where (xk, yk, zk) is the position of the tag k in absolute frame. This vector specifies the
complete position of the right foot.

2. The RightFootJacobian function gives the jacobian of the RightFootObserver function.
Then, it returns a matrix of size 6 × NDDL.

3. As the RightFootObserver function, the LeftFootObserver and the SuspensionObserver
functions specify respectively the complete position of the left foot and the suspension
attach. Their values are:

LeftFootObserver(q) =











x11

x12

y11

y12

y14

z11











and SuspensionObserver(q) =











x22

x23

y22

y23

y25

z22











The LeftFootJacobian and SuspensionJacobian are respectively the jacobians of the
LeftFootObserver and SuspensionObserver functions.

The q2 computation depends on the state of the contact. It uses the following global
variables: observateur q, observateur droit, observateur gauche and observateur actifs.

7.1. POSITION OBSERVER 95

1. observateur q corresponds to the observation of q at the last call of the Observer function.
The time between two calls is the minimum of ControlPeriod and sampling time. So
the observateur q is a good initialization to find the new q2.

2. observateur actifs is a vector of two components. The first one (resp. the second one)
is the sum of the force on the right (resp. left) foot measured by the feet sensors at the
last call of the Observer function.

3. observateur droit and observateur gauche specify respectively the right and left foot
position at the last call of the Observer function.

According to the state of the contacts, either one or the other of these global variables are
used as reference.

At the first call of the Observer function, the global variables do not exist. So, they must
be initialized. We suppose that the initial position of the robot is known and is in the air, and
then we know the values of observateur suspendu. So we use the suspension as reference to
initialize the observateur q variable. The observateur actifs is initialized with the feet sensors
and the observateur droit and observateur gauche variables are not initialized.

After this initialization and when the Observer function is called again, the global position
and orientation q2 is computed as following. If the right foot is well on the ground, it is used
as reference to compute the global position. Indeed, if the right foot is well on the ground, it
did not move between the preceding call and the present call and then we can minimize the
distance between its preceding position (given by observateur droit) and its present position
(given by RightFootObserver) to compute the global q. A foot is considered to be well on
the ground when the sums of the forces on it at the time the Observer function is called and
just before this time are both greater than 400??(40N?). If the right foot does not fulfill these
conditions, the left foot is used as reference if it fulfills them. And if neither the right foot nor
the left one are well on the ground, the robot is considered well in the air and so the suspension
is used as reference.

Then, if a foot has just layed on the ground, his reference position (observateur (droit or gauche))
is reinitialized. If it is the first foot to come on the ground, the observateur (droit or gauche)
is precomputed: it corresponds to the position q = 0. If not, we used the RightFootObserver

or the LeftFootObserver functions to compute the position of the foot.
The observateur actifs is reinitialized only if a foot comes well on the ground or if it rises

from the ground.
Finally, the velocity q̇ is computed with a simple difference between the global q founded

and the one computed at the preceding call to the Observer function.

96 CHAPTER 7. POSITION OBSERVER

Chapter 8

The Task Function and its inverse

97

98 CHAPTER 8. THE TASK FUNCTION AND ITS INVERSE

8.1 The Task Function and its inverse

The files concerning the task function are in
ActuationModel/BipActuators/TaskFunctionControl/TaskFunctionDefinition directory.
These files are: TaskFunction.c, TaskJacobian.c and TaskNLEffects.c.

8.1.1 Generation of the C files

These C files are generated by the maple files contained in the MapleCodeGeneration directory.
The AdditionnalData.maple, DynamicData.maple and KinematicData.maple files are
the same than those located in the LagrangianModel/MapleCodeGeneration directory.

The TaskGeneration.maple file contains three procedures (among others) which generate
the C-files TaskFunction.c, TaskJacobian.c and TaskNLEffects.c. These procedures are
TaskFunctionVector, TaskJacobianMatrix and TaskNLEffects. They are explained below.

TaskFunctionVector procedure

TaskFunctionVector() returns a vector Q(q) of size NDDL and uses the following procedures:

• the FrameMatrixInPelvisFrame procedure. FrameMatrixInPelvisFrame(k) is the lin-
ear mapping from the pelvis frame (frame 6) to the frame k.

• the TagPositionInPelvisFrame procedure. TagPositionInPelvisFrame(k) is the po-
sition of tag k in the pelvis frame.

• the COMPositionInPelvisFrame procedure. COMPositionInPelvisFrame(k) is the po-
sition of the center of mass in the pelvis frame.

The table 8.1.1 gives the result of the TaskFunctionVector procedure. In this table, the
notations xP

G, yRF
16 and zLF

18 mean respectively the x coordinate of the center of mass in the
pelvis frame (P), the y coordinate of the tag 16 in the frame of the right foot (RF) and the z
coordinate of the tag 18 in the frame of the left foot (LF).

In scilab, the TaskFunction is called in the following form:

[s] = TaskFunction(q)

where s is the position vector of the robot in the task space and q the articular position. These
two vectors are column vectors of size NDDL.

8.1. THE TASK FUNCTION AND ITS INVERSE 99

Q1...3 {zP
G − zP

5 , yP
5 − yP

G, xP
G − xP

5 } ????

Q4...6 {zP
G − zP

10, y
P
10 − yP

G, xP
G − xP

10} ????

Q7...9 {xRF
16 − xRF

17 , zRF
17 − zRF

16 , zRF
18 − xRF

16 } Trunk orientation in the right foot frame.

Q10...12 {xLF
16 − xLF

17 , zLF
17 − zLF

16 , zLF
18 − xLF

16 } Trunk orientation in the left foot frame.

Q13...21 q13...21

Table 8.1: Position vector of the robot in the task space.

TaskJacobianMatrix and TaskNLEffects procedures

The TaskFunctionVector procedure gives a vector Q(q). The successive differentials of this
vector are:

Q̇(q, q̇) = H(q)q̇ (8.1)

Q̈(q, q̇, q̈) = H(q)q̈ + h(q, q̇) (8.2)

with H(q) = ∂Q/∂q the jacobian matrix of Q, and h(q, q̇) the other terms appearing in the
differential.

