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Figure 1: From left to right: The user sketches a smooth curve over the tail of aacker The curve is automatically converted into a
dynamic rod model at stable equilibrium under gravity. The user can #mémate the curveg(g, pull then release it) with the guarantee
that the chosen initial shape will be preserved after slight (or possiblygrmotion. See the accompanying video for the full animation.

Abstract building intuitive, interactive and creative 2d worlds, much work
has been devoted to the geometric design of 2d shapes. Recently,

2d animation is a traditional but fascinating domain that has re- the dynamicsof 2d objects has gained an increasing interest and
cently regained popularity both in animated movies and video now calls for intuitive, fast and semi-automatic solutions for mov-
games. This paper introduces a method for automatically convert- ing and deforming geometry. In this paper, we focus orirtkierse
ing a smooth sketched curve into a 2d dynamic curve at stable equi-coupling problerconsisting in imposing a geometric rest shape to
librium under gravity. The curve can then be physically animated a physics-based simulator. We speci cally handle the widespread
to produce secondary motions in 2d animations or simple video case of a rest shape de ned as a planar smooth curve.

ames. Our approach proceeds in two steps. We rst present a new . .
fqechnique to tpa‘l)smootr? piecewise circular%rcs curve '?o a sketched Our attention has rst been drawn tpwa_rds 2d video games
curve. Then we show how to compute the physical parameters of a2S these are one of the rst 2d applications to use dynamics
dynamic rod model (super-circle) so that its stable rest shape under®" 9enerating motion from the geometry input created by the
gravity exactly matches the tted circular arcs curve. We demon- game players. Recent video games sucliras World of qu
strate the interactivity and controllability of our approach on various (WWw-worldofgoo.com) orAlgodoo (www.algodoo.com) speci -

examples where a user can intuitively setup ef cient and precise 2d €ally et the core of their gameplay around this coupling between
animations by specifying the input geometry geometry and physics. The representation of deformable objects

remains however limitede(g, no exible primitive for matching a
. . . ) stroke). More importantly, the geometry-physics coupling simply
CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional = qngists in initializing the physics-based models with a given shape
Graphics and Realism—Animation in the absence of any surrounding fordhis assumption does not,

in general, re ect the intention of the user when sketching a shape
Keywords: 2d curve, inverse statics, elastica, stable equilibrium  in a given environment. He/she would rather spontaneously model
a shapainder gravity

1 Introduction In 2d animation movies, motion and deformations are often pro-

cessed through mere geometric transformations such as interpola-
2d computer imagery is used in many applications ranging from tion, morphing or warpingge.g. [Alexa et al. 2000; Baxter et al.
industrial design to video games and animation feature Ims. For 2009]. In the context of 3d animation, Barzel [1997] developed
a parametric rod system dedicated to keyframe animation, pro-
viding a direct but limited control over rest shapes and deforma-
tions. Though practical, such a descriptive model obviously loses
the richness and versatility offered in contrast lyaamicmodel.
Wither et al. [2007] set up a sketching interface for initializing a
dynamic strand simulator with approximate curvatures computed in
the absence of any surrounding force. To the best of our knowjedge
Hadap [2006] was the only one to propose a technique — based on
inverse statics — that allows for precise geometric control over the
rest shape of dynamic strands. Still, the proper matching of arbi-
trary curly shapes remains dif cult and no analysis of equilibrium
stability was proposed.




This paper brings a solution to ttetable geometry-physics cou-  mance for good resolutions (up to 50 elements in 2d). For these
pling problem for 2d smooth lines with straight or curly geometry. reasons we chose this model — referred tewgzer-circlein the re-
Such 1d primitives naturally emerge from simple sketches while al- mainder of this paper — for solving our inverse problem. The price
lowing for the representation of a wide class of 2d objects ranging to pay will simply consist in building an algorithm for approximat-
from wires and ropes to hair, trees, character skeleton, etc. Ouring a smooth curve with a controlled number of circular arcs. Con-
method automatically converts the input curve intostable equi- trolling the number of arcs at this stage is crucial as it will set the
librium shape of a dynamic rod model, in the presence of external resolution of the animation model and hence the computational load
forces such as gravity. As we target video games and interactive 2dof subsequent simulation whatever the chosen animation algorithm
animation prototyping, the user should intuitively choose his/her (quadratic [Bertails et al. 2006] or linear [Bertails 2009] in time).
trade-off between speegs. accuracy all along the process. To We strongly believe that offering direct control over the resolution
match all these requirements, we based our work on the dynamicof a simulator is of great interest because it allows for a precise tun-
super-helix model [Bertails et al. 2006] restricted here to 2d and ing between quality and time performance at the different stages of

referred to as theuper-circlemodel in the remainder of the paper.

