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Abstract

The quadratic integrate-and-fire (QIF) model with adaptation is commonly used
as an elementary neuronal model that reproduces the main characteristics of real
neurons. In this paper, we introduce a QIF neuron with a nonlinear adaptive
current. This model reproduces the neuron-computational features of real neu-
rons and is analytically tractable. It is shown that under a constant current
input chaotic firing is possible. In contrast to previous study the neuron is
not sinusoidally forced. We show that the spike-triggered adaptation is a key
parameter to understand how chaos is generated.
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1 Introduction

Neurons transform incoming stimuli into train of all-or-one electric events known
as spikes. Precise spike times are believed to play a fundamental role in the
encoding of information in the brain. Recent experimental evidences have ac-
cumulated suggesting that precise spike-time coding is used in various neuronal
systems [VanRullen et al., 2005]. In this view, the spike time reliability is a
key to understand the basis of the neural code [Mainen and Sejnowski, 1995].
It has been shown that the responses of neurons to time varying stimuli have
high reliability with a precision of 1 ms or less [Mainen and Sejnowski, 1995],
[Berry et al., 1997]. On the other hand, constant stimuli elicit spike trains with
high variability [de Ruyter van Steveninck et al., 1997]. Determining the vari-
ability of spike timing can provide fundamental insights into the strategies used
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in neural systems to represent and transmit information. However the origin
of the neuron’s response variability is still debated. It has been primarily sug-
gested that such variability in discharge times is due to accumulating noise.
However, it could be due as well to a chaotic behavior [Hayashi et al., 1982],
[Aihara et al., 1984], [Chacron et al., 2004]. In fact, the responses of a neuron
to given stimuli over repeated trials could be different because of intrinsic noise
but also because of the chaotic behavior of the neuronal dynamics. It remains
unclear if these different sources of variability coexist, what is the main cause of
non-reproducibility in neuronal responses under constant simuli and what are
the consequences on the neural code.

The reproducibility of spikes has been largely investigated in theoretical
studies. Simplified phenomenological neuron models of integrate-and-fire type
are commonly used to explore the dynamical properties of neurons and particu-
larly the robustness of neuron responses [Tiesinga, 2002], [Brette and Guigon, 2003].
Chaotic solutions have been investigated for the leaky integrate-and-fire neuron
[Coombes, 1999], [Chacron et al., 2004]. A time-varying injected current com-
bined with a periodic modulation of parameters are the minimal requirements
to obtain chaotic solutions.

The traditional leaky integrate-and-fire neuron has some limitations and
drawbacks: it has an unrealistic behavior close to the threshold and cannot
reproduce accurately the frequency response of real neurons. An extension
to quadratic integrate-and-fire (QIF) neurons allows to describe the nonlin-
ear spike-generating currents of biological neurons and captures the so-called
type I firing behavior near the bifurcation [Ermentrout, 1996]. In this pa-
per we show that adaptive QIF neuron can exhibit chaotic solutions under
constant input current. This result corroborates the non-reliability of spike
times observed experimentally when a constant current is injected into a neu-
ron [Mainen and Sejnowski, 1995], [de Ruyter van Steveninck et al., 1997].

The paper is organized as follows. In section 2 the model is presented. We
derive in section 3 the expression of the Poincaré map associated with the firing
of a spike and use the Marotto theorem in section 4 to show that the adaptive
QIF can exhibit chaotic dynamics. Numerical simulations are made in section 5
to support our analysis and to highlight the dynamical behavior of the model.