The TaskFunctionJacobianMatrix and the TaskNLEffects procedures return respectively
the matrix H(q) and the vector h(q, q̇).

These procedures are used in the GenerateTask function to generate respectively the Task-
Jacobian.c and the TaskNLEffects.c files.

In scilab, the TaskJacobian and the TaskNLEffects functions are called in the following
forms:

[H] = TaskJacobian(q)

[h] = TaskNLEffects(q, qdot)

where H and h are respectively a square matrix of size NDDL×NDDL and a column vector
of size NDDL.

100 CHAPTER 8. THE TASK FUNCTION AND ITS INVERSE

8.1.2 The InverseTaskFunction function

The InverseTaskFunction.sci function is located in the \ActuationModel/BipActuators/TaskFunctionControl
directory and computes the inversion of the function TaskFunction.

Its call in scilab is of the form:

[q, erreur] = InverseTaskFunction(TaskValue)

where TaskV alue parameter is the position of the system in the task space and q is the
position of the system such as Taskfunction(q) = TaskV alue.

8.2 Trajectory Generation

The OneStepTrajectoryGeneration.sci script creates the file OneStep.traj3 which con-
tains the informations about the trajectory that the robot must follow.

The OneStepTrajectoryGeneration.sci script uses the WriteTrajectoryFile function
to create and to write the file OneStep.traj3. We’ll see later how is the format .traj3.

8.2.1 WriteTrajectoryFile function

The call to the WriteTrajectoryFile function is :

[] = WriteTrajectoryFile(name, positions, data)

where name is a string which will be the name of the trajectory file (with its path from HuMAnS
repertory), positions is a matrix of positions of size (NDDL× (number of positions)) and data
is a row vector of size NDDL containing informations about the positions corresponding to
the columns of the matrix positions.

For example, the name is ’ActuationModel/BipActuators/TaskFunctionControl/OneStep’

The positions matrix alternate stable and intermediate positions. The stable ones must be
reached with zero velocity and acceleration while the intermediate ones are reached with any
velocity and acceleration. The positions matrix must begin and finish with stable positions.
Then, it is in the form:

((
stable

position

) (
intermediate

position

) (
stable

position

)

. . .

(
intermediate

position

) (
stable

position

))

The data vector contains informations about the positions of the positions matrix. The
component associated with stable positions are the times at which these positions are reached.
The ones associated with intermediate positions are informations about the contact state. It
can take an integer values between 1 and 5. The table 8.2.1 gives the meaning of these values.

8.2. TRAJECTORY GENERATION 101

1 simple support right foot

2 simple support left foot

3 double support

4 simple support suspension

5 transition between double support and simple support

Table 8.2: Meaning of the informations about contact.

8.2.2 .traj3 format

A part of the OneStep.traj3 file is shown on figure 8.2.2. The ”Nombre de points”,
”Temps et contacts” and the ”Coordonnees points” informations are respectively the num-
ber of positions in the positions matrix above, the data vector above and the transposition of
the positions matrix.

8.2.3 ReadTrajectoryFile function

The ReadTrajectoryFile function returns the positions matrix and the data vector above. It
is called by:

[positions, data] = ReadTrajectoryFile(nom)

The ReadTrajectoryFile and the WriteTrajectoryFile are respectively the results of the
linking of the lecture_traj3 and ecriture_traj3 function in the TrajectoryFilesTools.c
file.

102 CHAPTER 8. THE TASK FUNCTION AND ITS INVERSE

Trajectoire format traj3

Nombre points

33

Temps et contacts

0 4 1 5 2 3 3 3 4.2 5 4.6 1 5.8 5 6.2 3 8.6 5 9 2 10.2 5 10.6 3 11.8 3 12 3 13 5 14 4 15

Coordonnees points

0 0.787 -0.11 0 0.787 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.802 -0.11 0 0.802 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.817 -0.11 0 0.817 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.817 -0.11 0 0.817 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

.

.

0 0.817 -0.11 0 0.817 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.802 -0.11 0 0.802 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0.787 -0.11 0 0.787 0.11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 8.1: Part of the OneStep.traj3 file

Chapter 9

Reconstruction from Optical Sensors

103

104 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

9.1 Introduction

After a quick Getting Started to show an example of the reconstruction from optical sensors
(section 9.2), an overview of the theory of the reconstruction from optical sensors is made in
section 9.3. Then, a global view of the functions used in the reconstruction process is made
in the section 9.4. The model used in the reconstruction process is described in section 9.5.
Finally, all the scripts used by the reconstruction process are explained in the section 9.6.

9.2 Getting started

The following instructions allow the user to quickly launch an example of a movement recon-
struction from optical sensors. A movement is defined as a succession of postures.

1. Open Scilab, go to the HuMAnS/Tools/Reconstruction/OpticalSensors directory and
launch the MenuReconstruction script:

> chdir(’PathOpticalSensorsDirectory’)

> exec MenuReconstruction.sci;

where PathOpticalSensorsDirectory is the absolute path of the
HuMAnS/Tools/Reconstruction/OpticalSensors directory.

A menu window appears. The figure 9.1 shows this menu window.

2. Then, click on the “Launch the reconstruction” button. The reconstruction of a
movement contained in a data file is launched. The figure 9.2 shows the scilab window.

After a while, the reconstructed trajectory (that is to say the succession of postures
composing the movement) is compared to the measured 3D positions of the set of markers
used by an animation on a graphic window (figure 9.3). These 3D positions have been
linked by straight lines in order to make the visualization easier.

9.3 Reconstruction from optical sensors theory

After an overview of the reconstruction process, we will remind some notations used. Then, we
will explain the theory of the reconstruction process.

