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Abstract

In this paper we study the tracking control of Lagrangian systems subject to
frictionless unilateral constraints. The stability analysis incorporates the hybrid
and nonsmooth dynamical feature of the overall system. The difference between
tracking control for unconstrained systems and unilaterally constrained ones, is
explained in terms of closed-loop desired trajectories and control signals. This
work provides details on the conditions of existence of controllers which guar-
antee stability.It is shown that the design of a suitable transition phase desired
trajectory, is a crucial step. Some simulation results provide information on the
robustness aspects. Finally the extension towards the case of multiple impacts,
is considered.

1 Introduction

The focus of this paper is the tracking control of a class of nonsmooth fully ac-
tuated Lagrangian systems subject to frictionless unilateral constraints on the
position. Let X ∈ IRn denote the vector of generalized coordinates. Roughly
speaking, trajectory tracking means that when properly initialized, all trajec-
tories X(·) have to converge, or remain close to, some desired trajectory Xd(·)
which is designed off-line. The Lyapunov stability of the fixed point of the trans-
formed error system with state vector the tracking error (X−Xd, Ẋ−Ẋd) is often

†This work was partially supported by the European project SICONOS IST2001-37172
(http://maply.univ-lyon1.fr/siconos)
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required to get a robust and implementable scheme. The stabilisation problem
consists of choosing Xd constant. For nonlinear mechanical systems, tracking
is known to be significantly more difficult than stabilisation, even for uncon-
strained systems [Lozano et al., 2000]. The stabilisation problem for a class of
nonsmooth systems, including Lagrangian systems with unilateral constraints,
has been analysed in [Brogliato, 2003a] [Goeleven et al., 2003]. Applications may
be found in manipulators performing tasks such as grinding, deburring [Koman-
duri, 1993] [Ramachandran et al., 1994], filamentary brushing tools for surface
finishing [Shia et al., 1998], which have considerable importance in machining,
disassembly robotic systems [Studny et al., 1999], etc, and more generally all
mechanical systems performing tasks involving contact/impact phenomena.

The nonsmooth complementarity systems we deal with in this paper, may a
priori evolve in three different phases of motion :

• i) A free motion phase, where the mechanical system is not subject to
any constraints (i.e. F (X) > 0, where F (·) is some (m-vector) function
representing the “distance” between the system and the constraint).

• ii) A permanently constraint phase where the dynamical system is subject
to holonomic constraints (Fi(X) = 0 during a non-zero time interval and
for some indexes i ∈ {1, · · · ,m}).

• iii) A transition phase whose goal is to stabilize the system on some surface
ΣI = ∩i∈IΣi, where I is some subset of {1, · · · ,m} and Σi = {X|Fi(x) =
0}. In other words a transition control has to assure that Fi(X(t)) = 0
and ∇Fi(t))Ẋ(t+) = 0 for all i ∈ I (1), where t is a finite time for obvious
practical reasons.

In the first phase the system is described by a set of ordinary differen-
tial equations (ODE). The tracking control problem has been solved by sev-
eral feedback controllers assuring the global asymptotic stability (feedback lin-
earization, adaptive control, robust control, passivity-based control, etc [Lozano
et al., 2000]). The second phase concerns the control of a differential-algebraic
equation (DAE) by so-called force/position controllers, and has been solved in
[McClamroch & Wang, 1988] and [Yoshikawa, 1987]. It reduces to a motion
control problem plus an algebraic equality for contact force equilibrium when
suitable coordinates are chosen. During the transition phase the system is sub-
ject to unilateral constraints, and collisions occur. These collisions will generate
rebounds, which are generally seen as disturbances. On the contrary, in the con-
trol framework that is studied in this paper (following [Brogliato et al., 1997] and
[Brogliato et al., 2000]) impacts are provoked intentionally to dissipate energy
and contribute towards stabilizing the system.

The aim of this paper is to study a control scheme which guarantees some
stability properties of the closed-loop system during general motions involving
the three above phases. It provides an interpretation of the specific feature of

1The reason why the right limit of the velocity is indicated will be made clear later when
solutions are given a precise meaning.
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tracking control for unilaterally constrained systems in terms of some invariant
closed-loop trajectories and some signals entering the control input (usually
known as the desired trajectory). With respect to the results in [Brogliato
et al., 1997] [Brogliato et al., 2000] we give accurate conditions under which
various types of stability are assured, which were missing in these references.
For instance the n-degree-of-freedom case with n > 2 is solved in [Brogliato
et al., 1997] only if a certain matrix is a Jacobian, which is quite restrictive
as simple examples show [Brogliato, 1999, §8.6]. In [Brogliato et al., 2000]
the existence of a specific transition phase closed-loop trajectory is assumed,
without proof. These two points are addressed in this paper, as well as the
transition between permanent constraint phases and free-motion phases. We
also study the robustness of this control scheme with respect to : the knowledge
of constraints position.

Finally we extend this work to the case of nonscalar frictionless unilateral
constraints, which may generate so-called multiple impacts.

Glossary:
ODE: Ordinary Differential Equation, DAE: Differential Algebraic Equa-

tion, LCP: Linear Complementarity Problem, DES: Discrete Event System.
For a m-vector X, X > 0 means that Xi > 0 for all components of X,

1 6 i 6 m. The maximun and minimum eigenvalues of a matrix M are denoted
as λmax(M) and λmin(M) respectively. If a function F (.) has a simple disconti-
nuity at t, the right and left-limits are denoted as F (t+) and F (t−) respectively.
The jump is denoted as σF (t) = F (t+) − F (t−). The Lebesgue measure of an
interval [a, b] is denoted as λ[a, b].

1.1 Dynamics

The systems we study in this paper belong to the complementarity hybrid dy-
namical systems [van der Schaft & Schumacher, 2000], a class of systems which
generalizes that of nonsmooth mechanical systems [Moreau, 1983]. They are
complementarity Lagrangian systems, with Lagrangian function L = 1

2ẊT M(X)Ẋ−
U(X), where T (X, Ẋ) = 1

2ẊT M(X)Ẋ is the kinetic energy, U(X) is the differ-
entiable potential energy. The dynamics may be written as:







M(X)Ẍ + C(X, Ẋ)Ẋ + G(X) = u + ∇F (X)λX

F (X) > 0, F (X)T λX = 0, λX > 0
Collision rule

(1)

where X ∈ IRn is a vector of generalized coordinates, M(X) = MT (X) ∈
IRn×n is the positive definite inertia matrix, F (X) ∈ IRm represent the distance
to the constraints, λX ∈ IRm are the Lagrangian multipliers associated to the
constraints, u ∈ IRn is the vector of generalized torque inputs, C(X, Ẋ) is the
matrix of Coriolis and centripetal forces, G(X) contains conservative forces. ∇
denotes the Euclidean gradient, i.e. ∇Fi(X) =

(
∂Fi

∂x1
, · · · , ∂Fi

∂xn

)T

∈ IRn and

∇F (X) = (∇F1(X), · · · ,∇Fm(X)) ∈ IRn×m. The impact times will be de-
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noted generically as tk in the following. We assume that the functions Fi(·) are
continuously differentiable and that ∇Fi(X(tk)) 6= 0 for all tk.

A major discrepancy of complementarity systems compared to systems with
switching vector fields, is that their state may be discontinuous, and that they
may live on lower-dimensional spaces. This creates serious difficulties in their
study [Brogliato, 2003b] [Heemels & Brogliato, 2003].

The Lagrangian system in (1) is fully actuated, i.e. dim(u) =dim(X). This
excludes for instance lumped joint flexibilities. In case dim(u) <dim(X) the
system is said to be underactuated and the control problem is much harder to
solve. The first instance in the Control and Robotics literature where such a
complementarity model has been used, is in [Huang & McClamroch, 1988]. One
very specific feature of systems as in (1) is their intrinsic nonsmoothness, which
hampers one to tangentially linearize them in the neighborhood of trajectories.
Consequently linear controllers generally fail to stabilise such complementarity
systems, and nonlinear feedback controllers have to be designed.

1.2 Admissible domain

The admissible domain Φ is a closed domain in the configuration space where
the system can evolve, i.e.

Φ = {X|F (X) > 0} =
⋂

16i6m

Φi, Φi = {X|Fi(X) > 0}

For obvious reasons it is assumed that Φ 6= ∅, and even more: it contains a
closed ball of positive radius. This allows us to get rid of meaningless models.
A motion like the one in items i), ii), iii) above can then be defined. The
boundary of Φ is denoted as ∂Φ.

Definition 1 A singularity of ∂Φ is the intersection of two (or more) surfaces
Σi = {X|Fi(X) = 0}.

F 2
(X

) =
0

F
1 (X

)=0

F
2 (X

)=0

F 1
(X

) =
0

TΦ(Xd)

Xd

(a) Convex (b) Non Convex

TΦ(Xd)

Φ = Φ1 ∩ Φ2

Xd
Φ = Φ1 ∪ Φ2

Fig. 1: Non-differentiable points.
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As alluded to above, the goal of the control problem during transition phases
is to stabilise the system on the boundary ∂Φ. When m > 2 this may be a
singularity (i.e. a codimension α > 2 surface) of the boundary. In this study
we restrict ourselves to domains which have non-differentiable boundaries but
which are convex around such non-differentiable points (like on Fig. 1.a). The
unilateral constraints are expressed by the relation F (X) > 0, which can be
translated locally into : CX + D > 0 for some matrices C and D. Clearly
the non-convex example of Fig. 1.(b) cannot be expressed as the intersection of
convex domains Φi. This case is named a reintrant corner in the literature, and
modelling issues are not yet fixed for reintrant corners [Glocker, 2001] [Frémond,
2002]. This restriction on singular non-convex points does not mean that the
whole space must be convex. For example the domain of the Fig. 2 is non-
convex but can be described as Φ above. Such sets are called regular [Clarke,
1990]. For regular sets convexity holds locally and can be recovered by a suitable
generalized coordinates change (diffeomorphic hence preserving the Lagrangian
structure).

Singular point

NΦ(X2)

TΦ(X1)

X1

NΦ(X1)

TΦ(X2)

X2

TΦ(X3)
NΦ(X3)

X3

Fig. 2: Example of a regular non-convex domain

1.3 Impact model

A collision rule is needed to integrate the system in (1) and to render the set Φ
invariant. A collision rule is a relation between the post-impact velocities and
the pre-impact velocities. In this work, it is chosen as in [Moreau, 1988]:

Ẋ(t+k ) = −enẊ(t−k )

+(1 + en) arg minz∈TΦ(X(tk))
1
2 [z − Ẋ(t−k )]T M(X(tk))[z − Ẋ(t−k )]

(2)
where Ẋ(t+k ) is the post impact velocity, Ẋ(t−k ) is the pre-impact velocity,

TΦ(X(t)) the tangent cone to the set Φ at X(t) (see Figs. 1-2 where the sets X,
TΦ(X) are depicted) and en is the restitution coefficient, en ∈ [0, 1]. Notice that

if the angle ̂(Σ1,Σ2) 6 π then in the neighborhood of X one has Φ ≈ TΦ(X)
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when X ∈ Σ1 ∩ Σ2. The tangent cone is defined as the cone which is polar
to the normal cone NΦ(X(t)), see [Clarke, 1990] [Hiriart-Urruty & Lemaréchal,
1996] [Moreau, 1988]. Both are always convex sets. They generalize the tangent
and normal subspaces to the configuration space to which velocities and contact
forces belong, in bilaterally constrained systems. When m = 1, the rule in (2)
is the Newton’s law Ẋn(t+k ) = −enẊn(t−k ), where Ẋn is the normal component
of the velocity. The restitution mapping in (2) can be equivalently rewritten as
[Mabrouk, 1998]:

Ẋ(t+k ) = Ẋ(t−k ) − (1 + en)proxM(X(tk))[M
−1(X(tk))NΦ(X(tk)); Ẋ(t−k )] (3)

where the proxM(X(tk)) means the proximation in the metric defined by the
kinetic energy at time tk, and NΦ(X(tk)) is the normal cone to Φ at X(tk). The
form in (3) will be useful for some calculations in stability proofs. It can also
be written using a suitable generalized momentum transformation [Brogliato,
1999, Chapter 6]. See also [Glocker, 2002] for a nice geometrical interpretation
of this rule. The restitution mapping in (2) yields a kinetic energy loss at the
impact times given by [Mabrouk, 1998]:

TL(tk) = −1

2

1 − en

1 + en

[

Ẋ(t+k ) − Ẋ(t−k )
]T

M(q(tk))
[

Ẋ(t+k ) − Ẋ(t−k )
]

6 0 (4)

Clearly this particular choice is arbitrary, and other models exist in the litera-
ture. However Moreau’s collision rule is chosen here because it is mathematically
sound, numerically tractable because it relies on Gauss’ principle of Mechanics
[Brogliato et al., 2002], and is a direct extension of Newton’s law (which is quite
valid as long as friction is not considered). Moreover it lends itself very well to
possible extensions towards more complex collision rules as the ones developed
in [Frémond, 2002], which are based on the use of super-potentials of dissipation
[Moreau, 1968].

