Poursuite de trajectoires dans les systèmes Lagrangiens de complémentarité.

Jean-Matthieu Bourgeot et Bernard Brogliato INRIA Rhône-Alpes, 655 avenue de l'Europe 38330 Montbonnot, France

Résumé

In this paper we study the tracking control of Lagrangian systems subject to frictionless unilateral constraints. The stability analysis incorporates the hybrid and nonsmooth dynamical feature of the overall system. The difference between tracking control for unconstrained systems and unilaterally constrained ones, is explained in terms of closed-loop invariant trajectories and control signals. This work provides details on the conditions of existence of a controller which guarantees asymptotic stability.

Thème-clé: Commande de systèmes mécaniques non réguliers.

1 Introduction

Dans cet article nous étudions la poursuite de trajectoires pour des systèmes mécaniques Lagrangiens soumis à des contraintes unilatérales sans frottements. Ces systèmes peuvent évoluer suivant trois types de mouvements: i) une phase de déplacement libre, ii) une phase complètement contrainte, iii) une phase de transition qui permet de stabiliser le système sur une surface. En partant des résultats de [3] [4] nous précisons les conditions sous lesquelles la stabilité est assurée.

Par exemple le cas d'un système à n degrés de liberté $(n \geq 2)$ est résolu dans [3] seulement si une certaine matrice est Jacobienne, ce qui est restrictif comme on peut le voir dans les exemples de [2, §8.6]. Dans [4] l'existence d'une trajectoire spécifique pour la phase de transition est supposée, sans être prouvée. Ces deux points sont abordés dans ce papier.

1.1 Dynamique

Soit $X \in \mathbb{R}^n$ le vecteur de coordonnées généralisées. Les systèmes étudiés dans ce papier sont des systèmes Lagrangiens contraints unilatéralement, avec une fonction Lagrangienne $\mathcal{L} = \frac{1}{2}\dot{X}^TM(X)\dot{X} - U(X)$, où $T(X,\dot{X}) = \frac{1}{2}\dot{X}^TM(X)\dot{X}$ représente l'énergie cinétique, U(X) représente l'énergie potentielle. La dynamique du système peut s'écrire sous la forme :

$$\begin{cases} M(X)\ddot{X} + C(X,\dot{X})\dot{X} + G(X) = u + \nabla F(X)\lambda_X \\ F(X) \ge 0, \quad F(X)^T\lambda_X = 0, \quad \lambda_X \ge 0 \\ \text{Loi de choc} \end{cases}$$

où $M(X) = M^T(X) > 0 \in \mathbb{R}^{n \times n}$ est la matrice d'inertie, $F(X) \in \mathbb{R}^m$ représente la distance entre le système et la surface de la contrainte, $\lambda_X \in \mathbb{R}^m$ est le multiplicateur de Lagrange associé à la contrainte, $u \in \mathbb{R}^n$ est le vecteur généralisé de la commande, $C(X,\dot{X})$ représente la matrice des effets de Coriolis et centripètes, G(X) contient les force conservatives. ∇ représente le gradient. Les instants d'impact seront notés dans la suite par t_k . Le domaine admissible Φ est le domaine fermé de l'espace de configuration dans lequel le système peut évoluer $(\Phi = \{X|F(X) \geq 0\})$. Le bord de Φ est noté $\partial\Phi$. Une loi de choc est nécessaire pour intégrer le système (1) et pour rendre le domaine Φ invariant. Pour ce travail nous choisissons la loi de [6]:

$$\dot{X}(t_k^+) = -e_n \dot{X}(t_k^-) + (1 + e_n) \arg \min_{z \in T_{\Phi}(X(t_k))}$$

$$\frac{1}{2}[z - \dot{X}(t_k^-)]^T M(X(t_k))[z - \dot{X}(t_k^-)]$$
(2)

où $\dot{X}(t_k^+)$ représente la vitesse post-impact, $\dot{X}(t_k^-)$ la vitesse pré-impact, $T_{\Phi}(X(t))$ le cône tangent de Φ au point X(t) et e_n est le coefficient de restitution, $e_n \in [0,1]$.