2 The model

Simplified neuron models are widely used to describe the electrical activity of
biological spiking neurons. Among them, integrate-and-fire models have become
very popular probably due to their capabilities to accurately reproduce the
dynamics of real neurons through a low-dimensional dynamical system that
can be easily tuned by varying few parameters. The QIF neuron has seen
increasing interest in recent years, primarily because it reproduces the properties
of detailed conductance-based neurons near the threshold. In the QIF model,
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the membrane potential follows

dx

dt
= x2 + a, (1)

where x is the membrane potential and a is a constant input current. Be-
cause of the quadratic term in (1) the membrane potential can escape to in-
finity in finite time. We thus introduce h the cutoff of a spike that defines
the firing of a spike. When x(t) reaches h a spike is produced and x(.) is re-
set to a subthreshold potential q. The quadratic neuron model presents two
distinct regimes. When a < 0, there are two fixed points. The stable one de-
fines the resting state vrest = −√−a and the unstable one defines an ’effective’
threshold below which trajectories tend toward the peak of the spike in finite
time. When a > 0 the neuron fires regularly. In this regime, the quadratic
model is a canonical representation of firing behavior of so-called type-I neu-
rons close to bifurcation [Ermentrout, 1996], [Ermentrout and Kopell, 1986] and
is related to the so-called θ neuron [Gutkin and Ermentrout, 1998]. The addi-
tion of a second variable, y, allows inclusion of adaptation, subthreshold reso-
nance [Richardson et al., 2003] and captures the bursting behavior of neurons
[Izhikevich, 2000]. We consider an adaptive quadratic integrate-and-fire model
given by the following differential equations:

dx

dt
= x2 + a − y, (2)

dy

dt
=

b − y

τ(x)
, (3)

and the spike rules:

x(t+) = q, if x(t) = h (4)

y(t+) = cy(t) + p, if x(t) = h (5)

where t+ = lim
ǫ→0,ǫ>0

t+ǫ. Parameters h and q are respectively the peak of a spike

and the reset value. Parameters b, c and p describe the adaptive current and
we assume c ≥ 0. Note that y can be seen as a recovery variable. The function
τ(x) models the voltage-dependence of the adaptive variable time-constant. For
a fixed voltage value x, the variable y approaches the equilibrium b with a time
constant τ(x). In the following we consider τ(x) = τ/x where τ is a positive
constant. This choice approximates the voltage dependence of the time constant
of the adaptive variable commonly used in detailed models: for large value of x
the integration time of y is shorter. Therefore the time evolution of the adaptive
current is given by

dy

dt
= x(b − 2y)/τ,

where the factor 2 is used for convenience (see below) and can be removed
(change of variables).
After a spike has been triggered the membrane potential restarts at the reset
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Figure 1: Illustrative plots of the time evolution for (A) the membrane voltage
x(t) and (B) the adaptive variable y(t) in the regular spiking regime. Parameters
are a = 2, τ = 15, b = 1, q = 1, h = 8, c = 1 and p = 0.25.

value q and the variable y is multiplied by a constant c and is increased by an
amount p which account for spike-triggered adaptation. The differential equa-
tions (2)-(3) model the subthreshold dynamics and the spike initiation. When x
attains the peak, the impulsive effect occurs according to (4)-(5). The time evo-
lution is illustrated in Fig. 1 for parameter values where the model exhibits regu-
lar spiking. Simulations (not shown) indicate that classical neuro-computational
features of neurons [Izhikevich, 2004] including bistability, resonator and burst-
ing (see later) can be reproduced by this model. Note that the proposed model
differs from the spiking model of Izhikevich [Izhikevich, 2003] because of the non-
linearity in the equation for the adaptive current. Despite extensive studies on
nonlinear integrate-and-fire models with adaptive current, including the adap-
tive quadratic [Ermentrout et al., 2001], [Izhikevich, 2007], the adaptive expo-
nential [Brette and Gerstner, 2005] or related models [Touboul, 2008], chaotic
solutions have not been reported, to our knowledge.