1.4 Model well-posedness

The most general result on existence and uniqueness of solutions for mechanical
systems as in (1) can be found in [Ballard, 2000] [Ballard, 2001]. Under the
condition that all data entering (1) are piecewise real analytic, then existence
and uniqueness of a solution to (1) with X(·) absolutely continuous and Ẋ(·)
right-continuous of local bounded variation, is assured. Then the acceleration is
a measure and so is the multiplier λX . We shall always assume that the required
conditions are fulfilled in this paper. Multiple impacts (see definitions 1 and 5)
generally render solutions discontinuous with respect to the initial conditions
(X(0), Ẋ(0+)), except in particular cases (plastic impacts and kinetic angle
between the constraint surfaces less or equal to π

2 [Paoli, 2002], or kinetic angle
equal to π

2 [Ballard, 2000]). When m = 1 then continuity holds whatever en

[Schatzman, 1998].
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Due to the fact that velocities may be time discontinuous, but that their
right-limit (and left-limit as well) exist everywhere, models as in (1) may be
named prospective, because during the integration one looks for Ẋ(t+) [Moreau,
2003].

1.5 Cyclic task

In this paper we restrict ourselves to a specific task, or trajectory: a succession
of free and constrained phases Ωk. During the transition between a free and a
constrained phase, the dynamic system passes into a transition phase Ik. As we
shall see, transitions between constrained and free motion are monitored by a
Linear Complementarity Problem (see Appendix C for a definition).

Ω2k −−−−−−−−→
Ik

Ω2k+1 −−−−−−−−→
LCP(λ)

Ω2k+2

In the time domain one gets a representation as :

IR+ = Ω0 ∪ I0 ∪ Ω1
︸ ︷︷ ︸

cycle 0

∪Ω2 ∪ I1 ∪ ... ∪ Ω2k−1 ∪ Ω2k ∪ Ik ∪ Ω2k+1
︸ ︷︷ ︸

cycle k

∪... (5)

where Ω2k denotes the time intervals associated to free-motion phases and Ω2k+1

those for constrained-motion phases. The transition Ω2k+1 −→ Ω2k+2, does not
define a specific phase (or DES mode) because it does not give rise to a new
type of dynamical system, as we shall see in Sec. 3.3. The order of the phases
is important but the initial phase may be Ω0 or I0 or Ω1, see remark 2. Before
passing to the description of the stability framework which will enable us to
design a feedback controller for tracking, let us investigate more deeply how (5)
may be seen as a consequence of the basic control objectives i), ii) and iii) listed
in the introduction.

First of all, let us notice that despite the problem involves contact and con-
sequently generalized forces in the control objectives (during phases Ω2k+1 the
contact force should have some desired value), the control problem remains pri-
marily a motion control problem. Indeed the contact force, i.e. the Lagrange
multiplier λX in (1), is not part of the system’s state (X, Ẋ). Its value is
only a consequence of the motion (in fact its value has to be calculated with
a LCP, which is assured to always possess at least one solution for frictionless
constraints, see [Brogliato, 1999, theorem 5.4]). For instance in a one degree-of-
freedom system the contact force control simply reduces to an algebraic equation
λ = λd for some signal λd (possibly time-varying). However this is not a stabili-
sation problem, this is a static equilibrium. Therefore the force/position control
problem should rather be called a motion-control/force-equilibrium problem in
such a case. During such a static equilibrium phase, motion tracking drastically
simplifies to triviality. This is going to be the same in higher dimensions, in the
normal direction to ∂Φ.

More precisely, the items i) and ii) in the introduction imply that the tra-
jectory of the unconstrained system that has to be tracked, denoted as X i,nc(·)

7



�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

Φ

Xi,nc(t)

∂Φ

A

B

Fig. 3: Unconstrained trajectory.

possesses the generic form shown in Fig. 3. More exactly the orbit of this
trajectory in the configuration space is depicted on Fig. 3. It is clear that in
particular item ii) implies that F (X i,nc(t)) < 0 for some t(∈ Ω2k+1), otherwise
there would be a zero contact force when the system perfectly tracks the de-
sired motion. Roughly speaking, the system has to have the tendancy to violate
the constraints in order to assure a non-zero contact force. In the same spirit
item i) implies that F (X i,nc(t)) > 0 for some t(∈ Ω2k). Consequently there
exists a point A in the configuration space, at which contact is made with ∂Φ.
This gives rise to a transition phase whose role is as in item iii). In the same
way there is a point B at which F (X i,nc(t)) = 0 and detachment is monitored
by a LCP. The central issue in the present control problem, is the design of
such transition phases. A first idea is to impose a tangential contact, i.e. with
∇F (X∗

d )T Ẋ∗
d = 0, where X∗

d (·) is a signal entering the control input and playing
the role of the desired trajectory during some parts of the motion (the difference
between X∗

d (·), and Xi,nc(·) will be made clear below). However

• α) Due to non-zero initial tracking errors X(0) − X∗
d (0) 6= 0, Ẋ(0) −

Ẋ∗
d (0) 6= 0, impacts may occur.

• β) This is not a robust strategy since a bad estimation of the constraint
position, may result to no stabilisation at all on ∂Φ. Consequently it is a
much better strategy to impose collisions for stabilisation on ∂Φ.

• γ) In any case, collisions have to be incorporated into the stability analysis.

• δ) The best strategy for stabilisation on ∂Φ is to impose closed-loop dy-
namics which mimics the bouncing-ball dynamics Ẍ = −g, X > 0:

– δ1) This is very robust with respect to the constraint position uncer-
tainties.
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– δ2) As we will see it lends itself very well to Lyapunov stability of
some closed-loop Poincaré map.

Secondly, we will see in the next section that the type of stability we desire
is based on a single Lyapunov-like function V (X, Ẋ, t). Then difficulties arise
due to the following:

• a) There are non-zero couplings between“tangential”and“normal”coordi-
nates in the inertia matrix M(X) (this will be formulated more rigorously
later).

• b) This unique function V (X, Ẋ, t) has to work for all phases, i.e. for
Ω2k (ODE), Ω2k+1 (DAE), and Ik (the dynamics may then be seen as a
Measure Differential Equation [Brogliato, 1999]).

• c) If V ≡ 0 then any velocity jump q̇(t+k ) 6= q̇(t−k ) implies a positive jump
V (t+k ) − V (t−k ) > 0 in the Lyapunov function. This means that impacts
will generally preclude asymptotic stability (2), except in very particular
cases of no inertia couplings, in which case things greatly simplify.

• d) The function V has to satisfy V = 0 when the desired trajectory of
the closed-loop system is perfectly tracked, according to the definition of
a Lyapunov function. This implies that the desired set of the complete
(constrained) system must be used in the definition of V .

One therefore realises that the control problem is itself subject to many
constraints. The proposed strategy has to cope with these various and sometime
antagonist facts (like β) and c)). Item c) hampers the use as time goes to infinity
of any controller that would switch at time ts between a free-motion feedback
input with F (X∗

d (t−s )) > 0 to a transition phase controller with a “bouncing-
ball” dynamics (i.e. such that F (X i,nc(t+s )) < 0). However such a discontinuous
input can be used during the transient period. The idea of using a desired
motion that would mimic the impacts so that V (t+k ) − V (t−k ) = 0 even when
V (0) = 0 is not a good one. First of all items β) and δ) are in force, and such
a strategy requires also a perfect knowledge of en in (2). Secondly, proving the
stability of such a trajectory is a hard task. We therefore disregard this sort of
signals X∗

d (·) for transition phases Ik. In order to clarify these various notions
let us consider a one degree-of-freedom system:







(Ẍ − Ẍ∗
d ) + γ2(Ẋ − Ẋ∗

d ) + γ1(X − X∗
d ) = λ

0 6 X ⊥ λ > 0

Ẋ(t+k ) = −enẊ(t−k )

(6)

where X∗
d (·) is some twice differentiable function, γ2 > 0, γ1 > 0. The ′′ ⊥′′

means that X and λ are orthogonal, i.e. Xλ = 0. It is clear that X i,nc ≡ X∗
d .

2This is mainly due to the fact that the controllers used on phases Ωk assure asymptotic
convergence of the tracking errors towards zero, but do not possess any finite-time convergence
properties.
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If X∗
d (t) < 0 on some interval of time I, then the desired trajectory of the

constrained system cannot be X∗
d (·). Rather, this is going to be simply 0 on I.

Item d) means that the function V used for stability purpose (e.g. a quadratic
function of the tracking error) is zero on Ω2k+1 (constrained-motion phases).
Therefore the Lyapunov function will be defined such that on Ik and on Ω2k+1

one has V (X, Ẋ, t) = 0. Since this is a tracking control problem and since the
desired trajectory is equal to 0 on such phases (even the rebound phase), we
conclude that the tracking error X̃(·) entering V (·) has to satisfy X̃(·) = 0, so

that V (X̃ = 0, ˙̃
X = 0) = 0. Thus X̃(·) cannot be defined from X∗

d (·) neither
from Xi,nc but from a third signal which we shall denote as Xd(·). Let us again
clarify the difference between X∗

d (·) and Xd(·). Let us take a constant X∗
d < 0

in (6). Then Xi,nc = X∗
d but since the fixed point of the complementarity

system is (X, Ẋ) = (0, 0), we must have V (X = 0, Ẋ = 0) = 0 so that the
restriction of V to the Poincaré section Σ+ = {X|X = 0, Ẋ > 0} is a Lyapunov
function for the corresponding Poincaré impact mapping PΣ. Consequently we
shall define Xd = 0 during these periods of time. In the following we shall
denote X̃ = X − Xd and X̄ = X − X∗

d . Finally in general X i,nc 6= X∗
d because

X∗
d may be chosen to evolve from one transition phase Ik to the next one Ik+1

whereas Xi,nc(.)does not depend on the cycle index k.
Such conditions appear quite stringent. Actually we are looking for the most

direct extension of Lyapunov’s second method for complementarity systems as
in (1) evolving as in (5). If the task is less complex than (5) and/or the dynam-
ics possess some strong properties (see [Brogliato, 1999, chapter 8]) then the
stability analysis may simplify.

The control strategy which is developed in the sequel, takes all these features
into account and especially imposes an desired trajectory X i,nc as depicted
in Fig. 4. The orbits of the trajectories are depicted. Tangential contact is
made at A′′ when force control starts so that X i,nc jumps at B. In addition
item β) is taken into account by imposing a “bouncing-ball” dynamics only
during the transient period, i.e. on Ik with k < +∞. In other words the
trajectory Xi,nc(t) makes a tangential contact with ∂Φ because if initial data
satisfy X(0) − X∗

d (0) = 0 and Ẋ(0) − Ẋ∗
d (0) = 0 on Ω2k, then X(t) ≡ Xi,nc(t)

for t ∈ Ω2k, but during the transient period the controller assures the existence
of collisions on phases Ik. Therefore between points A and B on figure 4,
one may have X∗

d (·) which violates the constraint during the transient period,
and converges towards a tangential approach trajectory after a finite or infinite
number of transition phases (or cycles Ω2k ∪ Ik ∪ Ω2k+1). Between B and C

the phase Ω2k+1 occurs during which objective ii) is fulfilled. The dashed orbit
AA′B′ on Fig. 4 represents X∗

d (·) during a transition phase with impacts. The
system stabilizes on ∂Φ between A and B′ when the controller is switched to a
force control so that X i,nc(·) and X∗

d (·) may jump to B. In the control scheme
described later, the point B′ will converge (in a finite or infinite number of
cycles) towards A′′. We finally define the closed-loop desired trajectory of the
complementarity system as X i,c(·). On Fig. 4, Xi,c(·) is the curve (CAA′′C)
and Xi,c(·) ∈ ∂Φ on (A′′C). It is an impactless trajectory. Let us assume

10
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Xi,nc(t) = X∗

d (t) = Xd(t)

B

C

Xd(t)

Xi,nc(t) = X∗

d (t)

A

B′

A′′

Φ

A′

Xd(t)

= Xi,c(t) Xi,c(t)

Fig. 4: The closed-loop desired trajectories and control signals.

that a periodic motion is desired. Then on Fig. 4 only the orbits of X i,nc(·)
(i.e. AA′′BCA) and Xi,c(·) (i.e. AA′′CA) are fixed. The other two orbits
may vary with the cycle index k. But on a single phase Ik the fixed point of
the closed-loop error system may indeed be a signal Xd ∈ ∂Φ (A′A′′) which
differs from X∗

d 6∈ Φ (A′B′). The orbits (AA′B′) and the point A′ generally
vary from one cycle Ω2k ∪ Ik ∪ Ω2k+1 to the next cycle Ω2k+2 ∪ Ik+1 ∪ Ω2k+3.
One can also interpret this as defining a desired trajectory X∗

d (.) on each cycle
Ω2k∪Ik∪Ω2k+1, which is iterated from cycke k to cycle k+1 so that it converges
towards Xi,c(·). The mixture between the DES and continuous dynamics clearly
appears.