9.3. RECONSTRUCTION FROM OPTICAL SENSORS THEORY 105

Figure 9.1: Menu window for the reconstruction

Figure 9.2: Execution of the MenuReconstruction.sci script

106 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

Figure 9.3: Comparison between the reconstructed trajectory (purple model) and the observed
3D positions of the set of markers linked by straight lines (black model). We see only one
posture on this window but what we would really get on screnn is an animation drawing the
successive postures composing the movement, that is why we talk about trajectory.

9.3.1 About the reconstruction

Only one category of motion sensors have been modeled: optical sensors such as ViconTM

or OptotrackTM devices1. But the toolbox provides algorithms to derive new models of motion
sensors if necessary.

The optical sensors are supposed to give the 3D position of a set of markers attached to
different parts of the body. Therefore their ouptut depend solely on the position and orientation
of the different joints of the body. The Human36 model implemented in the Reconstruction

module proposes 28 canonical markers, as shown on the figures ?? and ??, which are sufficient
to reconstruct completely the posture. These canonical markers are placed on some anatomical
landmarks (fifth metatarsal, great trochanter for example) corresponding to the Tags of the
Human36 model.

1and others devices such as Coda System, Motion Analysis System, Cellspots...

9.3. RECONSTRUCTION FROM OPTICAL SENSORS THEORY 107

In the case of optical sensors, the whole set of markers allows to deduce the complete
posture of the body. The reconstruction process find the posture for which the computed 3D
position of the markers “matches as best as possible” the measured 3D position of the markers.
A simple way to do this comparison is to represent the reconstruction process as a general
nonlinear least-squares problem. Powerful algorithms such as the FSQP algorithm [?] can effi-
ciently solve such nonlinear problems and propose reliable reconstructions even if some of the
measures are missing, for example because of occlusions.

The reconstruction is static at the moment. That is to say that each 3D posture of the
body during the movement are reconstructed separately considering that the body is not mov-
ing. The succession of these 3D postures is named trajectory in the following sections.

The OpticalSensors directory contains scripts allowing us to reconstruct statically a tra-
jectory from optical sensors.

The reconstruction from optical sensors uses the same kinematic and dynamical model
used for the simulations and defined in the HuMAnS/LagrangianModel/Human36 directory. I
advise you to read the chapter 3 in order to understand the Human36 model.

9.3.2 Notations

Some specific words used in the following sections are explained below.

Reference frame or absolute frame

The reference frame is defined in the section 3.1.1. In the case of the Human36 model, the
origin of this frame is the vertical projection on the ground of the midpoint between the two
ankles. The X axis is pointing forward, the Y axis is pointing upward and the Z axis is pointing
to the right of the body.

Segment frames

A segment frame is the frame attached to a segment, that is to say that the segment does not
move in this frame. These frames are defined in the zero-position. The Human36 model is in
the zero-position when the body is standing up, with the feet flat on the ground, spaced apart
about the same distance as the width of the hips and with the arms straight and parallel to
the sides of the body with the palms of the hands facing to the front of the model. In this
position, the origin of the segment frames are on the joints of the segments they are attached
to, and they have the same orientations absolute frame. For example, the origin of the frame

108 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

attached to the right calvicle is the right sternoclavicular joint and its orientation is the same
as the absolute frame, that is to say with X axis pointing forward, Y axis pointing upwards
and Z axis pointing to the right of the body. The origins of the segments frames are given in
the table 3.1.

Posture or Position:

This is the name of the vector q defined in the section 3.1.1. This vector contains the articular
position and the global translation and rotation of the body relatively to the reference frame.
The articular position components correspond (with the sign + or −) to the Cardan angles
defining the orientation of a segment frame relatively to its parent frame. The figure 9.4 shows
a knee joint defining a component of this vector q.

yshank

xshank

ythigh

xthigh

Othigh

Oshank

q3

zshank

zthigh

Figure 9.4: Illustration of the rotation of the knee joint. The frame (Othigh, xthigh, ythigh, zthigh)
and (Oshank, xshank, yshank, zshank) are respectively the thigh attached frame and the shank at-
tached frame

Trajectory

We call a trajectory a succession of positions q.

Anatomical lengths

The anatomical lengths are the lengths between the differents joints of the body. They are
described in the section 3.1.2. As it is explained in the chapter 3 (to read carefully!) the lengths

9.4. GLOBAL VIEW OF THE RECONSTRUCTION MODULE 109

of the Human36 model are user-sizibled. The user can get and set in scilab these anatomical
lengths with the functions GetAnatomicalLengths and SetAnatomicalLengths respectively.

Tags

The Tags are defined in the section 3.2. In the case of the Human36 model, the tags are
some anatomical landmarks such as acromion, lateral malleolus... We suppose that the optical
markers (the leds) are placed on these tags.

Tag to Joint distances

The tags are placed on some anatomical landmarks. Each tag is attached to a segment of the
body, that is to say that the position of this tag in the frame attached to its segment is always
the same. The corresponding between the tags and the segment to is defined in table ??. The
default positions (x, y, z) of these tags are defined in the Human36 model, but the user can
set and get these positions in order to match as best as possible to the studied subject. This is
made respectively with the SetTag2JointLengths and GetTag2JointLengths functions.

Model and Subject

When the model is talked about, the Human36 model is always meant, it is the only one used
reconstruction process at this time. The Subject is the real human used in the experiment. To
make the reconstruction work well, the user must change the default anatomical lengths and
tags to joints distances of the Human36 model for the lenghts and distances measured on the
subject.

9.3.3 Optimization problem

To be completed...

9.4 Global view of the Reconstruction module

The Reconstruction module contains two directories: the KinematicModel and the Opti-
calSensors directories. The KinematicModel directory allows the user to build the different
functions used by the model. The OpticalSensors directory contains scripts which use the
functions generated in the KinematicModel directory to reconstruct positions or trajectories.
The data sets are stored in the OpticalSensors/Measures directory.

The two following sections describe these two directories.