2 Related work

the animation design.

Compared to [Hadap 2006] we also provide an analysgtadfility
of the tted rod's con guration and a simple algorithm to guarantee
that the initial con guration is stable. This feature is desirable for

Representing arbitrary 2d curves as compact and analytic primitivesan artist in order to have a given shape mostly restored after slightly
has been an active area of research for more than half a century(or even strongly) deforming it.

originally motivated by curve and surface design for engineering
applications. As a result a large amount of curve primitives, ranging

from parametric polynomial representations (splines) to piecewise
circular arcs and clothoids, are now commonly used to represent

2d curves. The choice for one or another primitive is essentially
guided by geometric concerns such as interactive editability, global
or local user control, interpolation of original point/tangents, fair-
ness quality, data compression ratet. the input curve, etc.

In contrast, our choice is motivated by both geomedrid anima-

tion concerns: we want to initialize a fast and realistic dynamic
curve model with an imposeatbitrary smoothcurve (possibly with
loops) as a stable rest shape. These requirements have an impact
the choice of both the dynamic rod simulator and the geometric
primitive for representing the input curves.

Inverse dynamics for rods The dynamics of 2d curves can be
naturally achieved by considering the mechanics of thin inextensi-

Piecewise circular arcs approximation Approximating curves

by piecewise circular arcs has been extensively studied in computer-
aided design, see.g. [Yang and Du 1996; Pei and Horng 1996;
Horng 2003; Safonova and Rossignac 2003; Drysdale et al. 2008].
More recently, piecewise clothoids, made of arcs with linear (in-
stead of constant) curvature, have gained an increasing interest in
the graphics community [McCrae and Singh 2008; Baran et al.
2010] because of their fairness property, allowing for sketching vi-
sually pleasing curves.

Previous approaches however do not fully account for our three
main goals: (a) thejuasi-instantaneougeometric tting, (b) the

0&ecise controlover the curve resolution and c) the tting of a

physics-based rod model tosanoothcurve. Typically most au-
thors prefer to control a precision error instead of the number of
arcs [Yang and Du 1996; McCrae and Singh 2008; Baran et al.
2010], while others do not enfor&! smoothness [Pei and Horng

ble rods subject to bending. Various discrete models have been pro-1996]. Furthermore, most previous approaches are far from inter

posed in graphics for 3d inextensible rods with bending and twist-
ing elasticity. While many of them rely anaximal coordinatefor-

active. The only ones, including ours, that ful Il this requirement
are based on an automatic pruning of the input points to keep only a

mulations [Spillmann and Teschner 2007; Spillmann and Teschner Small set ogatepoints before applying the reconstruction [Pei and

2008; Theetten et al. 2008; Bergou et al. 2008; Selle et al. 2008],
others prefer to useeduced coordinatesiodels because they offer

a compact and intuitive parameterization of the rod [Bertails et al.
2006; Hadap 2006; Bertails 2009]. Using a reduced chain of ar-

Horng 1996; McCrae and Singh 2008].

3 Contributions

ticulated bodies as a rod model, Hadap [2006] was the only one to An overview of our method is presented in gure 2. Our contribu-

propose a method for tting a rod at rest under gravity to a given
input curve. The static tting is performed hpverse dynamicsa
well-known principle in robotics consisting in computing the joint

forces and torques of a kinematic chain given the reduced accel-
erations and velocities of the joints [Featherstone 1983]. Hadap

highlights that inverse dynamics would be dif cult to achieve using
a maximal coordinates rod model, for which the kinematics of the
rod has to be explicitly enforced through penalty terms or external
constraints. We fully support this analysis.

We depart from Hadap's approach by using an alternative reduced

coordinates model. In general, a serial chain of rigid links is not

adapted to capture the geometry of arbitrary complex curves pos-

sibly with multiple loops. Such shapes require lots of rigid links
to match a complex input geometry. They furthermore imply the
retrieval of strong joint torques which may lead to numerical insta-

bilities. Another interesting reduced coordinates model is the super-

helix model [Bertails et al. 2006], characterized by high-order ele-

ments that are smoothly connected — helices in 3d and circular arcs

in 2d. With a small set of intuitive parameters, this model can rep-

resent complex geometric shapes and capture in real-time typical

deformations of an elastic inextensible rod, with real-time perfor-

tions are twofold:

We introduce a new algorithm for accurately and interactively
tting a Gl-smooth piecewise circular arcs curve to any 2d
smooth curve, with exact user control over the number of arcs
(shall it be odd or even). Our method relies on dynamic pro-
gramming for segmenting the curve into a prede ned number
of regions optimally matched by circular arcs, combined with
an original reconstruction method based on oating tangents
interpolation. The advantages of our method are enhanced by
providing thorough comparisons to previous circular arcs t-
ting methods used in graphics and computer-aided design.