La loi de restitution dans (2) implique une perte d'énergie cinétique à chaque impact, cette perte est donnée par :

$$T_{L}(t_{k}) = -\frac{1}{2} \frac{1-e_{n}}{1+e_{n}} \left[\dot{X}(t_{k}^{+}) - \dot{X}(t_{k}^{-}) \right]^{T} M(q(t_{k}))$$
$$\left[\dot{X}(t_{k}^{+}) - \dot{X}(t_{k}^{-}) \right] \leq 0$$
(3)

1.2 Tâche cyclique

Dans ce papier nous nous limitons à l'étude de tâches cycliques composées d'une succession de mouvements libres avec des mouvements complètement contraints (phases Ω_k). Pendant la transition entre la phase libre et la phase complètement contrainte, la dynamique du système passe par une phase de transition I_k . La transition phase-contrainte/phase-libre est quant à elle instantanée (il suffit de s'assurer que l'accélération $\frac{d^2}{dt^2}(F(X(t)))$ soit positive pour qu'il y ait décollage). Dans le domaine temporel nous pouvons représenter une tâche cyclique par la décomposition suivante:

$$IR^{+} = \underbrace{\Omega_{0} \cup I_{0} \cup \Omega_{1}}_{\text{cycle } 0} \cup \Omega_{2} \cup I_{1} \cup \dots \underbrace{\cup \Omega_{2k} \cup I_{k} \cup \Omega_{2k+1}}_{\text{cycle } k} \cup \dots$$

$$(4)$$

(1)

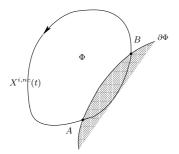


Fig. 1 – Trajectoire non contrainte.

où Ω_{2k} représente l'intervalle de temps associé au mouvement libre et Ω_{2k+1} pour les phases complètements contraintes.

Les points i) et ii) de l'introduction impliquent que la trajectoire désirée (noté $X^{i,nc}(\cdot)$) soit de la forme indiquée sur la figure 1. Il est clair que pour avoir une phase contrainte il faut avoir $F(X^{i,nc}(t)) <$ 0 pour $t \in \Omega_{2k+1}$, autrement nous n'aurions pas de force de contact lorsque le système suit parfaitement la trajectoire de référence. En conséquence il existe un point A dans l'espace de configuration, tel que $X^{i,nc}(\cdot)$ est transversale à $\partial \Phi$ en A. Ce point est le début de la phase de transition. La gestion de cette phase de transition est le point clef du problème traité dans ce travail. Une première idée serait d'imposer un contact tangentiel, i.e. avec $\nabla F(X_d^*)^T \dot{X}_d^* = 0$, où $X_d^*(\cdot)$ est le signal de référence utilisé dans la loi de commande (les différences entre $X_d^*(\cdot)$, et $X^{i,nc}(\cdot)$ seront expliquées plus loin). Mais:

- $-\alpha$) A cause des erreurs initiales $X(0) X_d^*(0) \neq 0$, et $\dot{X}(0) \dot{X}_d^*(0) \neq 0$, des impacts peuvent quand même se produire.
- $-\beta$) Ce n'est pas une stratégie de commande robuste puisque une mauvaise estimation de la position de la contrainte peut faire que le système ne se stabilise pas du tout sur la surface $\partial\Phi$. C'est pour cela qu'il est préférable d'utiliser une stratégie qui impose des collisions avec $\partial\Phi$.
- $-\gamma$) Dans tous les cas, les impacts doivent être inclus dans l'analyse de stabilité.
- $-\delta$) Une bonne stratégie pour une stabilisation sur $\partial\Phi$ est de recréer une dynamique en boucle fermée qui copie la dynamique d'une balle qui rebondit par terre $\ddot{X}=-g,~X\geq 0$, car ceci est très robuste vis-à-vis des incertitudes sur la position de la contrainte.

Nous verrons dans la section suivante que le type de stabilité que nous recherchons est basé sur l'utilisation d'une même fonction de Lyapunov $V(X,\dot{X},t)$ pour les différentes phases. Les points suivants mettent en évidence les contraintes liées à l'étude de tels systèmes :

- a) Il y a des couplages non nuls entre les coordonnées "tangentielles" et "normales". La matrice d'inertie M(X) n'est pas diagonale par blocs dans les coordonnées utilisées.
- b)La fonction $V(X, \dot{X}, t)$ doit être unique pour

- toutes les phases, i.e. pour Ω_{2k} (ODE), Ω_{2k+1} (DAE), et pour I_k (MDE).
- c) Si $V \equiv 0$ alors un saut dans les vitesses $\dot{q}(t_k^+) \neq \dot{q}(t_k^-)$ implique un saut positif $V(t_k^+) V(t_k^-) > 0$ dans la fonction de Lyapunov. Cela veut dire que des impacts vont généralement exclure toute convergence asymptotique.
- d) La fonction V doit satisfaire V = 0 lorsque la trajectoire désirée du système en boucle fermée est parfaitement suivie. Ceci implique que la trajectoire désirée du système contraint doit être utilisée dans la définition de V.

Ce problème de poursuite de trajectoire est donc sujet à de nombreuses contraintes. Le contrôleur que nous proposerons devra satisfaire les points énoncés précédemment, or certains d'entre eux sont parfois antagonistes (par exemple les points β) et \mathbf{c})). En effet le point \mathbf{c}) nous empêche d'avoir un contrôleur qui provoque encore des collisions lorsque le temps tend vers l'infini.