In summary the control strategy and stability analysis are led with four
different trajectories: X∗

d (·) in the control input, Xd(·) in the Lyapunov function,
Xi,c(·) and Xi,nc(·). Still referring to Fig. 4: when the system is initialised on
Xi,c(·) between C and A (i.e. on Ω0), then Xd(t) = Xi,c(t) on (CA′′) and
Xd(t) ∈ ∂Φ on (A′′C). If initially X(0) 6= X i,c(0) and/or Ẋ(0) 6= Ẋi,c(0), then
Xd(·) differs and is set to zero in the Lyapunov function at a time corresponding
to the first impact. This is the major discrepancy compared to unconstrained
motion control in which all four trajectories are the same, usually denoted as
Xd(·) (see remark 3).

2 Stability Framework

The stability criterion used in this paper is an extension of the Lyapunov second
method adapted to closed loop mechanical system with unilateral constraints
and has been proposed in [Brogliato et al., 1997] and [Brogliato et al., 2000].
Let x(·) denote the state of the closed-loop system in (1) with some feedback
controller u(X, Ẋ, t).

11



Definition 2 (Ω-weakly stable system) The closed-loop system is Ω-weakly
stable if for each ε > 0, there exists δ(ε) > 0 such that ‖x(0)‖ 6 δ(ε) ⇒ ‖x(t)‖ 6
ε for all t > 0, t ∈ Ω = ∪k>0Ωk. Asymptotic weak stability holds if in addition
x(t) −→ 0 as t −→ +∞, t ∈ Ω. Practical Ω-weak stability holds if there is a
ball centered at x = 0, with radius R > 0, and such that x(t) ∈ B(0, R) for all
t > T ; T < +∞, t ∈ Ω, R < +∞.

Let us define the closed-loop impact Poincaré map that corresponds to the
section Σ−

I = {x|Fi(X) = 0, ẊT∇Fi(X) < 0, i ∈ I}, which is a hypersurface of
codimension α = card(I). The pre-impact velocities are chosen to define PΣI

for a reason given after claim 3. We define:

PΣI
: Σ−

I → Σ−
I

xΣI
(k) 7→ xΣI

(k + 1).
(7)

where xΣI
is the state of PΣI

. Let us introduce the positive function V (·) that
will serve in the subsequent analysis. Let VΣI

denote the restriction of V to ΣI .

Definition 3 (Strongly stable system) The system is said strongly stable if:
(i) it is Ω-weakly stable, (ii) on phases Ik, PΣI

is Lyapunov stable with Lyapunov
function VΣI

, and (iii) the sequence {tk}k∈N has a finite accumulation point
t∞ < +∞.

Clearly PΣI
has a fixed point x∗

ΣI
∈ ∂Φ. Let V (·) satisfy β(||x||) > V (x, t) >

α(||x||), α(0) = 0, β(0) = 0, α(·) and β(·) strictly increasing. Let Ik = [τk
0 , tkf ].

Claim 1 (Ω-Weak Stability [Brogliato et al., 1997]) Assume that the task
is as in (5), and that

(a) - λ[Ω] = +∞,

(b) - for each k ∈ N, λ[Ik] < +∞,

(c) - V (x(tkf ), tkf ) 6 V (x(τk
0 ), τk

0 ),

(d) - V (x(.), .) uniformly bounded on each Ik.

If on Ω, V̇ (x(t), t) 6 0 and σV (tk) 6 0 for all k > 0, then the closed-loop system
is Ω-weakly stable. If V̇ (x(t), t) 6 −γ(‖X‖), γ(0) = 0, γ(·) strictly increasing,
then the system is asymptotically Ω-weakly stable.

This accomodates for other types of motions than the one as in (5), see
[Brogliato et al., 1997]. Let us assume that t∞ < +∞. It is noteworthy that
from [Ballard, 2001, proposition 4.11] this implies en < 1 (because if en = 1
impact times satisfy tk+1 − tk > βk > 0 with

∑

k>0 βk unbounded, so that
t∞ = +∞).

Claim 2 (Ω-Weak Stability) Let us assume that (a) and (b) in claim (1)
hold, and that

12



(a) - outside phases Ik one has V̇ (t) 6 −γV (t) for some γ > 0,

(b) - inside phases Ik one has V (t−k+1) − V (t+k ) 6 0, for all k > 0,

(c) - the system is initialized on Ω0 with V (τ0
0 ) 6 1,

(d) -
∑

k>0 σV (tk) 6 KV κ(τk
0 ) + ε for some κ > 0, K > 0 and ε > 0.

Then there exists a constant N < +∞ such that λ[tk
∞, tkf ] = N , for all k > 0

(the cycle index), and such that:

(i) - If κ > 1, ε = 0 and N = 1
γ ln( 1+K

δ ) for some 0 < δ < 1, then V (τk+1
0 ) 6

δV (τk
0 ). The system is asymptotically weakly stable.

(ii) - If κ < 1, then V (τk
0 ) 6 δ(γ), where δ(γ) is a function which can be made

arbitrarily small by increasing γ. The system is practically Ω-weakly stable
with R = α−1(δ(γ)).

Let us notice that the upperbound in (d) is the key point of the analysis. It
characterizes the uncertainty that is allowed in the variation of function V (.)

Proof
From assumption (a) of claim 2, one has

V (tkf ) 6 V (t∞)e−γ(tk
f−t∞) (8)

From assumptions (b) and (d) of claim 2, one has

V (t∞) 6 V (τk
0 ) +

∑∞
k=0 σV (tk) +

∑∞
k=0 V (t−k+1) − V (t+k )

6 V (τk
0 ) + KV κ(τk

0 ) + ε

(9)

Inequalities (9) and (8) give

V (tkf ) 6 e−γ(tk
f−t∞)[V (τk

0 ) + KV κ(τk
0 ) + ε] (10)

Let us now analyse two cases:
(i) If κ > 1, then V (τk

0 ) > V κ(τk
0 ). If ε = 0, Eq. (10) becomes

V (tkf ) 6 e−γ(tk
f−t∞)(1 + K)V (τk

0 ) (11)

If we want to have V (tkf ) 6 δV (τk
0 ), we must choose λ[tkf − t∞] such that:

e−γ(tk
f−t∞)(1 + K) 6 δ (12)

This is assured by choosing λ[tk
f − t∞] = N with

N =
1

γ
ln(

1 + K

δ
) (13)

13



Clearly if δ > 0, then N < +∞, which proves the first item.
(ii) If κ 6 1 then V (τk

0 ) 6 V κ(τk
0 ) 6 1. Inequality (10) becomes

V (tkf ) 6 e−γ(tk
f−t∞)(1 + K + ε) = δ(γ) (14)

The term δ(γ) can be made as small as desired by increasing γ (or increasing
λ[tkf − t∞]). The proof is complete since α(‖x‖) 6 V (x, t) for all x and t.

Claim 3 (Strong Stability) The system is strongly stable if in addition to the
conditions in claim 1 one has:

- V (t−k+1) 6 V (t−k );

- V is uniformly bounded and time continuous on Ik − ∪k{tk}.

Then the system is strongly stable in the sense of definition 3.

Sufficient conditions for strong stability are that σV (tk) 6 0 and V (t−k+1) 6

V (t+k ), but this framework permits σV (tk) > 0 provided V (t−k+1) < V (t+k ) − δ

for some large enough δ > 0. Notice also that V̇ (t) needs not to be 6 0 along
the system’s trajectories on the whole of (tk, tk+1). The reason why we have
chosen Σ−

I and not Σ+
I in (7) is that it allows us to take into account the value

V (t−0 ) in the stability analysis. Notice that q̇(t+∞) = q̇(t−∞).
In order to summarize the consequences of what is stated in Secs. 1-2, let us

propose the following:

Proposition 1 Let the Lagrangian complementarity system as in (1) perform
a motion as in (5), with the closed-loop requirements as in i), ii), iii). Let us
assume that asymptotic tracking controllers are used on phases Ωk. Then the
asymptotic stability in the sense of definitions 2 and 3 implies that:

• The asymptotically stable closed-loop desired trajectory X i,c(·) is impact-
less.

• During the transient period the feedback controller has to guarantee the
existence of collisions with ∂Φ and a finite-time stabilisation on ∂Φ.

• Contrary to the unscontrained motion case (Φ = IRn), the signals Xd(·)
entering the Lyapunov function, X∗

d (·) in the controller, and X i,c(·), are
not equal to a single so-called desired trajectory.

This proposition is a consequence of items i), ii), iii), α) through δ), a)
through d), as well as of definitions 2 and 3.
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3 Tracking Controller Framework

3.1 Controller structure

To make the controller design easier the dynamical equations (1) are considered
in the generalized coordinates introduced in [McClamroch & Wang, 1988]. After

transformation in the new coordinates q =

[
q1

q2

]

, q1 =






q1
1
...

qm
1




, q = Q(X) ∈

IRn, the dynamic system is as follows :







M11(q)q̈1 + M12(q)q̈2 + C1(q, q̇)q̇ + g1(q) = T1(q)u + λ

M21(q)q̈1 + M22(q)q̈2 + C2(q, q̇)q̇ + g2(q) = T2(q)u

qi
1 > 0, qi

1λi = 0, λi > 0, 1 6 i 6 m

Collision rule

(15)

where the set of complementarity relations can be written more compactly

as 0 6 λ ⊥ Dq > 0 with D = [Im

...0] ∈ IRm×n, Im is the identity matrix. Clearly

M21(q) = MT
12(q) ∈ IR(n−m)×m, M11(q) ∈ IRm×m, M22(q) ∈ IR(n−m)×(n−m).

In the new coordinates q one therefore has Φ = {q|Dq > 0}. The tangent
cone TΦ(q1 = 0) = {v|Dv > 0} is the space of admissible velocities on the
boundary of Φ. The polar cone to TΦ(·) is the normal cone NΦ(q) = {v|∀z ∈
TΦ, zT v 6 0}. In case q ∈ ∂Φ, one gets NΦ(q) = {v|v = DT λ̄, λ̄ 6 0}[Hiriart-
Urruty & Lemaréchal, 1996]. Obviously from (15) the generalized contact force
Pq = DT λ ∈ −NΦ(q). The controller developed in this paper uses three different
low-level control laws for each phase Ω2k, Ω2k+1 and Ik (3):

T (q)u =







Unc for t ∈ Ω2k

Ut for t ∈ Ik

Uc for t ∈ Ω2k+1

where T (q) =

(
T1(q)
T2(q)

)

∈ IRn×n. A supervisor switches between this three

control laws, and is described below (see Fig. 8). The stability of this controller
is analyzed by using the criteria proposed in Sec. 2. The asymptotic stability
of this scheme makes the system land on the constraint surfaces tangentially
after enough cycles of constraints/free motions (one cycle = Ω2k ∪ Ik ∪ Ω2k+1).
Asymptotically the transitions between free motion phases and permanently
constraint phases are done without any collision.