We present a simple and ef cient algorithm for nding the pa-
rameters of the super-circle model so that its rest shape under
gravity exactly matches a givé®'-smooth piecewise circular
arcs curve. We show that the super-circle model is perfectly
adapted to inverse dynamics and we provide a mathematical
proof for the existence of solutions to the stable inverse dy-
namic problem. To the best of our knowledge, the question
of managing the stability of equilibrium is new to graphics,
and greatly enriches the set of existing tools for controlling
physics-based animations.



Figure 2: Overview

Our paper is organized as follows. We rst recall the main nota-

tions and equations for a super-circle in Section 4. Sections 5 and 6

present our two major contributions. Finally, results and applica-
tions are presented in Section 7 before concluding.

4 Notations for a super-circle

Let us consider an inextensible elastic rod with one clamped end
and the other end free. Lets) denote the centerline of the rod, pa-
rameterized by the curvilinear abscissdn the super-helix model,

material curvatures and twist are assumed to be piecewise constan

along the rod, leading to a piecewise helical centerline [Bertails
et al. 2006]. In 2d, this discrete model boils down to a material
curve with a piecewise constant curvatés) (no twist), i.e, a
centerline made oN piecewise circular arcs. Leajy = q(0) be

the clamping angle of the rod andits total length. The material
framef t(s); n(s)g continuously slides along the centerline through
in nitesimal rotations around the axis (clock counter-wise when
the curvature is positive).

Let k; be the constant curvature of the element of the rodki0 its
natural curvature, any its length. We denote bl (resp.k©) the
curvature vector (resp. the natural curvature vector) collecting the
N scalarsk; (resp. kio). In contrast to these geometric parameters,
the physical parameters of the rod such as its lineic m&sr
stiffnessEl are assumed to remain constant along the centerline.
This property is, in general, satis ed in the case of real strands.

Similarly as in [Bertails et al. 2006], the Lagrangian mechanics al-
lows us to build a differential system for the unknokin

M(t;K) K+ K (k k%) = B(t;k;k) (1)

whereM is the symmetric positive de nite mass matrix with; =
R

rs (')‘%> ﬂ”—,;ds, K the constant diagonal stiffness matrix with

Kii = Y El, andB collects the other (internal and external) forces
applied onto the rod, including gravity.

of our method.

5 Geometric tting

The rst step of our method automatically converts a hand-drawn
curve into aG!-smooth curve made dfl circular arcs. The total
number of arcN is xed by the user so as to control the computa-
tional cost for subsequent animation. We consider as input a set of
2d sorted points resulting from the interactive capture of the curve
sketched by the user. This curve is converted into a smoe#ieB
spline using a modi ed version of the Potrace software [Selinger
2003], where we enforce the alignment of tangents between suc-
gessive Bzier patches to yield a perfectly smooth curve. The res-
olution of the spline is chosen high so that the conversion does not
Iter out any curve detail except those with very high frequencies
which are considered as noise. The resulting vectorized curve is
then evenly sampled into a nite list of points. Our tting algo-
rithm is thus initialized with a set af ordered points together with
their associated tangents and curvatures, which are computed ana-

lytically.

Our approach consists in two main passes. We rst compute an op-
timal segmentation of the curve into exadiypieces, based on the
piecewise constant approximation of the curvature pro le. This rst
pass provideBl + 1 gate points and tangents. We then reconstruct a
smooth curve made d circular arcs by interpolating the oating
gate tangents while minimizing the error made on the gate points.
We evaluate our algorithm by providing quantitative comparisons
to existing approaches at the end of this section.

5.1 Segmentation of the curve into N arcs
Our approach is inspired by Pei and Horng's segmentation algo-
rithm [Pei and Horng 1996], which makes the following observa-
tion: in order to best tm constant pieces on the curvature pro le
between the rst point and poinf m 1 constant pieces are tted
between the rst pointand a poikt m, and a constant piece is put
between point& andi. The pointk is chosen so as to minimize the
approximation error of the original curvature pro le, in the least-
square sense. We implement this approach by designing a dynamic
programming algorithm that populates a matvixof sizen N in
a bottom-up fashion as