Pour clarifier les points précédents nous allons étudier un système à un degré de liberté:

$$\begin{cases} (\ddot{X} - \ddot{X}_{d}^{*}) + \gamma_{2}(\dot{X} - \dot{X}_{d}^{*}) + \gamma_{1}(X - X_{d}^{*}) = \lambda \\ 0 \leq X \perp \lambda \geq 0 \\ \dot{X}(t_{k}^{+}) = -e_{n}\dot{X}(t_{k}^{-}) \end{cases}$$
(5)

où $X_d^*(\cdot)$ est une fonction deux fois dérivable, $\gamma_2 > 0$, $\gamma_1 > 0$. Le symbole "\pm" signifie que X et λ sont orthogonal, i.e. $X\lambda=0.$ Il est clair que $X^{i,nc}\equiv X_d^*.$ Si $X_d^*(t) < 0$ sur une portion de I, alors la trajectoire désirée du système contraint ne peut pas être $X_d^*(\cdot)$, puisque $X_d^*(\cdot) < 0$ n'est pas atteignable. Dans ce cas, la trajectoire désirée sera simplement 0 sur I. Le point \mathbf{d}) implique que la fonction V utilisée dans l'analyse de stabilité (i.e. une fonction quadratique de l'erreur de poursuite) doit être nulle sur Ω_{2k+1} (phases complètement contraintes). Par conséquent la fonction de Lyapunov devra être choisie telle que sur I_k et sur Ω_{2k+1} on ait V(X,X,t)=0, puisque la trajectoire désirée est zéro sur ces phases (même lors des phases de rebonds). On en conclut que l'erreur de poursuite $\tilde{X}(\cdot)$ utilisée dans $V(\cdot)$ doit satisfaire $\tilde{X}(\cdot) = 0$ pour que $V(\tilde{X} = 0, \tilde{X} = 0) = 0$. Donc $\tilde{X}(\cdot)$ ne peut pas être défini à partir de $X_d^*(\cdot)$ ni de $X^{i,nc}$ mais à partir d'un troisième signal que nous noterons $X_d(\cdot)$.

Clarifions encore une fois la différence entre $X_d^*(\cdot)$ et $X_d(\cdot)$. Prenons $X_d^* < 0$ constant dans (5). Nous avons donc $X^{i,nc} = X_d^*$ pour le système non contraint, par contre le point fixe du système contraint est $(X,\dot{X}) = (0,0)$, et nous devons avoir $V(X=0,\dot{X}=0)=0$. En conséquence nous devons définir $X_d=0$ pendant la phase de stabilisation. Dans ce qui suit nous noterons $\tilde{X}=X-X_d$ et $\bar{X}=X-X_d^*$. En général nous avons $X^{i,nc} \neq X_d^*$ car X_d^* peut devoir évoluer d'une phase de transition I_k à l'autre I_{k+1} .

La stratégie de commande que nous développerons par la suite prend en compte toutes ces contraintes, et en particulier elle impose bien une trajectoire désirée $X^{i,nc}$ tel que décrite sur la figure 2. Pour la

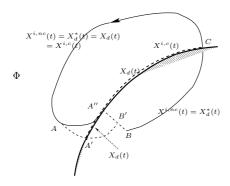


Fig. 2 – Les trajectoires désirées du système.

trajectoire désirée $X^{i,nc}$ le contact se fait de façon tangentiel en A'', à cet instant le contrôle en force débute, ce qui explique le saut de $X^{i,nc}$ entre A'' et B.

Pour tenir compte du point β) et imposer au système une dynamique proche de celle d'une balle qui rebondit par terre il faut que $X_d^*(\cdot)$ puisse violer la contrainte pendant la phase de transition (entre les points A et B' de la figure 2), par contre $X_d^*(\cdot)$ doit tendre vers la trajectoire de l'approche tangentielle après un nombre fini ou infini de cycles pour pouvoir satisfaire les points c) et d). Entre les points B et C, le système est dans une phase Ω_{2k+1} . La trajectoire en pointillés entre AA'B'de la figure 2 représente $X_d^*(\cdot)$ pendant la phase de transition avec impacts. Le système se stabilise sur $\partial \Phi$ entre les points A et B' puis le contrôleur commute sur un contrôle en force, c'est pourquoi $X^{i,nc}(\cdot)$ et $X_d^*(\cdot)$ peuvent sauter en B. Dans le schéma de commande proposé plus tard, le point B' va converger (en un nombre fini ou infini de cycles) vers A''. Ce qui nous permet de définir la trajectoire désirée du système contraint en boucle fermée comme étant la courbe (CAA''C) notée $X^{i,c}(\cdot)$. Cette trajectoire est sans impact.