110 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

9.5 KinematicModel directory

The kinematic models used for the reconstruction process are implemented in the Hu-
MAnS/Tools/Reconstruction/KinematicModel directory. At the moment, only one
kinematic model is implemented: the Human36 one.

If you want to add a new model to the reconstruction, you must create a new directory
(which name is the model name) under the KinematicModel one. The new model would be
implemented in this new directory.

9.5.1 The KinematicModel/Human36/MapleCodeGeneration direc-

tory

This directory contains the OpticalSensorsModelGeneration.maple and the GenerateOp-
ticalSensorsModel.mw files. The OpticalSensorsModelGeneration.maple file imple-
ments maple algorithm to create the following C files:

• TagsJacobian.c. This file allows to compute the jacobian of the tags vector. After its
load in scilab, the user can call the scilab TagsJacobian function in the form:

> J = TagsJacobian(q);

This function returns the jacobian of the tags vector J . Then this matrix has NTAGS ∗3
rows and NDDL columns.

• COM.c. The COM function allows the user to get the centers of mass of the different
segments of the model and of the global model in the model reference frame. After its
load in scilab, the call of this function is of the form:

> CentersOfMass = COM(q);

where q is the articular position and CentersOfMass is a matrix of (NSegments + 1)
rows and 3 columns (x, y and z coordinates). The numbering of the different segments of
the Human36 model is given in the table 3.6. The row i of the CentersOfMass matrix
is the center of mass of the segment i. The last row is the global center of mass.

The segments masses and the local position of the segments centers of mass (that is to
say the position of a segment center of mass in the frame attached to this segment) are
given by anthropometric tables. See the documentation of the Human36 model (chapter
3) to get more details.

9.5. KINEMATICMODEL DIRECTORY 111

9.5.2 The VRML visualization

The CreateVRMLWithMarkers.c, CreateVRMLWithMarkers.h and the SomeDefini-
tions.sci files allow us to create a vrml animation file which allow to visualize the reconstructed
movement of the model and the measured positions of the leds. The figure 9.5 shows an instant
frame of a vrml animation created with the CreateVRMLWithMarkers function.

Figure 9.5: Instant frame of a vrml animation created with the CreateVRMLWithMarkers
function

The call to the CreateVRMLWithMarkers function in scilab is of the form:

CreateVRMLWithMarkers(deltat, QREC, HAnimJointsNames, ModelName,...

ModelResolution, OutputFile, TOBS, HAnimMarkersNames, HAnimMarkersRGB);

where deltat is the sampling time of the trajectory, QREC is the reconstructed trajectory,
TOBS is the matrix of the measured tags, ModelName is the name of the model (for example
’Human36’), ModelResolution is the resolution of the model (in the case of the Human36
model, the resolution is ’High’), OutputFile is the name of the output file containing the
vrml animation created and HAnimJointsNames, HAnimMarkersNames and HAnimMarkersRGB

are constant tables defined in the SomeDefinitions.sci file.

112 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

9.6 OpticalSensors directory

Firstly, we will describe the set of data acquisitions available in the HuMAnS toolbox. Then,
we will see the different scripts used by the reconstruction process.

9.6.1 Set of Aquisition Data

Measurements2 were made with an Optotrak 3020 in order to test our reconstruction algorithm.
The data files correspond to a movement sequence. In these experimentations, the standing
subject had the right hand in a cylinder located right ahead. The subject must not touch the
border of the cylinder. An unexpected postural disturbance was imposed on the high part of
the back with a charge impulsion applied from back to ahead with a balancer (... a little push
toward ahead at the level of shoulders). The subject had to maintain its stability (without
touching the border of the cylinder). The charge impulsion can be high or low and the cylinder
can be small (high precision) or bigger (low precision). Leds are placed on the anatomical
landmarks defined in the model description (tags 1 to 18) and on others landmarks specified in
the README file contained in the corresponding measures repertories. These other landmarks
are not used for the reconstruction. The data files contain the 3D leds positions (x, y, z) in the
Optotrak frame. These data files have all the following name: fl_c_dat#XXX.csv where XXX

is the experiment number.

The Measures directory under OpticalSensors contains the data files described above.
The Measures repertory has 5 subdirectories which are:

• JXC(+ or -)P(+ or -) : These repertories contain the data files corresponding to the
different experienments conditions. The C(+ or -) correspond respectively to a high
or low charge impulsion and the P(+ or -) correspond respectively to a high or low
precision;

• ResultsMeasures : This repertory contains the results of the reconstruction done from
the data contained in the Measures directory.

In the JXC(+ or -)P(+ or -) directories, the subjects are separated. The data files are
dispatched in the corresponding SubjectXX repertories where XX is the subject number.

There is the same directories organization in the ResultsMeasures repertory as in the
Measures one. The files created by the reconstruction process (RecPosBin, RecPosXXX, TagPosXXX

2These measurements were made by Olivier Martin, Université Joseph Fourier, Grenoble, France. For more
informations: olivier.martin@ujf-grenoble.fr

9.6. OPTICALSENSORS DIRECTORY 113

and COMPosXXX) are described in the section 9.6.3.

The figure 9.6 shows this repertory organization.

OpticalSensors

Scripts

fl_c_dat#XXX.csv

Subject01 Subject02 Subject01 Subject02

Subject01 Subject02Subject02Subject01

ResultsMeasures

Measures

JXC+P+JXC+P−JXC−P+JXC−P−

JXC−P+JXC−P− JXC+P− JXC+P+

RecPosBinXXX RecPosXXX TagPosXXX COMPosXXX

Figure 9.6: OpticalSensors repertory organization

9.6.2 The MenuReconstruction.sci script

This script allows the user to set or load all the parameters required by the reconstruction,
to save these parameters in .csv files and to launch the reconstruction process. The default
parameters are thoses corresponding to the Subject01 subject. These default parameters are
in the ReconstructionParameters.csv.