3With some abuse of notations we assimilate the time domains to the modes that corre-
spond to the three phases in (5).
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Remark 1 (Dynamic coupling effects) From (15) it follows that σq̇2
(tk) =

M−1
22 M21σq̇1

(tk). Apply for instance a feedback linearizing input u in (15) so as
to get the dynamics

{
q̈1 = v1 + λ

q̈2 = v2
(16)

where v1 and v2 are the new inputs. One is then tempted to mimick the one
degree-of-freedom case, see [Brogliato et al., 1997]. However except if V (t) =
T (t) (the kinetic energy) at time t = tk, then there is few chance to get σV (tk) 6
0 (because the controller does not decouple the dynamics at impact times!). This
precludes the use of any controller with Lyapunov function not resembling the
system’s mechanical energy. In the sequel we will use a Lyapunov function which
is very close to the nonsmooth global energy of the system. This will help us a
lot in the stability analysis.

Let us choose:

V (t, q̃, ˙̃q) =
1

2
˙̃qT M(q) ˙̃q +

1

2
γ1q̃

T q̃ (17)

with q̃(·) = q(·) − qd(·) . The control law used in this scheme is based on the
controller presented in [Paden & Panja, 1988], originally designed for free-motion
position and velocity global asymptotic tracking. Let us propose:

T (q)u =







Unc = M(q)q̈∗d + C(q, q̇)q̇∗d + g(q) − γ1(q − q∗d) − γ2(q̇ − q̇∗d)

Ut = Unc before the first impact

Ut = g(q) − γ1(q − q∗d) − γ2q̇ after the first impact

Uc = Unc − Pd + Kf (Pq − Pd)
(18)

where γ1 > 0, γ2 > 0, Kf > 0, Pd = DT λd is the desired force we want for
the permanently constraint motion. The signals q∗d and qd will be defined later,
as well as the switching conditions between the controllers in (18). The overall
structure of the controller is depicted in Fig. 5. One sees that the controller
structure is constant. Discontinuities are a consequence of the feedforward part
only. The switchings may be event-based, or open-loop, see Fig. 8 which depicts
how the supervisor is designed. The interest for choosing this controller is that
the function V (t, q̃, ˙̃q) in (17) is very close to the total energy of the system.
Notice that u in (18) is independent of the restitution coefficient en. From
(18) the third condition in claim 1 can be replaced by V (tk

f ) 6 V (t−0 ) since

V (t−0 ) 6 V (τk
0 ).

Remark 2 It is noteworthy that in order for the system to track a sequence
of modes as in (5), some conditions on the initial state and the selected input
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Ω2k+1

Ω2k+1

Force control
Desired trajectories
generator

Free motion trajectory

Transition trajectory

Constraint trajectory

(q∗

d , q̇∗

d)

(q∗

d , q̇∗

d)

(q∗

d , q̇∗

d)

Supervisor

Lagrangian System
controller

Ω2k ∪ Ik

Pd

Pq

(q, q̇)

Non linear

Fig. 5: Structure of the controller

are required. This is called synchronicity of the high-level controller and the
system’s modes defined in (5) in [Brogliato et al., 2000].

As observed in the introduction, a control strategy which consists of attaining
the surface ∂Φ tangentially and without incorporating impacts in the stability
analysis, cannot work in pratice due to its lack of robustness. In view of this,
the control law for the transition phase is defined in order :

• To make the system hit the constraint surface (and then dissipate energy
during impacts) if the tracking error is not zero.

• To make the system approach the constraint surface tangentially (without
rebound) if the tracking is perfect.

This two situations are conflicting. On the other hand the coupling between
q1 and q2 in (15), and the stability framework in claims 1 and 3, make the
asymptotic stability quite difficult to obtain if velocities are subject to discon-
tinuities. Indeed as indicated in item c) in Sec. 1.5, any velocity jump at tk

implies σV (tk) > 0 when V ≡ 0. Hence if the transition phase is constructed
with impacts, one has to find a manner to get V (tk

f ) = 0 in order to force the
system to remain on the desired trajectory Xd(·) (here qd(·)). This is not obvi-
ous in general (see remark 1) and defining q∗d(·) as done below is a way to get
the result.

Remark 3 If the system is unconstrained (i.e. Φ = IRn) then motion control is
assured by setting T (q)u ≡ Unc and the trajectory q∗d(·) is the unique closed-loop
invariant. It is globally uniformly asymptotically stable in this case, see [Paden
& Panja, 1988]. As we indicated in the introduction, many other controllers can
be used in this case which all guarantee the same tracking properties.
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3.2 Design of the desired trajectory on phases Ik.

During the transition phase q∗d(t) is defined as follows (see figure 6 for q∗1d(·),
where A,A′, B′, B and C correspond to Fig. 4):

t0 > τk
1

tk0

t0 < τk
1

t10

q1(t)

q∗1d(t)

−αV (τk
0 )

tt∞ tkf tkd

τk
1

t0

Ik Ω2k+1 Ω2k+2Ω2k

τk
0

t2

0

q1(t)

q∗1d(t)

−αV (τk
0 )

ttkf tkd

Ω2k+1 Ω2k+2Ω2k

B′A

t1

t2

t∞
t0

τk
0

B C

τk
1

Ik

B′ B CA A′

A′

Fig. 6: Trajectory q∗1d(t)

Let us note that the indices k for the phases Ωk and Ik and for the im-
pact times tk, are not related. They are dummy variables. To avoid possible
confusion, all superscripts (.)k will refer to cycle k in (5). Let us define:

- τk
0 is the chosen by the designer as the start of the transition phase Ik,

- tk0 is the time corresponding to q∗1d(t
k
0)=0,

- t0 is the first impact,

- t∞ is the finite accumulation point of the sequence {tk}k>0,

- tkf is the end of the transition phase Ik,
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- τk
1 is such that q∗1d(τ

k
1 ) = −αV (τk

0 ) and q̇∗1d(τ
k
1 ) = 0 (4).

- Ω2k+1 = [tkf , tkd], tkd will be defined in Sec. 3.3 (see Fig. 7).

One has Ik = [τk
0 , tkf ], Ω2k+1 = [tkf , tkd]. On [τk

0 , t0), we impose that q∗d(t) is

twice differentiable, and q∗1d(t) decreases towards −αV (τk
0 ) on [τk

0 , τk
1 ]. In order

to cope with the coupling between q1 and q2, the signal q∗2d(t) ∈ C2(IR+) is
frozen during the transition phase, i.e.:

• q∗2d(t) = q∗2d, q̇∗2d(t) = 0 on [τk
0 , t∞]

• q∗2d(t) is defined on [τk
0 , tk0 ] such that q̇∗2d(t

k
0) = 0.

On (t0, t
k
f ], we define qd and q∗d as follows :

qd =

(
0

q∗2d

)

, q∗d =

(
−αV (τk

o )
q∗2d

)

(19)

On [tkf , tkd] we set qd =

(
0

q2d(t)

)

and q∗1d = 0. Therefore on (tkf , tkd) one has

qd(t) = q∗d(t). The purpose of q∗d is to create a “virtual” potential force which
stabilizes the system on ∂Φ even if the position of the constraint is uncertain.
Consequently the fixed point(qd, q̇d) of the complementarity system is used in
the expression of the Lyapunov fonction (q̃ = q − qd), whereas the unreachable
fixed point q∗d is used in the control law (q̄ = q−q∗d with q∗d as in (19)). In Unc in
(18) we have q∗d(·) = qd(·) since q∗d(t) = qd(t) for t ∈ Ω2k ∪ [τk

0 , t0]. In summary,
after the first impact at t0, q1d(·) is set to zero while in case τk

1 > t0, q∗1d(·) is set
to −αV (τk

0 ) (in other words Ut switches as indicated in(18)) . Since q̇1d(t
−
0 ) 6= 0

and q1d(t
−
0 ) 6= 0 in general, the trajectory q1d(·) behaves like in a sort of plastic

collision (en = 0). With respect to Fig. 4, one has τk
0 at A, t∞ at B′, tk0 at A′,

tkd at C, and B at tkf (the term −Pd −KfPd defines the signal X∗
d (·) between B

and C on Fig. 4). If V (τk
0 ) = 0 then A′′ corresponds to the time τk

1 .
The piece of curve AA′ on Fig. 4 is normal to ∂Φ (which in coordinates q is

the codimension-m plane q1 = 0). The closed-loop desired trajectory X i,c(·) is
defined as qi,c(t) = q∗d(t) on Ω2k, qi,c(t) = q∗d(t) with α = 0 on Ik, and q

i,c
1 (t) = 0

on Ω2k+1, q
i,c
2 (t) = q∗2d(t) on IR+. It is impactless.

The choice for q∗d(.) is done essentially to get σV (tk) 6 0 on Ik.

Remark 4 It is noteworthy that the proposed strategy implies that Uc is
switched only after stabilisation on ∂Φ is achieved. This implies that the period
at which a cycle Ω2k ∪ Ik ∪Ω2k+1 is performed, is lower-bounded by |t∞− t0|. If
impacts are plastic (en = 0) then the speed of a cycle can be increased while if
en is close to 1 the programmed speed must be smaller. This is logical from an
intuitive point of view since this is a consequence on how much kinetic energy
impacts dissipate.

4In [Brogliato, 1999] [Brogliato et al., 2000] it is implicitly assumed in the stability proofs
that τk

1 < t0, which is a shortcoming that we avoid in this paper.
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Remark 5 Due to the fact that we want VΣI
to act as a Lyapunov function

for PΣI
in (7) and since the Poincaré mapping fixed point satisfies q∗ΣI ,1 = 0,

we have to set q1d to zero and q2d constant on the transition phase. However
the approach trajectory (AA′) on Fig. 4 is not so easy to design. This is what
claim 5 below solves.

3.3 Conditions for take-off

In the previous subsection we designed the trajectory q∗d(.) to stabilize the sys-
tem on ∂Φ. We now deal with the conditions on the control signal Uc(qd, q̇d, q̈d, Pd)
for take-off at the end of Ω2k+1. On [tkf , tkd), the dynamics of the system is de-
fined by:

M(q)q̈ + F (q, q̇) = Uc + DT λ (20a)

0 6 q1 ⊥ λ > 0 (20b)

with F (q, q̇) = C(q, q̇)q̇ + G(q). On [tk
f , tkd), the system is permanently con-

strained, i.e. q1(.) = 0 and q̇1(.) = 0. Then (20b) implies [Glocker, 2001]:

0 6 q̈1 ⊥ λ > 0 (22)

There is take-off at tkd if q̈1(t
k+
d ) > 0. From (22) a necessary condition to

have q̈1(t
k+
d ) > 0 is that λ(tk−d ) = 0.

Claim 4 Consider the closed-loop system (20) (18), during the permanently
constraint phase [tkf , tkd]. Detachment is assured if

b(q, q̇, Unc, λd) > 0

with b(q, q̇, Unc, λd) = DM−1(q)[−F (q, q̇) + Unc − DT (1 + Kf )λd].

Proof.
Let us detail the expression of the Linear Complementarity Problem (LCP)

in (22). With the notation of Sec. 3.1, (22) can be rewritten as

0 6 Dq̈ ⊥ λ > 0 (23)

From (20a) and (18), one has:

q̈ = M−1(q)[−F (q, q̇) + Uc + DT λ]

= M−1(q)[−F (q, q̇) + Unc + (1 + Kf )(DT λ − Pd)]
(24)

By inserting (24) in (23), one obtains the following LCP:

0 6 DM−1(q)[−F (q, q̇) + Unc − (1 + Kf )DT λd]
︸ ︷︷ ︸

b(q,q̇,U,λd)

+(1 + Kf )DM−1(q)DT

︸ ︷︷ ︸

A(q)

λ ⊥ λ > 0

(25)
which we rewrite more compactly as

0 6 b(q, q̇, Unc, λd) + A(q)λ ⊥ λ > 0 (26)

Let us study the LCP in (26). Since A(q) > 0 there is a unique solution:
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• If b(.) > 0, then b(.) + A(q)λ > 0 and the orthogonality condition b(.) +
A(q)λ ⊥ λ implies λ = 0.

• If b(.) < 0 then the condition 0 6 b(.) + A(q)λ1 and the orthogonality
imply λ = −A−1(q)b(.) > 0.

• If b(.) = 0 then (26) becomes 0 6 A(q)λ ⊥ λ > 0 and λ = 0.