Supposons que le but soit d'obtenir la poursuite asymptotique d'une trajectoire périodique. Sur la figure 2 seules les orbites de $X^{i,nc}(\cdot)$ (i.e. AA''BCA) et $X^{i,c}(\cdot)$ (i.e. AA''CA) sont fixées. Les deux autres orbites peuvent varier d'un cycle $\Omega_2k \cup I_k \cup \Omega_{2k+1}$ à l'autre. Sur une phase I_k le point fixe du système en boucle fermée est $X_d \in \partial \Phi$ (A'A'') qui est différent de $X_d^* \notin \Phi$ (A'B'). La courbe (AA'B') et le point A' changent d'un cycle $\Omega_{2k} \cup I_k \cup \Omega_{2k+1}$ à l'autre $\Omega_{2k+2} \cup I_{k+1} \cup \Omega_{2k+3}$.

Pour résumer, la stratégie de commande et l'analyse de stabilité vont devoir utiliser quatre trajectoires différentes: $X_d^*(\cdot)$ comme entrée pour la commande, $X_d(\cdot)$ pour la fonction de Lyapunov , $X^{i,nc}(\cdot)$ étant la trajectoire désirée du système sans la contrainte et $X^{i,c}(\cdot)$ la trajectoire désirée du système bouclé que l'on atteint asympotiquement.

Nous voyons ici la principale différence par rapport au contrôle de systèmes non contraints pour lesquels les quatre trajectoires sont confondues, habituellement noté $X_d(\cdot)$.

2 Critère de Stabilité

Le critère de stabilité utilisé dans ce papier est une extension de la seconde méthode de Lyapunov. Cette extension adaptée aux systèmes mécaniques soumis à des contraintes unilatérales a été proposée dans [3] et [4]. Soit $x(\cdot)$ l'état du système (1) en boucle fermée avec un contrôleur par retour d'état $u(X, \dot{X}, t)$.

Définition 1 (Système faiblement Ω -stable) Le système est faiblement Ω -stable si pour tout $\epsilon > 0$, il existe $\delta(\epsilon) > 0$ tel que $\parallel x(0) \parallel \leq \delta(\epsilon) \Rightarrow \parallel x(t) \parallel \leq \epsilon$ pour tout $t \geq 0$, ≥ 0 , $t \in \Omega = \cup_{k \geq 0} \Omega_k$. Si de plus $x(t) \longrightarrow 0$ quand $t \longrightarrow +\infty$, $t \in \Omega$, alors le système est asymptotiquement faiblement stable. Le système est pratiquement faiblement stable s'il existe une boule de rayon R > 0 centrée en x = 0, et telle que $x(t) \in B(0,R)$ pour tout $t \geq T$; $T < +\infty$, $t \in \Omega$, $R < +\infty$.

Définissons l'application de Poincaré associée à la section $\Sigma_{\mathcal{I}}^- = \{x|F_i(X) = 0, \dot{X}^T \nabla F_i(X) < 0, i \in \mathcal{I}\}$ où \mathcal{I} est un sous-ensemble de $\{1, \cdots, m\}$:

$$P_{\Sigma_{\mathcal{I}}}: \quad \Sigma_{\mathcal{I}}^{-} \to \Sigma_{\mathcal{I}}^{-} x_{\Sigma_{\mathcal{I}}}(k) \mapsto x_{\Sigma_{\mathcal{I}}}(k+1).$$
 (6)

où $x_{\Sigma_{\mathcal{I}}}$ est l'état de $P_{\Sigma_{\mathcal{I}}}$. Introduisons la fonction définie positive $V(\cdot)$ qui servira à l'analyse de stabilité. Soit $V_{\Sigma_{\mathcal{I}}}$ la restriction de V sur $\Sigma_{\mathcal{I}}$.

Définition 2 (Système fortement stable) Le système est dit fortement stable si: (i) il est faiblement Ω -stable, (ii) sur les phases I_k , $P_{\Sigma_{\mathcal{I}}}$ est stable au sens de Lyapunov en utilisant la fonction $V_{\Sigma_{\mathcal{I}}}$, et (iii) la suite $\{t_k\}_{k\in\mathbb{N}}$ possède un point d'accumulation en temps fini $t_{\infty} < +\infty$.

Définissons la fonction de saut par $\sigma_f(t) = f(t^+) - f(t^-)$ et $\lambda[.]$ comme étant la mesure de Lebesgue. Soit $V(\cdot)$ qui satisfait $\beta(||x||) \geq V(x) \geq \alpha(||x||)$, $\alpha(0) = 0$, $\beta(0) = 0$, $\alpha(\cdot)$ et $\beta(\cdot)$ strictement croissantes. Soit $I_k = [\tau_0^k, t_f^k]$.