M(i;m) = minm ki M(kim 1)+ Egi (ki) @)
whereE;si (k;1) = é}zkjci CT<|j2, ¢ are the curvatures argy; is
gl X
the mean curvaturgg = 7£%. Note that in contrast to [McCrae
and Singh 2008], our algorithm optimizes the placemenexf
actly N arcs. As a result, our formulation (2) does not require
any supplementary terf.ost for penalizing the addition of new



arcs. However, to avoid the appearance of very small arcs thatLemma 5.1 Lettg andt; be two different unitary vectors. Theg
are insigni cant compared to the scale and the length of the in- andp; are co-circular with respective (oriented) tangetgsaandt,
put curve, we chose to penalize short constant pieces by adding theff they satisfy the equation

2

term Ejengtn(i:m) = e ® to our formulation (2), wherejy, is the p1= po+ ad
length of the portion of curve between the poingndm, andL is
the total length of the curve. In practice, we observed that adding \yherea 2 R andd is the vector built in the following way: L&g

this term yields good results in our segmentation (see section 5.3).5n4t; be the respective imagestgfandt; by the rotation of angle
Note that this penalty term does not require the tuning of any sup- p_ Then,
plemental parameter by the user: the only parameter to be tuned is d=t ic
the total numbeN of arcs. -

The corresponding proof is provided in supplemental material.
5.2 Reconstruction by oating tangents interpolation

General case of N arcs Given N+ 1 oriented gate tangents

N smoothly connected circular arcs by ttingxactly one arde- 2 R. Starting f he initial poinb? h
tween two successive gates. Note that given two successiveigates @ 2 R. Starting from the |n|t|ai plompo, we can thus express any

andi+ 1, it is generally impossible to interpolate both poiatel new gate poinp?asp= I08+ 8= o akdy whereayof 0.y 19 are
tangents with one single circular arc. The usual way to overcome real (undetermined) scalars. Our constrained minimization prob-
this dif culty is to usebiarcs i.e., two smoothly connected circular  1em (3) is thus equivalent to solving the new unconstrained mini-
arcs [Bolton 1975; Nutbourne and Martin 1990; Yang and Du 1996; mization problem

Drysdale et al. 2008]. In contrast, our idea is that full interpolation

H N i1

produces amnnecessary over-constrainpdoblem. . o .. 0, © o

MiN pof aygeeon 1 A PO+ A @k Pilj* (4)
i=0

More precisely, given an input curve, we claim that satisfying ex- k=0

. . Note that the objective function, denotdd is quadraticw.r.t.
ing the general look of the curve. Actually, the approximated curve 0., .....

does not need to perfectly go through the gate points, as long as (@fmum that is found by simply solving the + 2 linear equations
the general look of the initial curve is preserved and (b) the new

gate pointgpd;:::;p$ remain in a close neighborhood of the initial 7t qf 7t _
gate pointgp; :::;pn. This new problem statement based on the in- =0 =0 and Ta - 0 8j2f0;::;N 1g
terpolation of oating tangents(i.e., tangents that are not assigned Pox Poy J

to prede ned base points) under some neighboring conditions on o o

their new (unknown) basefoints gives rise to an original scheme for Wherepg, andpg, are the two scalar components.

building an automaticallys--smooth curve made of piecewise cir-

cular arcs. To the best of our knowledge, this algorithm was never 5.3 Evaluation of our method

proposed in the past, neither in computer graphics nor in computer-

aided design. An obvious advantage is that, in contrast to the biarcsThough simple, our algorithm is, to the best of our knowledge, the
method, we araotlimited to an even numbeX of arcs. As shown rst one to t Gl-connected circular arcs to a sketched curve with
in section 5.3, our approach is also competitive in terms of recon- direct control over the number of arcs. In order to compare our
struction quality and computational performance, and nally offers work to previous methods, we adapted them so that they achieve

an interesting alternative to the traditional biarcs method. the same goal. We propose to compare our full algorithm to the
three following natural adaptations of previous approaches:

A constrained minimization problem Our goal is to minimize Our Segmentation method Coupled with a naive adapta_

the dlsotance (t))etween the original gate poppfs : :; py and the new tion of the curvature-based reconstruction by McCrae and

onespy; :::; Py that should be placed so that (a) two successive new Singh [2008], originally proposed in the case of clothoid arcs.

pointsplandpf, ; with their associated tangertfsandt;.  are co- ) _ )
circulart, and (b) the new gate tangettds: ::;t$ match the original Our segmentation method appliedjcarcs and coupled with
the biarc approach for interpolating pairs of gate points and

least squares minimization problem, tangents with two arcs.