3 Poincaré map

Due to the non smooth nature of integrate-and-fire models, the standard theory
of dynamical systems does not apply directly. This problem was overcome in pre-
vious studies through the use of integrate-and-fire models where the map of suc-
cessive firing times can be studied directly [Brette, 2008] or analytically derived
[Coombes, 1999], [Chacron et al., 2004]. However, because of the nonlinearity
of the subthreshold dynamics of the QIF it is no longer possible here to derive
an analytical expression for this map. In order to analyze the behavior of system
(2)-(5), we introduce the following Poincaré section: S = {(x, y) | x = h} . It is
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Figure 2: A piece of trajectory containing a jump (spike) in the phase plane
(x, y). The vertical dashed lines are the reset line x = q and the Poincaré section
that corresponds to the threshold line x = h.

easy to show that the differential system (2)-(3) is conservative. In fact, if we
define the energy of the system as follows:

E(x, y) =
1

2
y2 − y(a + x2) +

b

2
x2 (6)

we have dE/dt = 0 along the trajectory of the system provided that no firing
occurs. Let us now consider a trajectory that reaches the section S (the neuron
fires) at point Pk = (h, yk), then according to the spike rules (4)-(5), the trajec-
tory jumps to the point P̄k = (q, cyk + p) due to the impulsive effect (see Fig.
2). After that, the trajectory evolves according to (2)-(3), and it could reach
again the section S at a point Pk+1 = (h, yk+1). Since P̄k and Pk+1 are both
located on the trajectory of system (2)-(3) where no impulsive effect occurs,
these two points satisfy relation (6). Consequently, we obtain:

1

2
y2

k+1 −
(

a + h2
)

yk+1 +
b

2
h2 =

1

2
(cyk + p)

2 − (q2 + a) (cyk + p) +
b

2
q2

and some straightforward calculations yield:

(

yk+1 − a − h2
)2

=
(

cyk + p − a − q2
)2

+
(

2a + h2 + q2 − b
) (

h2 − q2
)

that defines an implicit map for the adaptive variable at the firing times. As-
suming that ∀k, yk < a + h2 and setting L = (2a + h2 + q2 − b)(h2 − q2),
H = a + h2, Q = p − a − q2, then we can define the map f

yk+1 = f(yk) = H −
√

(cyk + Q)
2

+ L (7)

that gives the successive values of the adaptive variable at the firing times.
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4 Chaotic behavior

In this section, with the help of Marotto’s Theorem [Marotto, 1978], [Marotto, 2004]
we prove that the adaptive QIF neuron (2)-(5) can exhibit chaotic behavior for
specific values of parameters. The main idea of Marotto’s theorem is to seek a
snap-back repeller. Marotto showed that the presence of a snap-back repeller
is a sufficient criterion for the existence of chaos. Let us first recall the basic
Marotto’s Theorem for one-dimensional system:

Theorem 1 [Marotto, 1978] Let y∗ be a fixed point of the map f . This fixed
point is said to be a snap-back repeller if the following conditions are satisfied:
(i) f is differentiable in a neighborhood Br (y∗) of the fixed point y∗ with radius
r > 0 and the eigenvalue of Df (y) is strictly larger than one in absolute value
for all y ∈ Br (y∗).
(ii) There exists a point ym ∈ Br (y∗), with ym 6= y∗, such that for some positive
integer m, fm (ym) = y∗, and fm is differentiable at ym with Dfm (ym) 6= 0.

A snap-back repeller arises when the fixed point is repelling while there is
a trajectory starting in the repelling neighborhood of the fixed point that goes
back to the fixed point, i.e. the repelling fixed point has an associated homoclinic
orbit. Note that the existence of a snap-back repeller for one-dimensional system
is closely related to the existence of a periodic point with period 3. In fact, it
can be shown that the existence of a snap-back repeller of f is equivalent to
the existence of a point of period 3 for the map fn for some positive integer n
[Li and Yorke, 1975].

Using Theorem 1 we will prove the following

Proposition 1 For appropriate values of parameters the map f is chaotic in
the sense of Marotto.

In the remainder of this section we prove that the map f fulfills the condi-
tions of Marotto theorem. In order to identify a snap-back repeller for the one
dimensional map (7), we derive the eigenvalue of the system and show that, for
values of the state variable close to the fixed point, the corresponding eigenval-
ues lie outside the unit circle, whereas for values of the state variable that are
sufficiently far from the fixed point, the eigenvalues are within the unit circle.