Proposition 1 (Stabilité Faible [3]) Supposons que la tâche soit de la forme de (4), et que:

- (a) $\lambda[\Omega] = +\infty$,
- **(b)** pour tout $k \in \mathbb{N}$, $\lambda[I_k] < +\infty$,
- (c) $V(x(t_f^k), t_f^k) \le V(x(\tau_0^k), \tau_0^k),$
- (d) V(x(.),.) uniformément bornée sur toutes les phases I_k .

Si sur Ω , $\dot{V}(x(t),t) \leq 0$ et $\sigma_{V}(t_{k}) \leq 0$ pour tout $k \geq 0$, alors le système en boucle fermée est faiblement Ω -stable. Si $\dot{V}(x(t),t) \leq -\gamma(\parallel x(t) \parallel), \ \gamma(0) = 0, \ \gamma(\cdot)$ strictement croissante, alors le système est asymptotiquement faiblement Ω -stable.

Proposition 2 (Stabilité Faible) Supposons que les points (a) et (b) de la proposition (1) soient satisfaits. Si:

- (a) A l'extérieur des phases I_k , $\dot{V}(t) = -\gamma V(t)$ pour un $\gamma > 0$,
- (b) pour les phases I_k , $V(t_{k+1}^-) V(t_k^+) \le 0$,
- (c) le système est initialisé dans Ω_0 avec $V(\tau_0^0) \leq 1$,

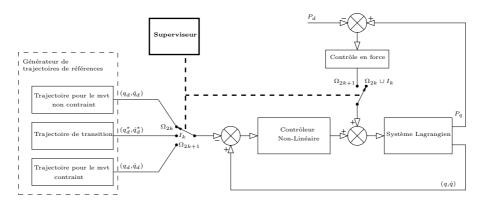


Fig. 3 – Schéma bloc

(d) - $\sum_{k\geq 0} \sigma_V(t_k) \leq KV^{\kappa}(\tau_0^k) + \epsilon \ pour \ \kappa \geq 0, \ K \geq 0$ et $\epsilon \geq 0$.

Alors il existe une constante $N<+\infty$ telle que $\lambda[t_{\infty}^k,t_f^k]=N$, pour tout $k\geq 0$ (l'indice du cycle), et telle que:

- (i) $Si \ \kappa \ge 1$, $\epsilon = 0$ et $N = \frac{1}{\gamma}ln(\frac{1+K}{\delta})$ pour un $0 < \delta < 1$, alors $V(\tau_0^{k+1}) \le \delta V(\tau_0^k)$. Le système est asymptotiquement faiblement stable.
- (ii) $Si \ \kappa < 1$, $alors \ V(\tau_0^k) \le \delta(\gamma)$, où $\delta(\gamma)$ peut être choisi arbitrairement faible en augmentant γ . Le système est pratiquement faiblement stable avec $R = \alpha^{-1}(\delta(\gamma))$.

Preuve: voir [1].

Proposition 3 (Stabilité Forte [3]) Le système est fortement stable si en plus des conditions de la proposition 1 nous avons: $V(t_{k+1}^-) \leq V(t_k^-)$ et V uniformément bornée et continue sur $I_k - \bigcup_k \{t_k\}$.

3 Poursuite de trajectoires

3.1 Structure du contrôleur

Pour simplifier la conception et l'étude du contrôleur, les équations de la dynamique du système (1) sont considérées dans les coordonnées généralisées introduites par [5]. Après transformation dans le nouveau système de coordonnées $q = [q_1, q_2]^T$, $q_1 = [q_1^1 \dots q_1^m]^T$, $q = Q(X) \in \mathbb{R}^n$, la dynamique du système est la suivante:

$$\begin{cases} M_{11}(q)\ddot{q_1} + M_{12}(q)\ddot{q_2} + C_1\dot{q} + g_1 = & T_1(q)u + \lambda \\ M_{21}(q)\ddot{q_1} + M_{22}(q)\ddot{q_2} + C_2\dot{q} + g_2 = & T_2(q)u \\ q_1^i \ge 0, \quad q_1^i\lambda_i = 0, \quad \lambda_i \ge 0, \ 1 \le i \leq m \\ \text{Loi de chocs} \end{cases}$$

Avec $M_{21}(q) = M_{12}^T(q) \in \mathbb{R}^{(n-m)\times m}, M_{11}(q) \in \mathbb{R}^{m\times m}, M_{22}(q) \in \mathbb{R}^{(n-m)\times (n-m)}$. Le cône tangent $T_{\Phi}(q_1 = 0) = \{v | Cv \geq 0\}$ est l'espace des vitesses admissibles à la frontière de Φ .

