

Optimization of Electrical Production

The production of electricity in France is optimized everyday with the help of a mathematical software developed at Inria, in collaboration with EDF R&D. Substantial performance is achieved, in terms of robustness, computation time and overall production cost.

Notation – French Model 80% nuclear - thermal • $n \simeq 200$ existing power units 3% fuel+coal - hydro-valleys 17%

Solution Approach

Problem = Large-scale + Heterogeneous

too complex but decomposable via Lagrangian duality

$$\min \sum_{i} c_i(p_i) - u \cdot \sum_{i} p_i$$

"price"

For given u, this is n independent problems!

Centralized prices u

- T = 96 time periods (2 days × 48 half-hours)
- Production schedule $p_i = (p_i^1, \dots, p_i^T) \in P_i$ of unit *i* technological constraints
- Production cost $c_i(p_i)$ of unit *i* (fuel+coal only)
- Demand (known) d^t at time t including spinning reserve

 $\min_{p \in \prod_i P_i} \sum_i c_i(p_i), \text{ subject to } \sum_i p_i^t \ge d^t, t = 1, \dots, T$

Thermal Units

- Control variable = output p
- Off or On
- $0 < p_{\min} \leq p \leq p_{\max}$
- Minimum duration at given level

Compute adequate prices to recover ignored constraints

Duality theory: this is to maximize a concave function of u $\sum_{i} c_i(p_i(u)) - u \cdot \left(\sum_{i} p_i(u) - d\right)$

Bottomline

- May or may not produce spinning reserve
- Ramping constraints when changing level
- etc.

too complex but discretized (4 values: 0, p_{\min} , p_{inter} , p_{max})

 \implies amenable to dynamic programming

• Control variable = flow w through turbine

- Only heuristic suboptimal productions BUT:
- Relevant information on marginal prices
- Lower bound on optimal cost

- Lake^{t+1} = Lake^t + Rain^t + $(w^{\downarrow})^{t-\tau} (w_{\downarrow})^{t}$ $w^{\downarrow}, w_{\downarrow}$: incoming, outgoing flows; τ : delay between lakes
- $\exists w < 0$: pumping upstream
- Nominal turbine speeds $\implies w$ discrete $\in \{0, w_1, w_2, w_3\}$

 \implies amenable to linear programming + postprocessing to adjust flows

Bipop – Claude Lemaréchal Work initiated by the former research teams Promath, Numopt