Let us firstly check whether condition (i) in Theorem 1 is satisfied. From
(7) it is easy to show that the map has a fixed point y∗ = f(y∗) if the following
inequality is fulfilled:

(cQ + H)
2 −

(

Q2 − H2 + L
) (

c2 − 1
)

≥ 0 (8)

which yields the following two fixed points:

y∗ =
±

√

(cQ + H)
2 − (Q2 − H2 + L) (c2 − 1) − (cQ + H)

c2 − 1
(9)
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Moreover, according to (7) we have

Df(y) = −c
cy + Q

√

(cy + Q)
2

+ L

where Df represents the derivative of f . The function Df is decreasing if

L ≥ 0 (10)

since c > 0. In addition, by defining yz = −Q
c

it is easy to check that f(y) is
increasing if y < yz and is decreasing when y > yz.

Let yc be the solution of the equality: Df(yc) = −1. Since limy→−∞ Df = c
and limy→+∞ Df = −c, a necessary and sufficient condition for the existence
of yc is

c > 1. (11)

Moreover since Df(yc) < Df(yz) and Df (y) is decreasing when y > yz, we
have yc > yz.

Let us now consider a neighborhood of y∗, noted as Br (y∗), with

0 < r ≤ min{|y∗ − yc| , H − y∗} (12)

By construction, for all y ∈ Br (y∗), Df (y) is always strictly larger than one in
absolute values provided that y∗ > yc > yz. Therefore, condition (i) of Theorem
1 is satisfied.

On the other hand, in order to fulfill condition (ii) of Theorem 1, we seek
a point ym 6= y∗ in the neighborhood Br (y∗), such that ym−1 = f(ym), . . .,
y1 = f(y2) = fm−1(ym), and y∗ = f(y1) = fm(ym), with some positive integer
m, and Df(yk) 6= 0, for 1 ≤ k ≤ m.

Let us consider the following fixed point

y∗ =

√

(cQ + H)
2 − (Q2 − H2 + L) (c2 − 1) − (cQ + H)

c2 − 1
(13)

and its neighborhood Br(y∗).

According to map (7), we have y∗ = f(y1) = H −
√

(cy1 + Q)
2

+ L which

yields two possible solutions: y1,1 =
(

√

(y∗ − H)2 − L − Q
)

/c and y1,2 =
(

−
√

(y∗ − H)2 − L − Q
)

/c. The first solution is identically equal to its corre-

sponding fixed point, hence the possibility of existence of a snap-back repeller
ym ∈ Br(y∗) is relative to the second one, noted as y1. Obviously we have
y1 < y∗.

Assume that the following conditions are satisfied:

{

H > f (yz) = yA > y∗
f (yA) = yB < y1

(14)
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Since f (yA) = yB and f (y∗) = y∗, and f (y) is a decreasing continuous
function over [y∗, yA], therefore there always exists a point y2 ∈]y∗, yA], such
that y1 = f(y2). If such a y2 is located in Br(y∗), we have m = 2. Otherwise,
consider the interval ]y1, yz[, since y∗ = f(y1) and yA = f (yz) , and f (y) is
increasing over [y1, yz], it is always possible to find a y3 ∈ [y1, yz] such that
y2 = f(y3). It should be noted that there exists another possible y3 satisfying
y2 = f(y3), which is located over [yz, y∗]. Notice that y∗ = f(y∗), yA = f(yz),
and f(y) is decreasing over [yz, y∗], thus we can find the second y3 ∈ [yz, y∗]
such that y2 = f(y3). Again if y3 ∈ Br(y∗), then we found m = 3.