Choisissons:

$$V(t,\tilde{q},\dot{\tilde{q}}) = \frac{1}{2}\dot{\tilde{q}}^T M(q)\dot{\tilde{q}} + \frac{1}{2}\gamma_1 \tilde{q}^T \tilde{q}$$
 (8)

Avec $\tilde{q}(\cdot) = q(\cdot) - q_d(\cdot)$. La loi de commande utilisée dans ce contrôleur est basée sur celle présentée dans [7], initialement prévue pour le contrôle de mouvements non contraints. Soit :

$$T(q)u = \begin{cases} U_{nc} = M(q)\ddot{q}_d^* + C(q,\dot{q})\dot{q}_d^* + g(q) \\ -\gamma_1(q - q_d^*) - \gamma_2(\dot{q} - \dot{q}_d^*) \end{cases}$$

$$U_t = U_{nc} \text{ avant le premier impact}$$

$$U_t = g(q) - \gamma_1\bar{q} - \gamma_2\dot{q} \text{ aprés le}$$

$$\text{premier impact}$$

$$U_c = U_{nc} - P_d + K_f(P_q - P_d)$$

$$(9)$$

où $T(q) = \begin{pmatrix} T_1(q) \\ T_2(q) \end{pmatrix} \in \mathbb{R}^{n \times n}, \ \gamma_1 > 0, \ \gamma_2 > 0,$

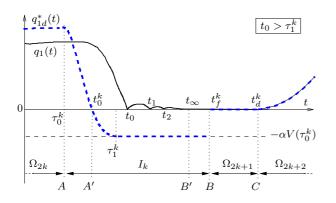
 $K_f > 0$, P_d est la force souhaitée pour le mouvement complètement contraint. Les signaux q_d^* , q_d et \bar{q} seront définis plus loin, tout comme les conditions de commutation entre les différents contrôleurs de (9). L'intérêt de ce choix de contrôleur est que la fonction $V(t,\tilde{q},\dot{q})$ dans (8) est très proche de l'énergie totale du système. Remarquons que le choix de u est indépendant du coefficient de restitution e_n . D'après (9) la troisième condition de la proposition 1 peut être remplacée par $V(t_f^k) \leq V(t_0^-)$ puisque $V(t_0^-) \leq V(\tau_0^k)$.

3.2 Choix de la trajectoire de référence

Dans ce paragraphe nous définissons le signal de référence $q_d^*(t)$ au cours de la phase de transition (voir la figure 4 pour $q_{1d}^*(\cdot)$, où A,A',B',B et C correspondent aux même points que sur la figure 2):

Notons que les indices k pour les phases Ω_k et I_k et pour les instants d'impact t_k , ne sont pas reliés. Définissons :

- τ_0^k est l'instant de début de la phase de transition (choisi par le concepteur),
- t_0^k est l'instant correspondant à $q_{1d}^*(t_0^k)=0$,
- t_0 est l'instant du premier impact,
- t_{∞} correspond au point d'accumulation de la suite $\{t_k\}_{k\geq 0}$,
- t_f^k est la fin de la phase de transition,



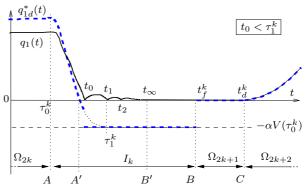


Fig. 4 – La trajectoire $q_{1d}^*(t)$

- τ_1^k est tel que $q_{1d}^*(\tau_1^k) = -\alpha V(\tau_0^k)$ et $\dot{q}_{1d}^*(\tau_1^k) = 0$, avec $\alpha \geq 0$ ($\alpha = 0$ donne l'approche tangentielle (1).
- $\Omega_{2k+1} = [t_f^k, t_d^k].$

Nous avons $I_k = [\tau_0^k, t_f^k]$, $\Omega_{2k+1} = [t_f^k, t_d^k]$. Sur $[\tau_0^k, t_0)$, nous imposons que $q_d^*(t)$ soit deux fois dérivable, et que $q_{1d}^*(t)$ décroisse jusqu'à la valeur $-\alpha V(\tau_0^k)$ sur $[\tau_0^k, \tau_1^k]$. Pour tenir compte du couplage entre q_1 et q_2 $(M_{12} \neq 0)$, le signal $q_{2d}^*(t) \in C^2(\mathbb{R}^+)$ est gelé durant la phase de transition, i.e.:

- $q_{2d}^*(t) = q_{2d}^*, \, \dot{q}_{2d}^*(t) = 0 \text{ sur } [\tau_0^k, t_\infty]$
- $q_{2d}^*(t)$ est défini sur $[\tau_0^k, t_0^k]$ tel que $\dot{q}_{2d}^*(t_0^k) = 0$.