In conclusion, λ = 0 if and only if b(q, q̇, Unc, λd) > 0. From (24) and (25)

q̈1(t) = b(q, q̇, Unc, λd) + A(q)λ

If λ = 0, then q̈1(t) = b(q, q̇, Unc, λd), and a sufficient condition for detachment
is:

b(q, q̇, Unc, λd) > 0

3.4 Control strategy to assure detachment

The only parameter we can tune to force take-off without influancing the varia-
tion of the Lyapunov function V (.) is λd(t). By inserting (18) in the expression
of b(q, q̇, Unc, λd), one gets:

b(q, q̇, Unc, λd) = DM−1(q)[M(q)q̈d−C(q, q̇) ˙̃q−γ1q̃−γ2
˙̃q−DT (1+Kf )λd] (27)

After some computation, (27) and the result of claim 4 provide a sufficient
condition for take-off (time argument is dropped in (28)):

q̈1 =
(

[M−1
(q) ]11C11(q, q̇) + [M−1

(q) ]12C21(q, q̇)
)

q̇1d + γ2[M
−1
(q) ]11q̇1d + γ1[M

−1
(q) ]11q1d

−
(

[M−1
(q) ]21C11(q, q̇) + [M−1

(q) ]22C21(q, q̇)
)

˙̃q2 − γ2[M
−1
(q) ]21

˙̃q2 − γ1[M
−1
(q) ]21q̃2

− [M−1
(q) ]11(1 + Kf )λd + q̈1d > 0

(28)
with the decomposition of matrix M−1(q) and C(q, q̇) as:

M−1(q) =






[M−1
(q) ]11

[M−1
(q) ]12

[M−1
(q) ]21

[M−1
(q) ]22




 and C(q, q̇) =





C11(q, q̇) C12(q, q̇)

C21(q, q̇) C22(q, q̇)





Depending of the sign of q̃2 and ˙̃q2, b(.) is not necessarily positive with λd = 0.
Therefore we have to choose a profile for λd(t) which is continuously decreasing
until b(q, q̇, Unc, λd) > 0, even if a negative desired force is meaningless because
it is not reachable (see Fig. 7). The time tk

d is defined as the first instant such
that q̈1(t

k
d) > 0. Since all signals are bounded, from (28) tk

d is garanteed to be
bounded as well.
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Now we have to assure that the system does not make contact again with ∂Φ
when the control law switches from Uc(t

k−
d ) to Unc(t

k+
d ) at the take-off. Then

Unc(t
k+
d ) has to be chosen to garantee q̈1(t

k+
d ) > 0.

At tk−d , the control law is Uc and q1d(t
k−
d ) = 0, q̇1d(t

k−
d ) = 0 and q̈1d(t

k−
d ) = 0.

Therefore (28) is simplified to:

q̈1(t
k−
d ) = b(q, q̇, Unc, λd)

= −
(

[M−1
(q) ]21C11(q, q̇) + [M−1

(q) ]22C21(q, q̇)
)

˙̃q2 − γ2[M
−1
(q) ]21

˙̃q2

−γ1[M
−1
(q) ]21q̃2 − [M−1

(q) ]11(1 + Kf )λd(t
k−
d ) > 0

(29)
At tk+

d , the control law is Unc so that λd(t
k+
d ) = 0 in b(q, q̇, Unc, λd) evaluated

at tkd. Since the desired trajectory has to be twice differentiable, let us choose
q1d(t

k+
d ) = 0 and q̇1d(t

k+
d ) = 0. We obtain:

q̈1(t
k+
d ) = b(q, q̇, Unc, 0)

= −
(

[M−1
(q) ]21C11(q, q̇) + [M−1

(q) ]22C21(q, q̇)
)

˙̃q2 − γ2[M
−1
(q) ]21

˙̃q2

−γ1[M
−1
(q) ]21q̃2 + q̈1d(t

k+
d )

(30)
Finally the condition to guarantee q1(t) > 0 on (tkd, tkd + ε), for some ε > 0, is

that the term q̈1d(t
k+
d ) in (30) compensates the loss of the term −[M−1

(q) ]11(1 +

Kf )λd in (29) due to the switching from Uc to Unc. The condition on the desired
trajectories at the begining of the free-motion phase Ω2k+2 is:

q̈1d(t
k+
d ) > max

(

0,−[M−1
(q(tk

d
))

]11(1 + Kf )λd(t
k−
d )

)

(31)

Remark 6 It is interesting to notice that the two transitions Ω2k −→ Ω2k+1

and Ω2k+1 −→ Ω2k+2, are monitored by desired signals q∗1d and λd which violate
the complementarity conditions, as shown in Fig. 7.

3.5 Closed-loop stability analysis

The closed-loop dynamical system is now completely defined. It consists of a
somewhat complex dynamical system, with complementarity conditions, impact
law, and switching torque input.

Ω2k −−−−−−−−→ Ik −−−−−−−−→ Ω2k+1 −−−−−−−−→ Ω2k+2

(Unc) ↑ (Ut) ↑ (Uc) ↑ (Unc)
time-based state-based state-based

(τk
0 ) (tkf > t∞) (tkd = detachment)
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Ω2k+2

tkf
t0

Ik

B

0
t

C

λd(t)

q∗1d(t)

q1(t)

tkd

Ω2k+1

τk
d

Fig. 7: Trajectory λd(t)

The aim is now to prove that this dynamical system, seen as an error system
with state the vector (q̃, ˙̃q), is stable in the sense of definitions 2 and 3. As
we saw this means that asymptotically the trajectory qi,c(·) is attained. The
closed-loop state can be chosen as x = (q̃, ˙̃q), according to definition 2 which
concerns only phases Ωk.

Definition 4 {CI} is the subspace of initial conditions x(0) which assure t0 >
τk
1 uniformly along a motion as in (5).

The foregoing developments hold independently of m. Let us assume that
m = 1 now. We will come back to the case m > 2 later on. {CI} contains
the initial data guaranteeing that no impact occurs before the signal q∗d(·) is
frozen. This is very useful because it can then be proved that the conditions
for asymptotic strong stability are fullfilled. However in general x(0) 6∈ {CI},
so that an impact occurs before q∗d(·) is frozen (i.e. q̇∗d(t−0 ) 6= 0, see figure 6). A
specific analysis (completing the one in [Brogliato et al., 2000]) has to be done.

Assumption 1 The controller Ut in (18) assures that a sequence {tk}k>0 of
impact times exists, with limk→+∞ tk = t∞ < +∞.

One difficulty in the stability analysis along a cycle like in (5), is to assure
that initial tracking errors do not increase from one cycle Ω2k ∪ Ik ∪ Ω2k+1 to
the next, due to the impacts. As we shall see next, one key point in the stability
is the value of the first jump in V (.), i.e. σV (t0). Let us calculate the value of
the jumps in V (.) at tk:

σV (tk) = TL(tk)−1

2
γ1q1d

2(t−k )−1

2
q̇d(t

−
k )T M(q(tk))q̇d(t

−
k )+q̇(t−k )T M(q(tk))q̇d(t

−
k )

(32)
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Control
Free Motion

Force/Position
Control

Impacts
Accumulation

Ending Stabilization
Phase
[unfrozen q∗2d]

Ik

Ω2k

LCP(λ) monitoring
for detachment
Control
[transition λd, see fig.7]

Preparing

[frozen q∗2d]

t∞

τ k
d

tkf

Unc

τ k
0

Ut

Ut

Uc

Uc

tkd

(stabilization)

(1st impact)(q̈1 > 0)

Ω2k+1

Unc
Stabilization Phase

[transition q∗1d, see fig.17]

t0

on ∂Φ

Fig. 8: Supervisor evolution.

where TL(tk) is the loss of kinetic energy at impact tk, and we used the fact
that q̇d(t

+
k ) = 0, q̇2d(t

−
k ) = 0, q2d(t

+
k ) = q2d(t

−
k ) = q∗2d and q1d(t

+
k ) = 0.

For k > 1, one has q1d(t
+
k ) = 0 and q̇d(t

−
k ) = 0. From the above definition

of qd(·) it is assumed that tk0 < t0, so that q̇2d(t0) = 0. If this is not the case
then q2d(·) can be frozen earlier in the process to assure that at the first impact
q̇2d(t0) = 0. Then one has:







σV (tk) = TL(tk) 6 0

σV (t0) = TL(t0) − 1
2γ1q1d

2(t−0 ) − 1
2 q̇d(t

−
0 )T M(q(t0))q̇d(t

−
0 )

+M11(q(t0))q̇1(t
−
0 )q̇1d(t

−
0 ) + q̇2(t

−
0 )T M21(q(t0))q̇1d(t

−
0 )

(33)

It is noteworthy that the equalities in (33) hold independently of the chosen
impact rule. The only assumption is that impacts dissipate kinetic energy. The
above choice for q∗d(.) and switching strategy, is done in order to possibly obtain
σV (t0) 6 0 and σV (tk) 6 0 for k > 1. Let us now state the following:

Claim 5 Let assumption (1) hold. The system defined by (1) in closed-loop
with the controller in (18) and qd(·), q∗d(·) as defined above, is :
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(i) - Asymptotically strongly stable if x(0) ∈ {CI}.

(ii) - Asymptotically strongly stable if q∗d(.) is designed such that at the first im-
pact time of each phase Ik we have

[
M11(q(t0))q̇1(t

−
0 )+q̇2(t

−
0 )T M21(q(t0))

]
q̇1d(t

−
0 ) 6

0.

(iii) - Asymptotically strongly stable if M12 = 0 and en = 0.

(iv) - Asymptotically weakly stable if M12 = 0 and 0 6 en < 1.

Proof. (i) The proof of the first item can be found in [Brogliato et al.,
2000]. Instances for which {CI} 6= ∅ can be calculated in simple cases like one
degree-of-freedom systems. They occur under somewhat stringent conditions.

(ii) It follows immediately from (33) that if
[
M11(q(t0))q̇1(t

−
0 ) + q̇2(t

−
0 )T M21(q(t0))

]
q̇1d(t

−
0 ) 6 0 then σV (t0) 6 0. And then

we can use the proof done in [Brogliato et al., 2000].
(iii) The proof of the third item follows the same line but in this case σV (t0)

has to be shown to be non-negative because it is not equal to the kinetic energy
loss. Let us consider Moreau’s collision rule as written in (3). Notice that since
m = 1

proxM(q(t0))[M
−1(q(t0))NΦ(q(t0)); q̇(t

−
0 )] = q̇(t−0 )T M(q(t0))nqnq (34)

where nq = M−1(q(t0))D
T√

DM(q(t0))DT
∈ IRn×1 is the normal vector in the kinetic metric

[Brogliato, 1999, chapter 6] and D = [10 . . . 0] ∈ IRn×1. One gets from (34)
and using for instance the Schur complement to calculate M−1(q(t0)) [Horn &
Johnson, 1999, p.472]

proxM(q(t0))[M
−1(q(t0))NΦ(q(t0)); q̇(t

−
0 )] = q̇1(t

−
0 )

(
1

M−1
22 (q(t0))M

T
12(q(t0))

)

(35)
Therefore from (3) one gets







σq̇1
(tk) = −(1 + en)q̇1(t

−
k )

σq̇2
(tk) = (1 + en)M−1

22 (q(tk))MT
12(q(tk))q̇1(t

−
k )

(36)

From (36) and (33), after some manipulations we arrive at the following:







σV (t0) =
e2

n−1
2 [M11(q(t0)) − M12(q(t0))M

−1
22 (q(t0))M

T
12(q(t0))]q̇

2
1(t−0 )

− 1
2M11(q(t0))q̇

2
1d(t

−
0 ) + M11(q(t0))q̇1(t

−
0 )q̇1d(t

−
0 )

+q̇2(t
−
0 )T M21(q(t0))q̇1d(t

−
0 ) − 1

2γ1q
2
1d(t

−
0 )

(37)
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It follows immediately from (37) that if en = 0 and M21 = 0 then

σV (t0) = −1

2
M11(q(t0)) ˙̃q2

1(t−0 ) − 1

2
γ1q

2
1d(t

−
0 ) 6 0 (38)

Hence strong stability is assured and the third item is proved.
(iv) If M12 = 0 and 0 6 en < 1, one has

V (t) = V1(t) + V2(t) = 1
2M11(q(t0)) ˙̃q2

1(t) + 1
2

˙̃q2(t)
T M22(q(t0)) ˙̃q2(t)

+ 1
2γ1q̃

2
1(t) + 1

2γ1q̃2(t)
T q̃2(t)

︸ ︷︷ ︸

V1(t)

︸ ︷︷ ︸

V2(t)

(39)
From (39), V2(t) and V1(t) are decoupled, then V2(t) is a smooth function

and V̇2(t) 6 0 for all t. Therefore V2(t∞) 6 V2(τ
k
0 ). Since V1(t∞) = 0 6 V1(τ

k
0 )

one has:

V (t∞) 6 V (τk
0 ) (40)

Then item (iv) of claim 5 is proved.