Otherwise, let us firstly consider y3 ∈ [y1, yz]. With f (y2) = y1, f (y∗) = y∗,
we get y4 ∈ [y∗, y2] such that f (y4) = y3. If this y4 is not yet located in Br(y∗),
according to f (y3) = y2, f (yz) = yA, f (y∗) = y∗, since f (y) is increasing over
[y3, yz] but decreasing over [yz, y∗], hence it always exists a y5 ∈ [yz, y∗] such
that f (y5) = y4. By induction, if the found points are not yet entered into
Br(y∗), the above procedure generates the sequence: yB < y1 < y3 < yz < y5 <
· · · < y∗ < · · · < y4 < y2 < yA < H , which tends towards the equilibrium point
y∗.

In order to prove the convergence of the above sequence to the equilibrium
point y∗, let us analyze the right side of the sequence (i.e., even subscript),
which in fact can be written as follows:

y2k = f (f (y2k+2)) = H −

√

(

c

(

H −
√

(cy2k+2 + Q)
2
+ L

)

+ Q

)2

+ L

with k ≥ 1. When k → ∞, we have y2k = y2k+2, noted as ylim. Obviously ylim

is one solution of equation: ylim = f2 (ylim), which in fact has two solutions
under the constrain y∗ < y2k+2 < y2k < H . It is easy to check that equilibrium
points of (9) are these two solutions. However, since our analysis is focused only
on the equilibrium point of (13), thus we have ylim = y∗. It should be noticed
that, for the left side of the sequence (odd subscript), we can obtain the same
result through a similar process, which implies the sequence converges towards
the equilibrium point y∗ via both sides of y∗. Consequently, we can always find
a point ym ∈ Br(y∗), such that fm(ym) = y∗ with some positive integer m.

With the same procedure, it is easy to adapt the above proof for the second
possible value of y3 ∈ [yz, y∗].

Finally, since Df(yk) = −c cyk+Q√
(cyk+Q)2+L

, hence if

yk 6= −Q

c
(15)

we have Dfm(yk) 6= 0. It is worth noting that if there exist some points such
that yi = −Q

c
, then they correspond to a periodic orbit of (7).

In summary, provided that the technical conditions: (8), (10)-(11), (14)-(15)
are fulfilled, it is possible to determine a neighborhood Br(y∗) around the fixed
point (13) with r defined in (12) such that conditions (i) and (ii) are satisfied.
Therefore, Theorem 1 holds and this ends the proof of Proposition 1.
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5 Numerical simulations

Besides the theoretical analysis, numerical simulations are made in order to
show that system (2)-(5) can exhibit chaotic dynamics. In particular, we show
that there exist parameter values for which the technical assumptions used in
our proof are satisfied.

We consider the following QIF neuron with adaptation:

dx

dt
= x2 + 6 − y,

(16)

dy

dt
= x(2 − 2y),

and the spike rules

x(t+) = 10, if x(t) = 20

(17)

y(t+) = cy(t) − 0.2, if x(t) = 20

i.e. we choose the following set of parameter values: a = 6, b = 2, τ = 1,
p = −0.2, q = 10 and h = 20. We explore the influence of parameter c on the
asymptotic behavior of the model and we investigate the existence of adaptation-
induced chaotic dynamics using different values for c.

For c = 13.8, we have L = 153000, H = 406 and Q = −106.2 that give the
corresponding Poincaré map:

yk+1 = 406 −
√

(13.8yk − 106.2)
2
+ 153000 (18)

Numerically we check that inequality (8) is satisfied and straightforward calcu-
lations yield the following values for the variables introduced in the proof:

y∗ ≈ 11.4434, yc ≈ 9.7957 yz ≈ 7.6957,
y1 ≈ 3.9479, yA ≈ 14.8479, yB ≈ 2.5873

It is easy to check that conditions (10)-(11) and (14)-(15) are all satisfied. More-
over we choose r = 1.5 < y∗ − yc that defines the neighborhood Br(y∗) =
]9.9434, 12.9434[ (see Fig. 3A). Since we have Df(9.9434) = −1.0909 and
Df(12.9434) = −2.5123, thus for all yk ∈ Br(y∗), condition (i) of Theorem
1 is fulfilled.