Sur $(t_0, t_f]$, nous définissons q_d et q_d^* comme cela:

$$q_d = \begin{pmatrix} 0 \\ q_{2d}^* \end{pmatrix}, q_d^* = \begin{pmatrix} -\alpha V(\tau_o^k) \\ q_{2d}^* \end{pmatrix}$$
 (10)

Sur $[t_f^k, t_d^k]$ nous fixons $q_d = \begin{pmatrix} 0 \\ q_{2d}(t) \end{pmatrix}$. L'utilité de q_d^* est de créer une force de gravité "virtuelle" en direction de $\partial\Phi$, pour que le système puisse s'y stabiliser même si sa position est incertaine. En conséquence le point fixe (q_d,\dot{q}_d) du système contraint est utilisé dans l'expression de la fonction de Lyapunov $(\tilde{q} = q - q_d)$, alors que le point fixe non atteignable q_d^* est utilisé dans la loi de commande ((9) $\bar{q}=q-q_d^*$ avec q_d^* défini dans (10)), ceci permet de provoquer des impacts si $V(.) \neq 0$ comme proposé dans le point β) de l'introduction. Pour faire le lien avec la figure 2, l'instant τ_0^k correspond au point A, t_∞ à B', t_0^k à A', t_d^k à C, et B à t_f^k (le terme $-P_d - K_f P_d$ permet de définir le signal $X_d^*(\cdot)$ extérieur à Φ entre les points B et C de la figure 2). Si $V(\tau_0^k) = 0$ alors le point A" correspond à l'instant τ_1^k .

La trajectoire désirée $X^{i,c}(\cdot)$ en boucle fermée est définie par $q^{i,c}(t)=q_d^*(t)$ sur $\Omega_{2k},\ q^{i,c}(t)=q_d^*(t)$ avec $\alpha=0$ sur I_k , et $q_1^{i,c}(t)=0$ sur $\Omega_{2k+1},\ q_2^{i,c}(t)=q_{2d}^*(t)$ sur \mathbb{R}^+ . Cette trajectoire est sans impact.

3.3 Analyse de stabilité en boucle fermée

L'état du système en boucle fermée peut être choisi comme étant $x=(\tilde{q},\dot{\tilde{q}})$, en accord avec la définition 1 qui concerne uniquement les phases Ω_k .

Définition 3 $\{CI\}$ est le sous-espace des conditions initiales x(0) qui assurent que $t_0 \ge \tau_1^k$ uniformément tout au long du mouvement dans (4).

A partir de maintenant considérons le cas où m=1.

Hypothèse 1 La loi de commande U_t de (9) assure que la suite $\{t_k\}_{k\geq 0}$ des instants d'impact existe, et que $\lim_{k\to +\infty} t_k = t_\infty < +\infty$.

Une des difficultés dans l'analyse de stabilité du système le long d'une trajectoire telle que (4), est de s'assurer que les erreurs de poursuite initiales ne s'accroissent pas d'un cycle $\Omega_{2k} \cup I_k \cup \Omega_{2k+1}$ à l'autre à cause des collisions. Le point central de la stabilité de ces systèmes est la valeur du premier saut de V(.), i.e. $\sigma_V(t_0)$. Après calcul on obtient :

$$\begin{cases}
\sigma_{V}(t_{k}) &= T_{L}(t_{k}) \leq 0, k \geq 1 \\
\sigma_{V}(t_{0}) &= T_{L}(t_{0}) - \frac{1}{2}\gamma_{1}q_{1d}^{2}(t_{0}^{-}) - \frac{1}{2}\dot{q}_{d}(t_{0}^{-})^{T} \\
M\dot{q}_{d}(t_{0}^{-}) + M_{11}\dot{q}_{1}(t_{0}^{-})\dot{q}_{1d}(t_{0}^{-}) \\
+ \dot{q}_{2}(t_{0}^{-})^{T}M_{21}\dot{q}_{1d}(t_{0}^{-})
\end{cases} (11)$$

Il est intéressant de constater que les égalités dans (11) sont indépendantes du choix de la loi de restitution. La seule hypothèse faite est que les impacts doivent dissiper de l'énergie cinétique, ce qui est vérifiée avec la loi (2)(3).

Le choix de $q_d^*(.)$ et de la stratégie de commutation entre U_{nc} , U_c et U_t , est essentiellement fait afin de garantir $\sigma_V(t_k) \leq 0$ pour k > 0.

Proposition 4 Supposons que l'hypothèse (1) soit satisfaite. Le système défini par (1) bouclé avec le contrôleur (9) et $q_d(\cdot)$, $q_d^*(\cdot)$ tels que définis dans le paragraphe 3.2, est:

(i) - Asymptotiquement fortement stable si $x(0) \in \{CI\}$.