The full biarc approach, directly testing the placemen%of
biarcs between all possible pairs of points among the input
data, without relying on prior segmentation.

minfp?gi=0:::N éll\iouplo p|JJ2
subjectto  (a) pd pS ; co-circular 8i=0:::N 1 (3)
(b) t/=1t 8i=0:::N.
We have implemented the construction of biarcs using the mathe-
matical details provided in [Park 2004]. The full biarc algorithm
relies on the same dynamic program as the one designed for our
segmentation, where the constant curvature test between two input
points is replaced with the biarc test. This kind of approach, often
implemented in computer-aided design because of the high degree
Case of one single arc  Let us rst have a look at the tting of a of precision it may offer, is however much slower than the other
single arc between two gates, and introduce the following lemma, approaches tested here.

We now express conditions @ so that the two above constraints
are satis ed. This will transform problem (3) into the newcon-
strainedminimization problem (4).

1Two pointspg andp; with their tangentsg andt; are co-circular if We have tested the 4 approaches on a panel of 10 different and rep-
there exists a circl€ passing througpo andp; with tangentdo andt;. resentative curves depicted in gure 4. The quality comparisons
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Figure 3: Quality comparisons between the 4 reconstruction methods. Left: quantitatmparison of the Frchet distance between the
reconstruction and the input sketch (averaged on the 10 sample gpfwestion of the number of arcs. Right: visual comparison on a sample
curve approximated with ¥ 18arcs.

presented in gure 3 and the performance comparisons were ob- Time performance  Mean time performance of the different t-
tained by averaging the results computed for each individual curve. ting algorithms based oN = 18 arcs was measured on a single
We only usedevennumbers of arcs in our tests due to the biarcs threaded application running on an Intel Core 2 Duo CPU at 2.8
constraint. We want to highlight that the average results are actu- GHz. Apart from the full biarc method which is particularly slow
ally very close to the individual ones: we did not encounter distinct (79 seconds on average), all approaches are fully interactive (be-
behaviors from one curve to another, whatever the reconstructiontween 23 and 42 milliseconds). Our approach as well as the adapta-
approach used. An exhaustive set of comparisons in the cases whetion of [McCrae and Singh 2008] both produce very fast piecewise
N = 10 andN = 20 arcs is provided in supplemental material. arcs reconstructions (23 milliseconds).

Limitations ~ Our geometric tting algorithm suffers from two
main limitations that correspond to extreme cases.

First, when the curve is simple with many arcs required, small arcs
may be created (despite our penalty teffpghgtr), possibly gener-
ating the appearance of extra loops. The reason is that points posi-
tions are not interpolated, so in case of short distances, gate points
might be switched in order to satisfy the tangents interpolation con-
straint. See gure 5 for an illustration. This problem could be over-
come by including a non-crossing constraint into the minimization
process, which would result in constraining the sign ofage

trt1

Figure 4: The 10 sample curves (converted into splines) we used -
for our tests. The average number of input points is 812 A\ b

Quality of reconstruction We measure the quality of the recon-
struction by evaluating the degree of similarity between the recon-
structed curve and the original one drawn by the user. This can
be naturally computed using theéchet distanc§Alt and Godau
1995]. In practice, we have implemented the discrefcket dis-
tance algorithm introduced by Eiter and Mannila [1994]. Figure 3, —
left, displays the mean Echet distance (in pixels) function of the

numberN of circular arcs of the reconstruction. Note that our geo-

metric tting method gives the closest approximation to the original

curve in the rangd&l = 2;::: 14, and keeps on giving good results

for a high number of elements with a quality similar to the biarcs

method coupled to our segmentation. As expected, the full biarc

method yields a superior quality of reconstruction, butonly for high  Figyre 5: One limitation of our method when a large number of
Values OfN The naiVe adaptation Of [I\/ICCrae and S|ngh 2008] to arcs is required for a Simp'e curve (28 arcs here)_

circular arcs fails in capturing the initial curve geometry accurately,
even in the presence of a large number of arcs. This is mainly due
to the length preservation constraint.

Second, when the number of arcs is clearly not suf cient for repre-
senting the input curve, the tting can be very approximate. Imag-
Another interesting property of our approach compared to others ine for example that the user chooses a single arc to match an input
is themonotonicdecreasing of the Echet distance on average as curve having an in ection point +e., at least two curvatures with

N increases. The user can then reasonably expect the geometridiifferent sign. One way to prevent such a mismatch could be to au-
precision to increase when increasing the resolution of the model. tomatically compute an estimation of the minimal number of arcs



required to guarantee a reasonable approximation — based for examwhereEg, is the internal elastic energy of the rod,

ple on the number of in ection points of the curve. As the process is zZ. )

interactive, the user can alternatively manually increase the number Eq = El k(s) Kk%s) ds,

of arcs so that he/she quickly achieves the desired resolution. 2

Note that apart from these degenerate cases, our method yield@NdEg its gravitational energy (witly the constant of gravity),

high-quality results that are competitive compared to previous Z

methods, both in terms of quality and performance. The detailed Eg=rSg (L 9)sin(q(s))ds.