4 A Weakly-Stable Scheme

It is of some interest to design a feedback control strategy whose closed-loop
stability can be analyzed with claim 2. The control law used in this section has
the same global structure than in Figs. 5-8. However the nonlinear controller
block is based on the scheme presented in [Slotine & Li, 1988]. Let us propose
the following:

T (q)u =







Unc = M(q)q̈r + C(q, q̇)q̇r + g(q) − γ1s

Ut = Unc before the first impact

Ut = M(q)q̈r + C(q, q̇)q̇r + g(q) − γ1s̄ after the first impact

Uc = Unc − Pd + Kf (Pq − Pd)

(41)
where s = ˙̃q + γ2q̃, s̄ = ˙̄q + γ2q̄, q̇r = q̇d − γ2q̃, γ2 > 0 and γ1 > 0 are two

scalar gains, Kf > 0, Pd = DT λd is the desired contact force during permanently
constraint motion.

Assumption 2 The controller Ut in (41) assures that a sequence {tk}k>0 of
impact times exists, with limk→+∞ tk = t∞ < +∞.
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Let us consider the following positive functions:

V1(t, s) = 1
2s(t)T M(q)s(t)

V2(t, s) = 1
2s(t)T M(q)s(t) + γ2γ1q̃(t)

T q̃(t)
(42)

In case Φ = IRn, any of the two functions V1(.) and V2(.) can be used in
order to prove the stability of the closed-loop system (15) (41) [Lozano et al.,
2000, §6.2.5] [Spong et al., 1990]. In the case of interest here Φ ⊂ IRn, things
complicate and as we shall see, both functions are needed for the stability anal-
ysis. In particular one has V̇1(t) 6 0 and V̇2(t) 6 0 along the closed-loop system
as long as T (q)u = Unc in (41), see [Lozano et al., 2000] [Slotine & Li, 1988]. It
is noteworthy that claim 6 is proved with V2(.), while claim 7 is based on V1(.)
and the choice of the closed-loop state vector x(t) = s(t).

Claim 6 (upper-bounds) Consider the closed-loop system (15) (41) on the
time interval [τk

0 , t0], and with the particular choice of q∗1d(.) given in (55) (56)
(57) in appendix A. One has:

(i) |q∗1d(t0)| 6

√

V2(τk
0 )

γ2γ1

(ii) |q̇∗1d(t
−
0 )| 6 K0V

1/4
2 (τk

0 )

where K0 > 0.

Proof
The proof of claim 6 is provided in appendix A.

Claim 7 Let assumption 2 hold, en ∈ (0, 1) and q∗1d be defined as in (55)-(57).
Consider the system defined by (15) in closed-loop with the controller in (41).

(i) - If the controller T (q)u in (41) assures that ‖q̃(τ k
0 )‖ < ε, ε > 0 for all k

over the cycles, then the system initialized on Ω0 with V2(τ
0
0 ) 6 1 satisfies

the requirements of claim 2 and is therefore pratically Ω-weakly stable with
closed-loop state x(.) = s(.).

(ii) - If the controller T (q)u in (41) assures that ‖q̃2(tk+1)‖ 6 ‖q̃2(tk)‖, for all
tk on [t0, t∞), then the system initialized on Ω0 with V2(τ

0
0 ) 6 1 satisfies

the requirements of claim 2 and is therefore pratically Ω-weakly stable with
closed-loop state x(.) = [s(.), q̃(.)].

Notice that ε in (i) need not be small, it is however important that it does
not depend on the cycle index in (5). Note also that V1(t) 6 V2(t) for all t > 0
so that V1(τ

0
0 ) 6 V2(τ

0
0 ) 6 1 in (i).

Proof
The proof of claim 7 is provided in appendix B.
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Claim 8 Consider the closed-loop system (15) (41). The tracking errors satisfy
‖q̃(t)‖ 6 2R and ‖ ˙̃q(t)‖ 6 (1 + 2γ)R for all t ∈ Ω, and ‖s(t)‖ 6 R for all t ∈ Ω,

with R =
(

2
λmin(M(q))e

−γ(tk
f−t∞)(1 + K + ε′)

) 1
2

.

Proof
From the definition of s(t) one has q̃ = 1

p+1s where p ∈ C is the Laplace

variable. Then on [tkf , t) with t ∈ Ω, q̃(t) is the response of a linear filter with
input s(.). One obtains:

q̃(t) = e−(t−tk
f )s(tkf ) +

∫

(tk
f
,t)

e−(t−τ)s(τ)dτ (43)

Equality (43) implies the following inequality:

‖q̃(t)‖ 6 ‖s(tkf )‖ + e−t(t − tkf )‖s‖∞ (44)

where ‖x‖∞ = supt>tk
f
|x(t)| is the L∞ norm. From claim 7, one has ‖s‖ 6 R

so (44) becomes:
‖q̃(t)‖ 6

[
1 + e−t(t − tkf )

]
R

6 2R
(45)

From the definition of s(t) one has ˙̃q(t) = s(t) − γ2q̃(t) then

‖ ˙̃q(t)‖ 6 ‖s(t)‖ + γ2‖q̃(t)‖ (46)

By inserting (45) in (46), and using the fact that ‖s‖ 6 R, one obtains

‖ ˙̃q(t)‖ 6
[
1 + 2γ2

]
R (47)

Claim 9 (plastic impact) Let assumption 2 hold, en = 0 and q∗1d be defined
as in (55)-(57). The system defined by (15) in closed-loop with the controller in
(41) initialized on Ω0 with V2(τ

0
0 ) 6 1 satisfies the requirements of claim 2 and

is therefore pratically Ω-weakly stable with closed-loop state x(.) = [s(.), q̃(.)].

Proof
As en = 0, there is only one impact per phase Ik, and then the item (b) of

claim 2 is useless. Items (a) and (d) are proved in the proof of claim 7(ii).
Then the system (15) with the controller (41) satisfies all the requirements

of claim 2 with ε 6= 0. Consequently it is pratically Ω-weakly stable with x(.) =
[s(.), q̃(.)].
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5 Simulation Examples

The control scheme in (18) is tested in simulation on a 2-link planar manipulator
for the simplest case of a scalar constraint. The constraint surface corresponds
to the ground (y = 0). The natural generalized coordinates so that the dynamics
fits with (15), with m = 1, are the work-space coordinates (x, y). We take:

q =

[
q1

q2

]

=

[
y

x

]

, y > 0

x

y
θ1

θ2

Fig. 9: 2-link planar manipulator

5.1 Asymptotic convergence

Figure 10 shows the evolution of q1(t) and q2(t) during cyclic tasks as in (5) .
On the graph of q1, the asymptotic convergence of the controller is exhibited as
the value of αV (τk

0 ) decreases exponentially. The graph of q2 shows the coupling
between q1 and q2. At each impact time a jump in q̇2 occurs. The periodic step
on q2d corresponds to the transition phase during which q2d needs to be frozen.

5.2 Robustness

In this subsection, we study the robustness of the controller with respect to the
uncertainty on the constraint position. The robustness of closed-loop systems is
a crucial step towards their implementation. The work that is performed here is
essentially numerical, but may provide useful informations on the controller ro-
bustness and its performance in practice. The location of the constraint surface
is not known accurately. As seen on Fig. 11, two situations may be considered.

• If c < 0, the estimated position of the constraint is lower than the real
position. In this case the desired trajectories decrease toward q1d(τ

k
1 ) =
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Fig. 10: Asymptotic Convergence

c
q̂1c = c > 0

q̂1c = c < 0

real position q̂1c = 0

Fig. 11: estimated position q̂1c

−αV (τ0
k ) − |c| instead of q1d(τ

k
1 ) = −αV (τ0

k ). The error c can be incor-
porated in the term −αV (τ 0

k ) and the stability of the transition phase is
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not changed. During the constraint phase the controller is :

Uc = U ideal
nc − (Pd + γ1

[
|c|
0

]

) + Kf (Pq − Pd)

The error term γ1|c| is added to the desired force Pd and contributes to
keep the contact with the surface during the constrained phase.

1e3 3e3 5e3 7e3 9e31e3 3e3 5e3 7e3 9e3

−0.04

0

0.04

0.08

−0.04

0

0.04

0.08

0.12

0.16

0.12

0.16

q1d(t)

q1(t)

V (t)

time

Fig. 12: Stability if c < 0

The system remains stable but it loses its asymptotic stability : If the
tracking is perfect V (τ 0

k ) = 0 and q∗1d = −|c|, so that the system does not
approach the surface tangentially and rebounds occur. Due to item c) in
Sec. 1.5, asymptotic stability is not preserved. An example is depicted on
Fig. 12.

• If c > 0, the estimated position of the constraint is above the real posi-
tion. If the tracking is perfect V (τ 0

k ) = 0, the desired trajectory decreases
toward q1d = c and the system never reaches the constraint. There is no
convergence (see Fig. 13).

This problem can be solved by monitoring the time of stabilization. If
there is no stabilization after an estimated time t̂∞, the estimated position
of the constraint is refreshed as q̂new

1c = q̂old
1c − ε. After a finite number

of iterations, one gets q̂1c < 0. The system is in the previous situation
c < 0 and the stability is preserved. Figure 14 shows an example of self-
adjustment of the estimated position of the constraint.
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Fig. 13: Non-convergence if c > 0
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Fig. 14: Auto-adjustment of q̂1c

When tracking is not perfect and αV (τ 0
k ) > c, the transition phase is able

to stabilize the system on the surface ∂Φ. But during the constraint phase,
the control law is:

Uc = U ideal
nc − (Pd − γ1

[
c

0

]

) + Kf (Pq − Pd)

Pd must be chosen large enough compared to γ1c to be sure that the system
keeps the contact with the surface during the whole constraint phase.

6 Mutiple Impacts

This section extends the previous controller framework to the case of multiple
impact.
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Definition 5 (Multiple impact) A multiple impact is an impact into a sin-
gularity as in definition 1. If the singularity has codimension α, the multiple
impact is named an α-impact. We also denote the singularity as Σα.

The difficulty created by stabilization at singularities of ∂Φ, is that the way
the system attains the singularity, may vary: the system may hit the singularity
directly, or hit one or several surfaces Σi (through a finite or infinite number of
impacts) before attaining the singularity, as depicted on Fig. 15. Let us define
θ

ij
kin as the kinetic angle between two surfaces Σi and Σj , i.e. the angle in the

kinetic metric defined as xT M(q)y for n-vectors x and y. In the following we
shall restrict ourselves to m = 2 (two constraints) and θ12

kin 6 π
2 . The reasons

for this choice are the following:

• Let us further assume that en = 0 in (2). As shown in [Paoli, 2002],
the conditions θ12

kin 6 π
2 and en = 0 imply that trajectories (i.e. solu-

tions of the closed-loop system) are continuous with respect to the initial
conditions.

• Let us take en ∈ [0, 1] and assume that the system performs a constrained
motion phase on Σ1 before hitting ∂Φ at q. Then q̇(t−k ) ∈ NΦ(q) so that
from (3) q̇(t+k ) = −enq̇(t−k ). This means that after the shock the velocity
is again tangent to Σ1, and the state at t+k is consistent with the constraint
q1
1 = 0.

The goal is to stabilize the system on the singularity Σ2 = Σ1 ∩ Σ2 during
the transition phase. Several cases are examined next, and the controller in (18)
is used.

Σ1 Σ2 Σ1 Σ2 Σ1 Σ2

(c)(b)(a)

Fig. 15: Multiple impact (2-impact)
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6.1 Stabilisation with a 2-impact

In this case, the two surfaces are reached simultaneously. This means that at
each impact time tk, one has q1

1(tk) = q2
1(tk) = 0, and the closed-loop analysis

made in [Brogliato et al., 2000] for a 1-impact can be adapted immediately to
such a 2-impact. If en = 0 the continuity of solutions with respect to initial
data allows us to further conclude that this strategy possesses some robustness
properties. Indeed even if the system does not strike right at the singularity
Σ2, but in a neighborhood of it, then stabilisation still occurs with the same
controller as depicted on Fig. 15 (b). If en > 0 then such a strategy does not
seem amenable in practice due to its lack of robustness (because trajectories
impacting in a neighborhood of Σ2 may drastically differ from those impacting
on Σ2).