^{1.} Dans [2] [4] il était implicitement supposé dans les preuves de stabilité que $\tau_1^k < t_0$, cette restriction est enlevé dans ce papier.

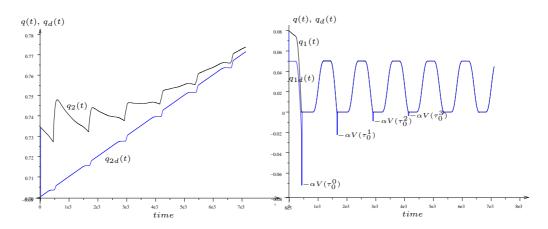


Fig. 5 – Convergence Asymptotique

- (ii) Asymptotiquement fortement stable si $q_d^*(.)$ est choisi tel qu'au moment du premier impact on ait $[M_{11}\dot{q}_1(t_0^-) + \dot{q}_2(t_0^-)^T M_{21}]\dot{q}_{1d}^*(t_0^-) \leq 0$.
- (iii) Asymptotiquement fortement stable si $M_{12} = 0$ et $e_n = 0$.
- (iv) Asymptotiquement faiblement stable si $M_{12} = 0$ et $0 \le e_n < 1$.

Preuve: voir [1].

3.4 Perspectives

L'utilisation des résultats de la proposition 2 nécessite de choisir une loi de commande U_{nc} qui vérifie le point (a) de la proposition 2. Une commande dérivée de celle de Slotine et Li permet d'obtenir la stabilité pratiquement faiblement stable [1].

4 Résultats de simulation

Cette stratégie de commande est testée en simulation sur un bras manipulateur à deux degrés de liberté pour le cas simple d'une seule contrainte scalaire. La surface de contact correspond au sol (y = 0). Le changement de coordonnées correspondant à (7) est d'utiliser les coordonnées de l'espace de travail (x,y). Soit :

$$q = \left[\begin{array}{c} q_1 \\ q_2 \end{array} \right] = \left[\begin{array}{c} y \\ x \end{array} \right] \quad , \ \, y > 0$$

La figure 5 montre l'évolution de $q_1(t)$ et de $q_2(t)$ au cours d'une tâche cyclique de (4). La courbe de q_1 montre la convergence asymptotique: les valeurs de $\alpha V(\tau_0^k)$ décroissent de façon exponentielle. La courbe de q_2 montre l'effet du couplage entre q_1 et q_2 . A chaque impact, il y a un saut dans \dot{q}_2 . Le replat périodique sur q_{2d} correspond à la phase de transition durant laquelle q_{2d} est gelée.

5 Conclusion

Dans ce papier nous avons abordé le contrôle de systèmes mécaniques complètement actionnés soumis à des contraintes unilatérales sans frottements. Ces systèmes sont dits non régulier parce qu'ils sont discontinus au niveau des vitesses (à chaque instant d'impact), leurs accélérations et les forces de contact sont des mesures. L'extension des techniques de poursuite de trajectoires pour des systèmes non contraints aux systèmes non réguliers n'est pas immédiate. Le but de ce papier est d'étudier un contrôleur par retour d'état pour ce type de systèmes, lorsqu'ils effectuent une tâche cyclique contenant des collisions.

Références

- [1] J.M. Bourgeot and B. Brogliato. Tracking control of complementarity lagrangian systems. submitted to the International Journal of Bifurcation and Chaos, special issue on Non-smooth Dynamical Systems, 2003.
- [2] B. Brogliato. Nonsmooth Mechanics. Springer CCES, London, 2nd edition, 1999. Erratum and addenda available at http://www.inrialpes.fr/bip/people/brogliato/erratum.ps.
- [3] B. Brogliato, S. Niculescu, and P. Orhant. On the control of finite dimensional mechanical systems with unilateral constraints. *IEEE Transactions* on Automatic Control, 42(2):200–215, February 1997.
- [4] B. Brogliato, S.I. Niculescu, and M.D.P Monteiro-Marques. On tracking control of a class of complementary-slackness mechanical systems. Systems and Control Letters, 39(4):255–266, March 2000.
- [5] N.H. McClamroch and D. Wang. Feedback stabilization and tracking of constrained robots. *IEEE Transactions on Automatic Control*, 33(5):419–426, May 1988.
- [6] J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In *Nonsmooth Mechanics and Applications*, CISM Courses and Lectures no 302. Springer-Verlag, 1988.
- [7] B. Paden and R. Panja. Globally asymptotically stable pd+ controller for robot manipulators. *Int. J. Control*, 47:1697–1712, 1988.