set of comparison results obtained fér= 10 andN = 20 arcs is 0

provided in supplemental material. When the curvaturé(s) is a piecewise constant function, the dis-
crete potential energy can be analytically calculated by decomposi-

6 Dynamic tting tion over each element of the rod. We refer the reader to the sup-

plemental material for the exact expression of the discrete potential
. N 1 . energy. The key observation is that while this is a fairly complex
The output of the gﬁtometrlc tting is &"-smooth curve with o iinear function of our tted curvaturee'™, it appears as a sim-
clamped orientatiorg,~, made ofN circular arcs with curvature ple (af ne or quadratic) function of our actual unknowns, El

kifit and length’ ifit' which closely approximates the input curve andk®. This will allow for easy derivations and intuitive results as

drawn by the user. Latf (resp.” fit) denote the vector collecting ~ Shown in the following.

the N curvatureskif't (resp. theN element Iengthéif't) resulting o o ,

from the geometric tting. Our goal is now to recover the physi- 6-2 Finding an equilibrium under gravity

cal parameters of a super-circle which woelkhctlygenerate this . o )
piecewise arcs curve as a stable equilibrium shape resulting fromOUr goal is to nd the parameteifsl, r Sandk® such thatEp is
the counter-balance effects of elasticity and gravity. This amounts &t & local minimum, implying that equation (6) is satis ed. This is
to searching for a local minimum of the potential eneEgyof the ~ actually equivalent to solving the static equation

rod, evaluated at the tted values. This problem can be mathemati- ; fit o fit ~ fi

cally formulated as P K (k™ k%)= B(g":k™™) ®)

. N derived from equation (1), where the stiffness makixdepends
nd (r SEI;k®) = argminocEp(g";k fit; fit). (5) on the paramete| and the forces vectds on the parameterS.
Without any computation, a simple look at this static equation pro-
vides the answer to our problem: Bsandr Sare constant param-

Thanks to the compact and intuitive parameterization of the super- eters along the rod, equation (8) (and thus equation (6)) admits the
circle model, we show in the following that this minimization prob-  ynique solution fok®,

lem can actually be decomposed into two simple steps:

0 _ g fit 1 fit. o fit .~ fit
Find the natural curvatures veck? yielding the equilibrium, k™= k K “B(go k™) ©)
i.e, nd kO such that while El andr Scan freely span the entire positive real space.
NEp(quit;kfit ~fity = g (6) Note that the expression f&® which satis es the equilibrium de-

pends on th&l andr Sparameters. It should thus be re-evaluated
each time one of these parameters is modi ed (see our full algo-
Find the lineic mass Sand the stiffness moduluB! yielding rithm in Figure 7).
a stable equilibriumi,e., nd r SandEI such that
o 6.3 Finding a stable equilibrium under gravity
RPEp(gp" k™) > . )
Evaluating the stability of the equilibrium requires the computation
of the Hessian matrikiEp: the equilibrium will be stable iR?Ep,
In the next sections, we prove that these two sub-probtdmays is a positive-de nite matrixj.e., characterized by strictly positive
have a solution. More precisely, the equilibrium problem (6) has eigenvalue’
a unique solution fok® which is found by trivially solvingN lin-
ear scalar equations. The stable equilibrium problem (7) has an
in nity of solutions and we show that we can always ndawver
boundfor the ratiorE—'S that guarantees the stability of the equilib-

rium. Intuitively, this means that we can naturally bend and carve .o (and not okO). Furthermore, this dependencyliisear,

g]cilgori ;cc’r:ht?]t(’)suen?n?;gsrg‘é'%y t?ﬁea}ﬁtgﬂ ggg’nﬁg? 'C\)/Tot:leeo\l;g? %’; and theEl pararpgter is located on tkdéagonal termf the matrix.
increasing the stiffness (or reducing the mass) as much as needec:ljyI ore preciselyN“Ep can be expressed as