6.2 Impact on one surface before a 2-impact

In this case the transition phase is decomposed into two main steps: a first sub-
phase during which the system is stabilized on Σ1 (without impact on Σ2). And
a second subphase during which the system is stabilized on Σ2. The property
in the second item just above, assures that the system remains on Σ1 during
this second subphase. The proof of stability for the first phase is similar to the

1-impact case if we take q1 = [q1
1 ] and q2 =

[
q2
1

q2

]

. During the second phase,

the system is in a constraint motion, and the closed-loop dynamics is:

M(q)q̈ = −C(q, q̇)q̇ − γ1q̄ − γ2q̇ + (1 + Kf1)(λq1
− λd1

)∇qq
1
1 (48)

The system is stabilized on Σ2 using the signal q∗1d =

[
0

q2∗
1d

]

, where q2∗
1d has

the same form as q1∗
1d in the previous phase and decreases towards −α2V (τk

0 ).
With the same proof as before, we need to show that the inequality:

V (x(t−k+1), t
−
k+1) − V (x(t+k ), t+k ) 6 0 (49)

holds. One obtains:
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V (x(t−k+1), t
−
k+1) − V (x(t+k ), t+k )

=

∫

(tk,tk+1)

V̇ (t)dt

=

∫

tk,tk+1)

q̇T Mq̈ + q̇T Ṁ

2
q̇ + γ1q̃

T q̃dt

=

∫

(tk,tk+1)

(

q̇T [−Cq̇ − γ1q̄ − γ2q̇ + (1 + kf1)(λq1
− λd1

)∇qq
1
1 ]

+q̇T Ṁ

2
q̇ + γ1q̃

T q̃
)

dt

=

∫

(tk,tk+1)

−γ2q̇
T q̇dt + γ1

∫

(tk,tk+1)

q̇T
1 q∗1ddt

+

∫

(tk,tk+1)

q̇T (1 + kf1)(λq1
− λd1

)∇qq
1
1dt

=

∫

(tk,tk+1)

−γ2q̇
T q̇dt 6 0

The last but one equality is deduced from the preceeding one using the
property that the matrix 2C(q, q̇) − Ṁ(q, q̇) is skew-symmetric [Lozano et al.,
2000], and ˙̃qT q̃− q̇T q̄ = q̇T q∗1d. The last inequality is deduced from the preceding

equality since q̇T (1+kf1)(λq1
−λd1

)∇qq
1
1 = 0 and [qT

1 q∗1d]
tk+1

tk
= 0 since q1(tk) = 0

during the 2-impact. A proof similar to the 1-impact case allows one to conclude
on asymptotic stability of this 2-impact tracking problem. However we have
supposed that there is no impact on the second surface during the first transition
subphase. This may not always be realizable in practice, and may also be seen
as a lack of robustness for stabilisation in a neighborhood of singularities.

6.3 Case (c) : General case

In this case the system can collide indifferently the two surfaces. There are
several 1-impacts on both surfaces before the 2-impact occurs. In this situation
we do not have q1(tk) = 0 for all impacst (this true only during the 2-impact).
The weak stability of the transition phase can be obtained by studying the
variation of V (q(t), q̇(t), t) between two impacts on the same surface (Σ1 or Σ2).

Let us choose the following notations: t2k is for impacts on Σ2, and t2k+1 is

for impacts on Σ1. Let us also choose q∗1d =

[
q1∗
1d

q2∗
1d

]

=

[
−α1V (x(τk

0 ), τk
0 )

−α2V (x(τk
0 ), τk

0 )

]

.

Let us now calculate the following variation:
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3

1

Σ2Σ1

Fig. 16: General case

V (t−2(k+1)) − V (t+2k)

=

∫

(t2k,t2k+1)

V̇ (t)dt + σV (t2k+1) +

∫

(t2k+1,t2(k+1))

V̇ (t)dt

= σV (t2k+1) − γ2

∫

(t2k,t2k+1)

q̇T q̇dt − γ2

∫

(t2k+1,t2(k+1)

q̇T q̇dt

+γ1q
∗
1d

T [q1]
t2k+1

t2k
+ γ1q

∗
1d

T [q1]
t2(k+1)

t2k+1
(50)

= ∆ + γ1q
∗
1d

T (q1(t2(k+1)) − q1(t2k)) (51)

= ∆ + γ1q
1∗
1d

T (q1
1(t2(k+1)) − q1

1(t2k)) (52)

where ∆ is the sum of all negative terms in (50). Equality (51) is deduced from
(50) since q2

1(t2k) = 0 for all k. With α1 = 0, we have q1∗
1d = 0 and then :

V (t−2(k+1)) − V (t+2k) < 0

The strategy is to take α1 = 0 (target A, see Fig. 16) at the beginning of the
transition phase to stabilize the system on Σ2, and to switch to α2 = 0, α1 > 0
(target B, see Fig. 16) when the system is on Σ2 (or to switch to the previous
case).

7 Conclusion

This paper deals with the tracking control of fully actuated Lagrangian sys-
tems subject to frictionless unilateral constraints. These dynamical systems are
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named complementarity systems because they involve complementarity condi-
tions. They are nonsmooth because the velocity may possess discontinuities (at
impact times), so that the acceleration and the contact force are measures. They
may be seen as a complex mixture of ordinary differential equations, differential-
algebraic equations, and measure differential equations. The extension of the
tracking control of unconstrained (or persistently constrained) Lagrangian sys-
tems, towards complementarity Lagrangian systems, is not trivial. The aim
of this paper is to study the design of a feedback controller for these specific
nonsmooth systems, supposed to perform a general cyclic impacting task. First
the stability framework dedicated to study these systems is recalled, and some
definitions and claims are given. Then we focus on the condition of existence
of closed-loop trajectories (usually called desired trajectories in unconstrained
motion tracking control) which assure the asymptotic stability in closed-loop,
i.e. the asymptotic convergence of the generalized coordinates towards some
closed-loop invariant trajectory. The second part of this paper is devoted to
numerically study an example : a 2-link planar manipulator subject to a single
unilateral constraint. This example allows us to exhibit some results on the
robustness of this control framework in term of uncertainty of the constraint
surface position. The effect of measurement noise is also studied. It is shown
that the proposed scheme possesses some interesting robustness properties. The
last part of this paper is devoted to the case of so-called multiple impacts (an ac-
curate definition is provided). Some specific difficulties related to the constraint
boundary geometry, are highlighted, and some possible manners to extend the
single constraint case are indicated.
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A Proof of Claim 6

i) On [τk
0 , t0), one has V̇2(t) 6 0, so that V2(t

−
0 ) 6 V2(τ

k
0 ). Therefore from (17)

V2(τ
k
0 ) > V2(t

−
0 ) > γ2γ1q̃(t

−
0 )T q̃(t−0 ) > γ2γ1q̃1

2(t−0 ) (53)

so that √

V2(τk
0 )

γ2γ1
> |q1(t0) − q∗1d(t

−
0 )| = |q∗1d(t

−
0 )| (54)

because q1(t0) = 0. The desired trajectory q∗1d(.) is chosen as a decreasing
function, and from inequation (54) we have tmin 6 t0 6 tmax, where q∗1d(tmin) =
√

V2(τk
0 )

γ2γ1
and q∗1d(tmax) = −

√
V2(τk

0 )
γ2γ1

(see Fig. 17).

Remark 7 From the value of tmax, it follows that if αV1(τ
k
0 ) >

√
V2(τk

0 )
γ2γ1

, then

t0 6 τk
1 on the cycle k.

ii) The signal q∗1d(t) is a function decreasing toward −αV1(τ
k
0 ). Let us use a

degree 3 polynomial with limit conditions (tini = τk
0 and tend = τk

1 ). After some
manipulations we will exhibit an upper-bound of q̇∗1d(t) on [tmin, tmax]. Since
t0 ∈ [tmin, tmax] then:

q∗1d(t) = a3t
3 + a2t

2 + a1t + a0

q̇∗1d(t) = 3a3t
2 + 2a2t + a1

at tini = τk
0 : q∗1d(tini) = q1d(τ

k
0 ) and q̇∗1d(tini) = 0

at tend = τk
1 : q∗1d(tend) = −αV1(τ

k
0 ) and q̇∗1d(tend) = 0

(55)
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Fig. 17: q∗1d(t).
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To compute maxt∈[tmin;tmax] | ˙q1d(t)|, let us make a time scaling transforma-

tion t′ = t′(t), such that t′(τk
0 ) = 0 and t′(τk

1 ) = 1, as t′(t) =
t−τk

0

τk
1 −τk

0
. We

obtain:
a3 = 2

[
q1d(τ

k
0 ) + αV1(τ

k
0 )

]

a2 = −3
[
q1d(τ

k
0 ) + αV1(τ

k
0 )

]

a1 = 0
a0 = q∗1d(τ

k
0 )

(56)

and the signal q∗1d(t) is :

q∗1d(t
′) =

[
q∗1d(τ

k
0 ) + αV1(τ

k
0 )

]
(2t′3 − 3t′2) + q∗1d(τ

k
0 )

q̇∗1d(t
′) = −6

[
q∗1d(τ

k
0 ) + αV1(τ

k
0 )

]
(1 − t′)t′

(57)

From (57), we see that q∗1d(t
′) is decreasing on t′ ∈ [0, 1]. Consequently

q∗1d(t
′
0) 6 q∗1d(t

′
min) 6

√

V2(τk
0 )

γ2γ1
(58)

By inserting (57) in (58), one obtains:

[
q∗1d(τ

k
0 ) + αV1(τ

k
0 )

]
(2t′30 − 3t′20 ) + q∗1d(τ

k
0 ) 6

√

V2(τk
0 )

γ2γ1
(59)

Then,

t′20 (3 − 2t′0) >
q∗1d(τ

k
0 ) −

√
V2(τk

0 )
γ2γ1

q∗1d(τ
k
0 ) + αV1(τk

0 )
(60)

For t > 0, one has t(2 − t) > t2(3 − 2t), therefore:

t′0(2 − t′0) >
q∗1d(τ

k
0 ) −

√
V2(τk

0 )
γ2γ1

q∗1d(τ
k
0 ) + αV1(τk

0 )
(61)

The root of t(2 − t) = a is t = 1 −
√

1 − a, from which it follows that:

t′0 > 1 −

√

1 −
q∗

1d
(τk

0 )−

√

V2(τk
0 )

γ2γ1

q∗

1d
(τk

0 )+αV1(τk
0 )

> 1 −

√

αV1(τk
0 )+

√

V2(τk
0 )

γ2γ1

αV1(τk
0 )+q∗

1d
(τk

0 )
= t′min

(62)
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On [tmin, tmax], one has |q̇∗1d(t
′)| 6 |q̇∗1d(t

′
min)|. Thus:

|q̇∗1d(t
′
0)| 6 −6(q∗1d(τ

k
0 ) + αV1(τ

k
0 ))(1 − t′min)t′min

6 6(q∗1d(τ
k
0 ) + αV1(τ

k
0 ))

√

αV1(τk
0 )+

√

V2(τk
0 )

γ2γ1

αV1(τk
0 )+q∗

1d
(τk

0 )

6 6

√

(q∗1d(τ
k
0 ) + αV1(τk

0 ))(αV1(τk
0 ) +

√
V2(τk

0 )
γ2γ1

)

(63)

Now we change back the time variable t′ to t.

|q̇∗1d(t0)| 6 6
τk
1 −τk

0

√

(q∗1d(τ
k
0 ) + αV1(τk

0 ))(αV1(τk
0 ) +

√
V2(τk

0 )
γ2γ1

) (64)

From (42) one has V2(t) > V1(t). Thus equation (64) becomes:

|q̇∗1d(t0)| 6 6
τk
1 −τk

0

√

(q∗1d(τ
k
0 ) + αV2(τk

0 ))(αV2(τk
0 ) +

√
V2(τk

0 )
γ2γ1

) (65)

Let us define the parameter:

K0 =
6

τk
1 − τk

0

√

αq∗1d(τ
k
0 ) + q∗1d(τ

k
0 )

√
1

γ1γ2
+ α2 + α

√
1

γ2γ1
(66)

If the system is initialized with V2(τ
0
0 ) 6 1, then V

1/4
2 > V

1/2
2 > V2 and inequal-

ity (65) becomes:

|q̇∗1d(t
−
0 )| 6 K0V

1/4
2 (τk

0 ) (67)

Then item (ii) of claim 6 is proved.
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B Proof of Claim 7

(i) Proof of the first result of claim 7: Let us show that conditions (a) (b)
and (d) in claim 2 are satisfied.