The parameters settings

The figure 9.1 shows the window menu generated by the script. We can see that this window
menu asks the user to set five types of parameter:

• the subject number. The reconstruction process needs the name of the subject. This
name is of the form SubjectXX where XX is the number of the subject(for example 01,
02, . . . 10, . . .).
But it is possible that the user wants to test different parameters (anatomical lengths or

114 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

tags to joint distances) for the same subject. The user can do that by setting a number
such as XXYY. . .Y in the Subject field, where XX is the number of the subject and
YY. . .Y is the number of the test for the subject(for example 1, . . ., 10, . . .). Then,
the reconstruction process will consider the subject SubjectXX with the parameters
corresponding to the test YY. . .Y of the subject XX. If the parameters are saved in a
csv file, the number of the subject put in the Subject Number field is XXYY. . .Y.

• the anatomical lengths of the subject. The reconstruction process uses a model
with some anatomical lengths. These lengths can be modified by the user. Then the
user can set these anatomical lengths by clicking on the Set button corresponding to the
anatomical lenghs in the zero position. A window appears and the user can change the
anatomical lengths of the model (to make the model correspond to the subject considered).
This window is shown on the figure 9.7. The name of the lengths are specified on the
left of the window, in order to facilitate their settings. The figures 3.2 and 3.3 show the
lengths to set and the zero-position of the model.

Figure 9.7: Snapshot of the window (on unix) which allows the user to set the anatomical
lengths. On windows, it is a little different, but same notation is used.

9.6. OPTICALSENSORS DIRECTORY 115

• the distances from tags to joints. The user must set the position (x, y, z) of the
leds (placed on some anatomical landmarks called tags) in the frame of the corresponding
joint.
The origins of the joints frames are the joints and the orientations of these frames are the
same as the reference frame, that is to say with the x axis pointing to front of the model,
the y axis pointing upward and the z axis pointing to the right of the model. The figures
3.5 and 3.6 show the different tags included so far in the Human36 model. The table ??
shows for each tag, the joint that is the origin of the frame in which the position of the
tag must be given.
The figure 9.8 shows the window appearing when the user clicks on the button Set
corresponding to the tags to joint distances. To each line correspond a different tag. The
names are specified on the left of the window. The columns correspond to the position
(x, y, z) of the tags in the frame of their corresponding joints.

Figure 9.8: Snapshot of the window (on unix) which allows the user to set the positions of the
tags in the corresponding joints frames. On Windows systems, it is a little different, but we
the same notation is used.

116 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

• the markers correspondance. The Markers correspondance is a vector of integers.
The component i of this vector is:

– −1 if the user has not put a led on the tag i (that is to say if there is no data
corresponding to the tag i in the csv file containing the measures).

– j if the user has put a led on the tag i. j is the number of this led in the measured
data.

The figure 9.9 shows the window which appears if the user clicks on the Set button
corresponding to the Markers correspondance. The names on the left of the figure are
the names of the tags in the Human36 model.

Figure 9.9: Snapshot of the window (on unix) which allows the user to set the markers corre-
spondances. On windows, it is a little different, but the same notation is used.

• the file(s) to reconstruct. The user can decide to reconstruct all the data files contained
in the Measures/JXC(+ or -)P(+ or -)/SubjectXX directories, were XX is the number
given by the user for the Subject number parameter. If the user does not set these pa-
rameters, the file to reconstruct is the Measures/JXC+P+/Subject01/fl_c_dat#106.csv.

9.6. OPTICALSENSORS DIRECTORY 117

The Load/Save parameters from/in .csv files

The user can load (or save) some parameters from (or in) .csv files. These parameters are the
number of the subject (in the form XXYY. . .Y, see the precedent paragraph), the anatomical
lengths and the tag to joint distances.

An example of a csv file of parameters is represented on the figure 9.10. The parameters
are stored in columns, each column corresponds to a subject. If the user want to save a set of
parameters in an existing csv file of parameters, the new parameters are saved at the end of
this file, in a new column.

Figure 9.10: Example of a csv file of parameters. This file contains 5 sets of parameters

118 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

The “Launch the reconstruction” button

The “Launch the reconstruction” button launchs the StaticTrajectoriesReconstruction.sci
script with the default or user set parameters.

9.6.3 The StaticTrajectoriesReconstruction.sci script

The StaticTrajectoriesReconstruction script makes the following loop as shown on figure
9.11:

1. it checks if they is any data files which is not reconstructed in the directory corresponding
to the given subject (that is to say in the Measures/JXC(+ or -)P(+ or -)/SubjectYY).
If yes it considers one of these data files (fl_c_dat#XXX.csv) to reconstruct the corre-
sponding trajectory and then it makes the following step. If all trajectories have already
been reconstructed, it stops the script;

2. it converts the format of the trajectory data contained in the .csv file choosen at the
preceding step (with he ConvertFromCsvToTags function explained below);

3. it reconstructs statically this trajectory. For each position of the trajectory, it calls the
Reconstruction function which is explained below. This function returns the corre-
sponding reconstructed position;

4. Then all the positions of the trajectory were reconstructed and stacked in the QREC
matrix. These matrix has NDOF rows and NSamplings columns. NDOF is the degrees
of freedom of the model (33 for Human27 model) and NSamplings is the number of
samplings of the trajectory (that is to say the number of successive positions in the
trajectory). Then QREC is of the form:

QREC =






q1,1 . . . q1, NSamplings

...
...

...
qNDOF,1 . . . qNDOF, NSamplings






where qi,j corresponds to the position component i at the sampling j.

5. Then it saves some data in different formats in the corresponding directory, that is to say
in the ResultMeasures/JXC(+ or -)P(+ or -)/SubjectYY directory. The data saved
are:

9.6. OPTICALSENSORS DIRECTORY 119

• the successive reconstructed positions matrix QREC. This data is saved in binary
and text format. The QREC matrix is saved in binary format in the RecPosBinXXX

file which is placed in the directory corresponding to the input data file (same subject,
same experiences conditions and same number XXX). It is saved in .csv format too
in the RecPosXXX file which is placed under the same directory. The .csv format is
described below;

• the tags (or leds) positions in the model reference frame. These data are saved in
.csv format in the TagPosXXX file which is placed under the same directory as the
RecPosBinXXX and RecPosXXX files.