Expression of the Hessian ~ The analytical derivation of the Hes-
sian is provided in supplemental material. The key is to observe that
N2Ep is a symmetric matrix thainly depends on theSandE| pa-

we can always reach a threshold beyond which the equilibrium be- K2E. = EID+ rSS (10)
comes stable. Figure 6 demonstrates the impact of stability of the P
equilibrium when subsequently deforming the curve. whereD is a diagonal matrix witD; = “j; 8i = 1:::N, andS a

dense symmetric matrix. Note that the two matrieandS are

6.1 Potential energy of a super-circle independentf the parametergl, r S, andk®.

) . 2This condition is actually suf cient but not necessary faving a stable
The potential energy of the general (space-continuous) Euler elas-equilibrium. When some eigenvalues of the Hessian are zerostungd
tica under gravity reads [Bertails et al. 2005] theoretically have a look at the sign of the higher ordenaities ofEp.
In practice however, we never encountered such a case asdrttited our
Ep= Eg+ Eq stability study to the second order.
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Figure 6: Impact of the equilibrium stability on the example of a character's tail agprated by N= 2 circular arcs. After matching the
input curve as an equilibrium position of the super-circle model (a), ¥peBment consists in applying vanishing forces to the rod (here, the
user pulls the tail to the right, and then lets it go) and observing the new equitibstate (b). Our stability algorithm was only applied in
the case depicted on the right, where we indeed observe a stable régirpas opposed to the left part of the gure. The top row shows the
2d con guration of the character's tail. In the bottom row we have plotteith whe help of Scilab (http://www.scilab.org), the contour lines
of the potential energy as well as the trajectory followed by the two curvakyrand k» during the experiment. As expected, the rod comes
back to its original rest shape in the case when the equilibrium is stable (feterll, in blue), in contrast to the unstable equilibrium case
where the new rod con guration (necessary a local minimum) maytlyréiffer from the original one (here a saddle point, in red).

A suf cient condition for stability Our goal is to nd a condi- eitherincreasing Elor decreasing S, the stability of the rest shape
tion on the remaining parametdfs$ andr Sso that the eigenvalues  under gravity can thualwaysbe guaranteed, whatever the input
of N2E,, are strictly positive. The study of eigenvalues is a dif cult ~ curve is. More precisely, we can de ne the thresholds
research eld which is still active in mathematics. Results related | NY)
to eigenvalues of a sum of real symmetric matrices have been ob- Elnin= r S% + e and rSnax= El— es

N

N
tained a few decades ago only [Fulton 2000]. We use such a result In

to nd a suf cient condition on rE—'S so that the HessiaN?E, is for the parameterg| andr S, whereez| ande, g are arbitrary small

positive-de nite. positive values. The equilibrium will be guaranteed to be stable
<o . . ) . if El = Elmin Or r S= r Snax.  The choice for playing on one or
As SandN°Ep are real symmetric matrices, they are diagonaliz- tne other parameter is left to the user for letting him/her precisely

able, Letl 1;:::; 1 n (resp.m;::; i) be the eigenvalues &(resp. control the stiffness or the mass of the rod.
of N?Ep) sorted in decreasing order. Similarly, 1dt:::;°$ be the

sorted eigenvalues (diagonal terms)nf Applying Horn's theo-

rem [Fulton 2000], we have How to increase stability =~ The potential well is all the more steep
as the eigenvaluag are large. This means that the level of stability
8i;j;ksuchthai+ j= N+ k; m El ‘(]J+ rsii, — or the attraction power of the equilibrium — can still be improved
by increasingel (resp. decreasingS) beyond the thresholBIyin
which, in the special case whé&= N andi= j = N, reads (resp.r Snay. In practice, this can be useful for an animator who
would like to have the rod recover its initial con guration even after
m El ‘,Ql +rSiN (11) being largely displaced and deformed. In the video game applica-
tion (see section 7), we have assigriedto 1:5E Iy, so that the
with my = minjf mg, ‘% = minjf*jg, and/ y = min;f [ jg. rope is guaranteed to always come back to its initial rest shape,

. . ) whatever the amplitude of deformations.
Equation (11) provides a lower bound for the smallest eigenvalue of

N2E,. It thus yields a suf cient condition offL for guaranteein . . .
P 4 r% 9 g Time performance  Computing a stable con guration for a given

thatall the eigenvaluesy of N?Ej, are strictly positive, curve consists in two steps: rst, evaluating the lower bound of
equation (12) and initializinde| (or r ) accordingly, and second,
El S In (12) solving the diagonal system (9) of sikke For curves made of tens
rs ‘,9, ' of circular arcs, these computations are instantaneous. When con-

verting the piecewise reconstructions of our 10 sample curves (de-
We remind the reader thaj and‘% are frozen once the curve rest  picted in gure 4) into stable rest shapes, we have measured a mean
shape has been provided b%/ the user, (they are independent of  computational time ranging betweerlOnilliseconds (folN = 10
our parameters S, El andk®). According to equation (12), by  arcs) and (b milliseconds (foN = 30 arcs).
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Figure 7: Our full algorithm, from the user's viewpoint.