(a) Outside phase Ik it can be computed that V̇1(t) = −γ1s(t)
T s(t) [Slotine

& Li, 1988], then from (42) one has:

‖s(t)‖2 >
2

λmax(M(q))
V1(t) (68)

where λmin(.) and λmax(.) denote the minimum and maximum eigenvalues,
respectively. It follows that:

V̇1(t) 6 − 2γ1

λmax(M(q))
V1(t) (69)

Therefore condition (a) of claim 2 is satisfied with γ = 2γ1

λmax(M(q)) .

(b) After the first impact the closed-loop equation of the system defined by
(41) and (15) is:

M(q)ṡ(t) + Cs(t) + γ1s̄(t) = 0 (70)

Let us calculate V̇1(t) along trajectories of (70):

V̇1(t) =
1

2
s(t)T Ṁ(t)s(t) + s(t)T M(q)ṡ(t) (71)

where Ṁ(t) = d
dt [M(q(t))]. By introducing (70) in (71) and using the fact that

Ṁ(t) − 2C(q, q̇) is a skew-symmetric matrix [Lozano et al., 2000, lemma 5.4]
one obtains:

V̇1(t) = −γ1s(t)
T s̄(t) (72)

After the first impact q∗d is constant, q̃ and q̄ are defined from (19) as q̃(t) =
(

q1(t)
q2(t) − q∗2d

)

and q̄(t) =

(
q1(t) − q∗1d

q2(t) − q∗2d

)

. Then ˙̄q(t) = ˙̃q(t) and one has:

s̄(t) = ˙̄q(t) + γ2q̄(t)

= ˙̃q(t) + γ2q̃(t) − γ2

(
q∗1d

0

)

= s(t) − γ2

(
q∗1d

0

)
(73)

Introducing (73) into (72) one obtains:

V̇1(t) = −γ1s(t)
T s(t) + γ1γ2s(t)

T

(
q∗1d

0

)

= −γ1s(t)
T s(t) + γ1γ2s1(t)q

∗
1d

= −γ1s(t)
T s(t) + γ1γ2q̇1(t)q

∗
1d + γ1γ

2
2q1(t)q

∗
1d

= −γ1s(t)
T s(t) + γ1γ2q̇1(t)q

∗
1d − γ1γ

2
2q1(t)|q∗1d|

(74)
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Using the fact that q1(t) > 0, q1(tk) = 0 and that q∗1d = −αV (τk
0 ) 6 0, then

between two impacts one has for all k > 0:

V1(t
−
k+1) − V1(t

+
k ) =

∫

(tk,tk+1)
V̇1(t)dt

= −
∫

(tk,tk+1)
γ1s(t)

T s(t)dt −
∫

(tk,tk+1)
γ1γ

2
2q1(t)|q∗1d|dt

+γ1γ2q
∗
1d[q1(t)]

tk+1

tk

= −
∫

(tk,tk+1)
γ1s(t)

T s(t)dt −
∫

(tk,tk+1)
γ1γ

2
2q1(t)|q∗1d|dt

6 0
(75)

Therefore condition (b) of claim 2 is satisfied.
(d) Let us start with the computation of σV (tk). For k > 1, qd(t

+
k ) = qd(t

−
k )

and q̇d(t
+
k ) = q̇d(t

−
k ) = 0 see (19). Consequently one has:

σV1
(tk) = V1(t

+
k ) − V1(t

−
k )

= 1
2

[
( ˙̃q(t+k ) + γ2q̃(t

+
k ))T Mk( ˙̃q(t+k ) + γ2q̃(t

+
k ))

−( ˙̃q(t−k ) + γ2q̃(t
−
k ))T Mk( ˙̃q(t−k ) + γ2q̃(t

−
k ))

]

= 1
2 q̇(t+k )T Mk q̇(t+k ) − 1

2 q̇(t−k )T Mkq̇(t−k ) + γ2

[
q̇(t+k )T Mkq̃(t+k )

−q̇(t−k )T Mkq̃(t−k )
]

= TL(tk) + γ2

[
q̇(t+k ) − q̇(t−k )

]T
Mkq̃(tk)

(76)
where Mk , M(q(tk)). Using the fact that q1(tk) = 0 and q1d(t) = 0 after the
first impact see (19), one gets from (76):

σV1
(tk) = TL(tk) + γ2q̃2(tk)T

[
M21σq̇1

(tk) + M22σq̇2
(tk)

]
(77)

Introducing (36) in (77) one obtains for all k > 1:

σV1
(tk) = TL(tk) 6 0 (78)

For k = 0, two cases have to be examined.
- If t0 > τk

1 then one has also qd(t
+
0 ) = qd(t

−
0 ) and q̇d(t

+
0 ) = q̇d(t

−
0 ) = 0, and

one can use the result of Eq. (78) to obtain:

σV1
(t0) = TL(t0) 6 0 (79)

- If t0 < τk
1 then one has q1d(t

−
k ) 6= q1d(t

+
k ) = 0 and q̇1d(t

−
k ) 6= q̇1d(t

+
k ) = 0.
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One calculates the initial jump as follows:

σV1
(t0) = TL(t0) − 1

2 q̇d(t
−
0 )T M(q(t0))q̇d(t

−
0 ) − 1

2γ2
2q1d(t

−
0 )M11(q(t0))q1d(t

−
0 )

+γ2[( ˙̃q1(t
−
0 )M11(q(t0)) + ˙̃q2(t

−
0 )T M21(q(t0)))q1d(t

−
0 )

+q̇1d(t
−
0 )M12(q(t0))q̃2(t

−
0 )] + γ2

2q1d(t
−
0 )M12(q(t0))q̃2(t

−
0 )

(80)
From (79), (80) and (78) one has:

∑∞
k=0 σV1

(tk) 6 γ2‖ ˙̃q(t−0 )‖ ‖q1d(t
−
0 )‖ ‖M1(q(t0))‖ + γ2‖q̇1d(t

−
0 )‖

‖M12(q(t0))‖ ‖q̃(t−0 )2‖ + γ2
2‖q1d(t

−
0 )‖ ‖M12(q(t0))‖ ‖q̃2(t

−
0 )‖

(81)

where M1 = [M11

... M12]
T . Let us now prove that:

∞∑

k=0

σV1
(tk) 6 KV κ

2 (τk
0 ) (82)

where K > 0. Let us calculate upper-bounds on q1d(t
−
0 ), q̇1d(t

−
0 ), ˙̃q(t−0 ) and

q̃2(t
−
0 ). On [τk

0 , t0), one has V̇2(t) 6 0, so that V2(t0) 6 V2(τ
k
0 ). Therefore

from (42) we get:

V2(τ
k
0 ) > V2(t

−
0 ) > γ2γ1q̃(t

−
0 )T q̃(t−0 ) > γ2γ1‖q̃2(t

−
0 )‖2 (83)

so that

‖q̃2(t
−
0 )‖ 6 ‖q̃(t−0 )‖ 6

√

V2(τk
0 )

γ2γ1
(84)

From (42) one has V2(t) > 1
2s(t)T M(q)s(t). Consequently:

‖s(t−0 )‖ 6

√

2V2(τk
0 )

λmin(M)
(85)

From (84), (85) and the definition of s(t) one concludes that

‖ ˙̃q(t−0 )‖ 6 ‖s(t−0 )‖ + γ2‖q̃(t−0 )‖ 6

[√

2

λmin(M(q))
+ γ2

√
1

γ2γ1

]

V
1
2

2 (τk
0 ) (86)

From (84), (86), the result of claim 6 and the fact that V2(τ
k
0 ) 6 1 and the fact

that qd(t
−
0 ) = q∗d(t−0 ) and q̇d(t

−
0 ) = q̇∗d(t−0 ) , inequation (81) becomes:

∞∑

k=0

σV1
(tk) 6 KV

3
4

2 (τk
0 ) (87)
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with

K =

[√

2γ2

γ1λmin(M(q))
+

γ2

γ1

]

‖M11(q(t0))‖ +

[

K0

√
γ2

γ1
+

γ2

γ1

]

‖M12(q(t0))‖

(88)
By inserting (42) in (87), one gets

∞∑

k=0

σV1
(tk) 6 KV

3
4

1 (τk
0 ) + K(γ2γ1)

3
4 ‖q̃(τk

0 )‖ 3
2 (89)

Therefore one has:
∞∑

k=0

σV1
(tk) 6 KV

3
4

1 (τk
0 ) + ε′ (90)

for some ε′ > 0. Therefore condition (d) of claim 2 is satisfied. The system
(15) with the controller (41) satisfies all the requirements of claim 2 with ε 6=
0. Consequently it is pratically Ω-weakly stable with x(.) = s(.), and R =
(

2
λmin(M(q))e

−γ(tk
f−t∞)(1 + K + ε′)

) 1
2

, γ = 2γ1

λmax(M(q)) .

(ii) Proof of the second result of claim 7: Let us show that conditions
(a) and (d) in claim 2 are satisfied.

(a) Outside phase Ik it can be computed that [Spong et al., 1990]

V̇2(t) = −γ1
˙̃qT ˙̃q − γ1γ

2
2 q̃T q̃ (91)

Let us upper bound V2(t). From (42) one has

V2(t) 6
λmax(M(q))

2
‖ ˙̃q‖2+

λmax(M(q))

2
γ2
2‖q̃‖2+γ2λmax(M(q))‖ ˙̃q‖‖q̃‖+γ1γ2‖q̃‖2

(92)
Since ‖ ˙̃q‖‖q̃‖ 6 ‖q̃‖2 + ‖ ˙̃q‖2 inequality (92) is rewritten:

V2(t) 6 λmax(M(q))
1 + 2γ2

2γ1
γ1‖ ˙̃q‖2+

λmax(M(q))(γ2 + 2) + 2γ1

2γ1γ2
γ1γ

2
2‖q̃‖2 (93)

With

γ−1 = max
[

λmax(M(q))
1 + 2γ2

2γ1
;

λmax(M(q))(γ2 + 2) + 2γ1

2γ1γ2

]

> 0 (94)

inequality (93) becomes

V2(t) 6 γ−1
[

γ1‖ ˙̃q‖2 + γ1γ
2
2‖q̃‖2

]

(95)

Inserting (91) in (95) yields

V2(t) 6 −γ−1V̇2(t) (96)
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Then V̇2(t) 6 −γV2(t), and condition (a) of claim 2 is satisfied.
(d) As V2(t) = V1(t) + γ1γ2q̃

T q̃ then

σV2
(tk) = σV1

(tk) + γ1γ2σ‖q̃‖2(tk) (97)

For k > 1, one has qd(t
+
k ) = qd(t

−
k ), the position q(t) is continuous, so that

σ‖q̃‖2(tk) = 0 and
σV2

(tk) = σV1
(tk) = TL(tk) 6 0 (98)

For k = 0, one has qd(t
+
0 ) 6= qd(t

−
0 ). Let us upper bound σ‖q̃‖2(t0). One has

σ‖q̃‖2(t0) = ‖q̃1(t
+
0 )‖2 + ‖q̃2(t

+
0 )‖2 − ‖q̃1(t

−
0 )‖2 − ‖q̃2(t

−
0 )‖2 (99)

As q2d(t
−
0 ) = q2d(t

+
0 ), q1d(t

+
0 ) = 0 and q1(t0) = 0 one obtains

σ‖q̃‖2(t0) = −‖q1d(t
−
0 )‖2 6 0 (100)

From (97), (98), (100) and (87) one has that

∞∑

k=0

σV2
(tk) 6

∞∑

k=0

σV1
(tk) 6 KV

3
4

2 (τk
0 ) (101)

Therefore condition (d) of claim 2 is satisfied. The system (15) with the con-
troller (41) satisfies all the requirements of claim 2(ii). Consequently it is prat-
ically Ω-weakly stable with x(.) = [s(.), q̃(.)].

C Linear Complementarity Problem

A LCP is a system of the form [Murty, 1997]:







λ > 0
Aλ + b > 0

λT (Aλ + b) = 0
(102)

which can also be written as

0 6 λ ⊥ Aλ + b > 0 (103)

Such a LCP possesses a unique solution for all b, if and only if A is a P-matrix
(positive-definite matrices are P-matrices).
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