• the positions of the centers of mass of each model segment in the model reference
frame. These data are saved in .csv format in the COMPosXXX file which is placed
under the same directory as the RecPosBinXXX, RecPosXXX and TagPosXXX files.

In the .csv format, the rows correspond to the samples and the columns to the saved
variables:

• for the QREC data, the variables are the articular position components:

(q1, q2, . . . , q33)

• For the tags positions, the variables are the tags and center of mass coordinates:

(X1, Y1, Z1, . . . , XNTags, YNTags, ZNTags, XGlobalCOM , YGlobalCOM , ZGlobalCOM)

The numerotation of the tags is the same as the one given in section 3.2.

• For the segments centers of mass, the variables are their coordinates:

(X1, Y1, Z1, . . . , XNSegments, YNSegments, ZNSegments, XGlobalCOM , YGlobalCOM , ZGlobalCOM)

The numerotation of the centers of mass is the same as the one given in the section
9.5.1.

Then the first row corresponds to the names of the variables (QRECi for the QREC matrix,
Xi, Yi, Zi for the tags and centers of mass positions. The first column corresponds to the
sampling numbers.

6. Then the script go back to step 1.

120 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

no

directory

E = set of data files not yet
reconstructed and contained in the

Measures/JXC(+ or -)P(+ or -)/SubjectYY

Measured data
conversion,

interpolation and

sampling = 1

(sampling ≤ NbSamplings)?

Reconstruction of the
sampling position

yes

and Observed tags
Comparison

yes

Data saved in the corresponding

(E = ∅)?

fl c dat#XXX.csv
data file

filtering

sampling := sampling + 1

(InitialSize(E) = 1)?

Reconstructed trajectory

- Centers of mass positions

- Tags positions

- Reconstruction trajectory QREC
directory:

ConvertFromCsvToTags.sci∗

Reconstruction.sci∗

VisuTagsComparison.sci∗

Tags Positions Setting
Anatomical Lengths Setting

Subject Setting

Set of data files to reconstruct Setting

WriteInCsvFile.sci∗

yes

no

StaticTrajectoriesReconstruction.sci∗

Figure 9.11: Global view of the reconstruction functionnement. The italic names (*) correspond
to different scripts and function. The ConvertFromCsvToTags function is detailed in the
figure 9.12.

9.6. OPTICALSENSORS DIRECTORY 121

9.6.4 The data conversion and filtering: the ConvertFromCsvTo-

Tags function

The global view of the ConvertFromCsvToTags function is shown on figure 9.12. It allows
the user to convert the data containing in the fl_c_dat#XXX.csv files in the format required
for the reconstruction function and to filter or to interpolate them.

The input parameter is the name of the file containing the trajectory to reconstruct. The
returned data are:

• TOBS: it is the matrix of the measured positions of the tags used in the reconstruction.
These positions are given in the model reference frame. The tags used in the reconstruc-
tion are the tags 1 to 18. TOBS is of the following form:

TOBS =















x0
tag1 ,1 y0

tag1,1 z0
tag1,1

x0
tag2 ,1 y0

tag2,1 z0
tag2,1

...
...

...
x0

tag18 ,1 y0
tag18,1 z0

tag18 ,1








. . .








x0
tag1 ,NS y0

tag1,NS z0
tag1,NS

x0
tag2 ,NS y0

tag2,NS z0
tag2,NS

...
...

...
x0

tag18 ,NS y0
tag18,NS z0

tag18 ,NS















where NS is equal to NbSamplings and (x0
tag1 ,i, y

0
tag1,i, z

0
tag1,i) are the positions of the tag

1 at the sampling i in the model reference frame.

• TUTILISES : it is a boolean matrix of 18 rows and NbSamplings columns. The (i, j)
component is at False if the tag i is occuluded at the j sampling and at True otherwise.

Then the call to the ConvertFromCsvToTags function is:

[TOBS, TUTILISES] = ConvertFromCsvToTags(filename);

Four step are implemented in the ConvertFromCsvToTags function :

1. First step: the tags are reorganized and the occluded tags are identified;

2. Second step: the occluded tags are interpolated;

3. Third step: a frame change (from Optotrak frame to model reference frame) is computed;

4. Fourth step: the data are filtered.

The following sections explain these different steps.

122 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

fl_c_dat#XXX.csv

filtering

TUTILISES
TOBS in Optotrak frame

TUTILISES

doesn’t change

in model reference frame

TOBS, TUTILISES

in model reference frame

TOBS

non-filtered

data file

(InterpBool = True)?

input:

Tags reorganization
and

Tags interpolations

Take into account

the interpolated tags

Frame change:
from Optotrak frame to
model reference frame

(FilterBool = True)?

filtered TOBS

occulted tags research

new TUTILISES

TOBS

Tags (with interpolated ones)

in model reference frame

to get back the occulted tags

Figure 9.12: Global view of the ConvertFromCsvToTags function

9.6. OPTICALSENSORS DIRECTORY 123

First step: the reorganization of the tags and the identification of the occluded
tags

The number of the leds used in experiments is greater than the number of tags used in the
reconstruction. In the reconstruction, the tags used (if there is no occlusion) are the tags 1 to
18. Then, the first step is to choose the tags corresponding to the model ones and to put their
positions in the right order in a matrix of 18 row and NbSamplings columns. These positions
are given in the Optotrak frame.

Then, the occluded tags are identified. The function computes the TUTILISES matrix which
is a boolean matrix of 18 rows and NbSamplings columns.