7 Results the character horizontally (using arrow keys). When ready to per-

. . . . o form the jump, he/she lets the character be pulled by the rope (by
Figure 7 summarizes the algorithm provided to the user for initial- pressing space bar) until making the character drop the rope (space
izing an animation with the guarantee of starting with a stable con- pay again).

guration. Based on this pipeline we present two applications: a2d o ) -
animation creation tool and a simple video game. This application demonstrates again the need for a stable equilib-

rium under gravity. This property is typically used by the game
Animation design ~ Our rst application aims at producing sec-  player to pull the character by letting the rope go back to its origi-
ondary motions in 2d animation. Figure 8 and the accompanying nal shape. It also shows an example where the geometry is totally
video show an example where the user sketches some hair strandgart of the curve behavior and therefore of the game design. As
attached to a head modeled as a simple textured quad. The sketcheshown in the video, designing a straight curve causes a failure be-
curves are automatically converted into super-circles with a given cause it may be too short and may also lack elasticity. The user
number of arcs (we typically chose 8 or 10 arcs per curve). When has to use well placed loops to compensate for the inextensibility
the head moves, either using a prede ned motion or via user in- of the rod. After several tests and trials, various funny and intuitive
teraction, the hair follows the head motion, giving rise to natural solutions are possible to win the game.
secondary motions. To obtain our nal result we simply render
each curve using a black colored triangle strip with a width linearly
decreasing along the curve.

Such applications show how intuitive it is for an artist to design a

physics-based animation from an input geometry. The stable equi-
librium computation guarantees that the hair strands will recover
their initial shape most of the time. Of course, very large head mo-
tions may lead to another equilibrium shape, as in the real world.

Figure 9: Video game application. By drawing a curve that is
automatically converted into a dynamic rope, the user tries to make
the character jump from the right block to the left one.

Limitations and Future Work Our approach is currently limited

to 2d smooth open curves clamped at one end, subject to a known
external force such as gravity. Based on the recursive algorithm for
a super-helix [Bertails 2009], we show in the supplemental video a
preliminary extension to tree-like structures. In the short term we
plan to extend our dynamic tting to account for various constraints
applied to the rod model (such as multiple anchor points) where
the constraint forces would be part of the unknowns in the stability
problem. In the longer term we would like to extend our approach to
Physically-based Video Game  Our second application is a the handling of sharp corners as well as closed contours, which have
small video game whose goal is to make a character jump betweena lot of applications in 2d animation. Our space control approach
two blocks using a dynamic rope. We show an example in gure 9 could also be interestingly combined to motion control techniques
and in the accompanying video. The user rst draws a curve be- such as the one described in [Barbind Popowi 2008], in order to
tween a given anchor point and the character. Then, he/she movegproduce a full key-framing process. Finally, extending our method

Figure 8: 2d animation application. The user sketches some hair
strands and a scarf. Once they have been converted into dynamic
strands, they naturally follow the head motion and recover their
initial shape when the motion ends.



to the 3d coupling between a skew curve and a rod model with twist BERTAILS, F. 2009. Linear time super-helic&domputer Graphics

would open the way for a large number of applications in reverse

engineering. Note that our dynamic tting can be straightforwardly
extended to super-helices. Actually the only dif cult part would be
the geometric tting into piecewise helices.

8 Conclusion

We have presented a new method for automatically tting a

Forum (Proceedings of Eurographics'09) 28 (apr).

BoLToON, K. 1975. Biarc curves.Journal of Computer Aided
Design 7 89-92.

DRYSDALE, R. S., POTE, G., AND STURM, A. 2008. Approxi-
mation of an open polygonal curve with a minimum number of
circular arcs and biarcs€Computational Geometry: Theory and
Applications 411-2, 31-47.

sketched curve into the stable rest shape of a dynamic rod under

gravity. Our approach relies on two original algorithms, one dedi-
cated to thgeometrictting with precise control of the resolution,
and the other one to thynamic tting with precise control of the

stability. We have demonstrated the advantages of our approach

EITER, T., AND MANNILA, H. 1994. Computing discreteéfchet
distance. Tech. rep., Technische Universitat Wien.

FEATHERSTONE R. 1983. The calculation of robot dynamics us-
ing articulated-body inertiasinternational Journal of Robotics

on animation design and physically-based video game. We believe  Research 21, 13-30.

that such a method opens the way for new intuitive interfaces for

coupling input geometry and dynamics.
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