Second Step: signal interpolation to get back the occluded tags positions

The Optotrak sets the tag coordinates to a given value(−3.6973E+028) if this tag is occluded.
Then these coordinates are replaced by the interpolated ones. The interpolation is made in two
steps:

1. We consider separately the coordinates x, y and z of one tag along the time. For each
coordinate of each tag, the scilab function splin is called. This function computes a cubic
spline S which interpolates the (ti, xi) points (in the case of x component), where ti are
the times samplings for which the considered tag is not occluded;

2. Then the scilab function interp values x(ti) = S(ti) where ti are the time samplings for
which the considered tag is occluded.

Then the user can choose to take into account the interpolated values or not. A boolean
InterpBool allows him to make this choice. If InterpBool is set to True, the TUTILISES

variable will be modified and the interpolated tags will be taken into account. If it is set
to False, the TUTILISES variable will not be modified and the interpolated tags would be
considered as occluded in the reconstruction. By default, InterpBool is set to True.

Third step: frame change

The observed tags positions must be given in the model reference frame. Then a frame change
is made to put in the TOBS matrix the observed tags positions expressed in the model reference
frame. In experiments, there is only one fixed led. Then, we considered that the led fixed
on the right and left malleolus and on the great trochanter did not move during the first 20
samplings. We furthermore assumed that the middles of the malleolus leds and of the great
trochanter leds were placed on the y axes (vertical) of the model reference frame origin.

124 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

Fourth step: data filtering

The observed tag positions can be filtered. The filter is a Butterworth low-pass filter. By
default, the order of the filter is 2 the sampling frequency is 100 Hz and the cut-off frequency is
8 Hz. The user can change the order, the sampling frequency or the cut-off one by modifying
respectively the p, SamplingFrequency and CutOffFrequency variables in the ConvertFrom-
CsvToTags function.

The scilab function used for the filtering are the iir (to compute the filter) and the flts (to
apply the filter) functions.

The FilterBool boolean allows the user to filter or not the observed tags positions. If it is
set to True, the filter is apply. If it is set to False, the filter is not apply.

9.6.5 The Reconstruction.sci function

The Reconstruction function allows us to reconstruct a position from tags positions given by
optical sensors. The input data are:

• Tobs : The Tobs parameter is a matrix of NumberOfTags rows and 3 columns. The row
i is the observed (by optical sensors as Optotrak) position (x, y, z) of the tag i. These
positions are given in the sensor frame.

• Tutilises : The Tutilises parameter is a column boolean vector of size NumberOfTags.
Its i-th component is set to False if the tag i was occluded and True otherwise.

• q_init : The q_init parameter is the initial position in the minimisation algorithm.

• nb_iter : The nb_iter parameter is the maximum number of iteration in the minimisa-
tion algorithm.

• seuil : the seuil parameter is the threshold in the minimisation algorithm. When the
error between the reconstructed tags and the observed tags is smaller than seuil, the
minimisation algorithm stops and the corresponding position qrec is returned.

Then, the call to the Reconstruction function is:

> [qrec, info] = Reconstruction(q_init, Tobs, Tutilises, nb_iter, seuil);

where qrec is the reconstructed position and info an integer informing on the potential error
that could have appear in the Reconstruction function. This error is the same one returned
by the algorithm used for the minimisation which is the fsqp algorithm3.

3the fsqp algorithm was developped by the AEMDESIGN: http://www.aemdesign.com/

9.6. OPTICALSENSORS DIRECTORY 125

9.6.6 The AllSubjectsTrajectoriesReconstruction.sci script

This script allows the user to reconstruct all the trajectories of all the subjects given by the user
in the ReconstructionParameters.csv file. For each subject XX recorded in the Recon-
structionParameters.csv file, this script calls the StaticTrajectoriesReconstruction.sci script
with the subject parameters recorded in this parameter file and for all the trajectories stored
in the OpticalSensors/JXC(+ or -)P(+ or -)/SubjectXX.

9.6.7 Utility functions

The visualization functions

Checking of the reconstructed position: the VisuTagsComparison.sci function The
function VisuTagsComparison allows us to see the result of the reconstruction and the
measured tags on the same graphic. The call to this function is of the form:

> VisuTagsComparison(QREC, TOBS, TUTILISES);

where:

• QREC is the matrix of the reconstructed trajectory. This matrix has 33 rows and NbSamplings
columns;

• TOBS is the matrix of the observed tags. Its size is NumberOfTAgs× (3∗NbSamplings)
(see section 9.6.4);

• TUTILISES is the boolean matrix which specifies the occluded tags and the non-occluded
tags (see section 9.6.4).

The WriteInCsvFile.sci and WriteInFile.sci functions

The WriteInCsvFile.sci function The WriteInCsvFile.sci function allows the user to
store matrix data in .csv file. The call to this function is of the form:

> WriteInCsvFile(filename, M, HText, VText);

where filename is the name of the output file, M is the matrix data of n row and m columns,
HText and VText are row vectors of respectively m and (n + 1) rows. Then the output file
written of this form:

V text(1), HText(1), HText(2), . . . HText(m)
V Text(2), M11, M12, . . . M1m

...
...

...
...

...
V Text(n + 1), Mn1, Mn2, . . . Mnm

with columns separated by commas and lines by RC.

126 CHAPTER 9. RECONSTRUCTION FROM OPTICAL SENSORS

The WriteInFile.sci function The WriteInFile.sci function returns an output file which
is in the following format:

sample Text(1) Text(2) . . . T ext(m)
1 M11 M12 . . . M1m
...

...
...

...
...

n Mn1 Mn2 . . . Mnm

with columns separated by tabs and lines by RC.
The call to the WriteInFile.sci function is of the form:

> WriteInFile(filename, M, Text);

where filename is the name of the output file, M is the matrix data and Text the text written
in the first row of the output file.

Bibliography

[1] H-anim. http://h-anim.org/.

[2] Biomechanics and Motor Control of Human Movement. Second edition, 1990.

[3] Anatomie 1, l’appareil locomoteur. 1992.

[4] C. E. Clauser, J. T. McConvillet, and J. M. Young. Weight, volume, and center of mass
of segments of the human body. Technical Report AMRL-TR-69-70, Aerospace Medical
Research Laboratory, Wright-Patterson Air Force Base, Dayton, OHIO, 1969.

[5] Laboratoire d’Anthropologie Appliquee. Ergodata: Dictionnaire des mesures.
http://www.biomedicale.univ-paris5.fr/LAA/FR/index.htm.

[6] P. De Leva. Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. Journal

of Biomechanics, 29(9):1223–1230, 1996.

[7] Pr.NGUYEN HUU. Anatomic schemas.
http://www.univ-brest.fr/S Commun/Biblio/ANATOMIE/Web anat/index.htm.

[8] Craig T. Lawrence and André L. Tits. A computationally efficient feasible sequential
quadratic programming algorithm. SIAM J. on Optimization, 11(4):1092–1118, 2000.

[9] G. Wu, S. Siegler, P. Allard, C. Kirtley, A. Leardini, D. Rosenbaum, M. Whittle, D.D.
D’Lima, L. Cristofolini, H. Witte, O. Schmid, and I. Stokes. Isb recommendation on
definitions of joint coordinate system of various joints for the reporting of human joint
motion-part i: ankle, hip, and spine. Journal of Biomechanics, 35(4):543–548, 2002.

[10] G. Wu, FC. van der Helm, H.E. Veeger, M. Makhsous, P. Van Roy, C. Anglin, J. Nagels,
A.R. Karduna, K. McQuade, X. Wang, F.W. Werner, and B. Buchholz. Isb recommen-
dation on definitions of joint coordinate systems of various joints for the reporting of
human joint motion–part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics,
38(5):981–992, 2005.

127

128 BIBLIOGRAPHY

[11] V. M. Zatsiorsky, L. M. Raitsin, V. N. Seluyanov, A. S. Aruin, and B. J. Prilutzky. Biome-

chanics and Performance in Sport, chapter Biomechanical characteristics of the human
body, pages 71–83. Bundeninstitut für Sportwissenschaft, Germany, 1993.

[12] V. M. Zatsiorsky and V. N. Seluyanov. Biomechanics VIII-B, chapter The mass and inertia
characteristics of the main segments of the human body, pages 1152–1159. Human Kinetic,
Illinois, 1983.

[13] V. M. Zatsiorsky, V. N. Seluyanov, and L. G. Chugunova. Contemporary Problems of

Biomechanics, chapter Methods of determining mass-inertial characteristics of human body
segments, pages 272–291. CRC Press, Massachusetts, 1990a.

[14] V. M. Zatsiorsky, V. N. Seluyanov, and L. G. Chugunova. Biomechanics of Human Move-

ment: Applications in Rehabilitation, Sports and Ergonomics, chapter In vivo body seg-
ment inertial parameters determination using a gamma-scanner method, pages 186–202.
Bertec, Ohio, 1990b.

	General Principles of the simulation in HuMAnS
	General Principles of the simulation in HuMAnS
	Dynamic modelisation of a free system
	Contact model
	Dynamic with contacts
	Impacts
	Quadratic Problems used in HuMAnS

	Muscle modelisation in HuMAnS
	Command signal
	Recruiting rate
	Muscle model and Force-Length relation
	Muscle dynamic
	Knee articulation

	Computation of Lagrangian Model
	Kinematic Model
	Geometric modelisation of a jointed system
	Tag model: the Tags.c file
	Contact model

	Dynamical Model
	Definition of the inertial parameters
	Inertia matrix: the Inertia.c file
	Non-linear effects: the NLEffects.c file

	VRML animation computation

	A Biomecanic Model of a Human : Human36
	Kinematic Model Definition
	Joints definition
	Anatomic Model Lengths and zero-position

	Tags Model
	Anthropometric data
	Tags to Joint centers lengths setting and getting

	Dynamical Model
	Segment Masses
	Segments centers of mass
	Inertia computation

	Model of a biped robot : Kondo KHR-1
	Kinematic Model Definition
	Joints definition and zero-position
	Model Lengths

	Tags Model
	Dynamical Model
	Segment Masses
	Segments centers of mass
	Inertia computation
	VRML representation

	Simulation
	Introduction
	Description of the ordinary differential equation corresponding to the dynamic system
	The CompleteDynamics function

	Integration of the dynamic system and events detection
	The ode function
	The EventDetection function
	The Event Handling

	Contacts and Actuations
	The different states in HuMAnS
	z State in the simulation with muscle model
	Contact states in the different applications
	Actuation states in the different applications

	Initialization of state variables
	Contact states initialization in the different applications
	Actuation states initialization in the different applications

	Detection of state changes in HuMAnS
	Detection of change of contact state in the different applications
	Detection of change of actuation state in the different applications

	Handling of state changes in HuMAnS
	Handling of contact state changes in the different applications
	Handling of actuation state changes in the different applications

	The ActuationStateReset function

	Position Observer
	Position Observer

	The Task Function and its inverse
	The Task Function and its inverse
	Generation of the C files
	The InverseTaskFunction function

	Trajectory Generation
	WriteTrajectoryFile function
	.traj3 format
	ReadTrajectoryFile function

	Reconstruction from Optical Sensors
	Introduction
	Getting started
	Reconstruction from optical sensors theory
	About the reconstruction
	Notations
	Optimization problem

	Global view of the Reconstruction module
	KinematicModel directory
	The KinematicModel/Human36/MapleCodeGeneration directory
	The VRML visualization

	OpticalSensors directory
	Set of Aquisition Data
	The MenuReconstruction.sci script
	The StaticTrajectoriesReconstruction.sci script
	The data conversion and filtering: the ConvertFromCsvToTags function
	The Reconstruction.sci function
	The AllSubjectsTrajectoriesReconstruction.sci script
	Utility functions