It is easy to check that, for a y4 ≈ 12.6150 ∈ Br(y∗) and y4 6= y∗, we
have y3 = f(y4) ≈ 9.0005, y2 = f(y3) ≈ 14.4336, y1 = f(y2) ≈ 3.9479 and
y∗ = f(y1) (see Fig 3B). Moreover Df4(y4) ≈ −8.6461 6= 0. Hence condition
(ii) of Theorem 1 is satisfied. Consequently, the point y∗ is a snap-back repeller
and the map (7) exhibits chaotic behavior.

Besides the existence of chaos, the scenario leading to such dynamics as c is
varied is illustrated in Fig. 4. The phase portrait of system (16)-(17) is shown

9



2 4 6 8 10 12 14 16
−4

−3

−2

−1

0

1

2

y
k

D
f

y
z y

c y∗

r r

(y
c
, −1)

(y
z
, 0)

0
2

4

6

8

10

12

14

16

y k

y
2

y
1

y∗

y
3

y
4

r

r
y∗

A B

Figure 3: Snap-back repeller of the QIF neuron with adaptation. The numeri-
cal investigations for the existence of a snap-back repeller are done in A and B,
respectively. A: The derivative of the Poincaré map (18). The successive itera-
tions yk are represented in the neighborhood of the fixed point y∗. Numerically,
we check that the absolute value of the derivative is always greater than 1 for
all yk. B: Location of the iterations with respect to the neighborhood of the
fixed point y∗. We find y4 ∈ Br(y∗) and y4 6= y∗ together with f4(y4) = y∗.

together with the membrane potential as a function of time. When c = 10, the
system tends towards an asymptotically stable periodic orbit (See Fig. 4A,B).
In Fig. 4C,D, for c = 13.9, a stable period 3 solution of the Poincaré map
occurs. A chaotic behavior can be generated by choosing c = 13.8 as shown in
Fig 4E,F.

To gain deeper understanding of the chaotic dynamics, the bifurcation di-
agram obtained while varying parameter c is shown Fig. 5A, while Fig. 5B
shows the leading Lyapounov exponent of the system. The lines in the bifurca-
tion diagram correspond to periodic spiking and the thick parts are associated
with regimes where the adaptive variable takes either a countable but very large
number of values or an uncountable value. It is not clear that in the bifurcation
diagram the regimes where the adaptive variable takes a very large number of
values are associated with periodic orbits with large period or chaotic regimes.
One of the usual ways to test for chaos is to compute system’s largest lyapunov
exponent. The Lyapunov exponent of a dynamical system is a quantity that
characterizes the rate of separation of infinitesimally close trajectories. The gen-
eral idea is to follow two nearby orbits and to calculate their average logarithmic
rate of separation. A positive Lyapunov exponent indicates chaos. According
to expression (18), it is easy to calculate the largest lyapunov exponent and the
result is shown Fig.5B. The range of positive exponents suggests chaotic regimes
within these regions. Moreover the bifurcation diagram reveals that the system
exhibits transition to chaos through period doubling bifurcation cascade. Be-
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Figure 4: Transition to chaos through a cycle of period 3 in the QIF neuron
with adaptation. The phase portrait are given in the left column and the x
dynamics towards time are depicted in the right column. A, B. Asymptotically
stable periodic orbit for system with c = 10. Simulation was made with the
initial conditions: x0 = 5, y0 = 15. C, D After an initial transient, the trajec-
tory converges to a stable periodic solution related to the period 3 orbit of the
iterative map. We take c = 13.9 and the initial condition x0 = 15, y0 = 15. E,
F Chaotic orbit for system with c = 13.8 and the initial condition: x0 = 10,
y0 = 10.
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trating the bifurcation diagram of our model. B. The corresponding variation
of the Lyapunov exponent with respect to parameter c. Simulation was made
with the initial condition: x0 = 5, y0 = 15.

cause system (18) is chaotic, then its corresponding continuous system is also
chaotic (a non-chaotic trajectory of a continuous system, for instance a periodic
orbit, will never generate a chaotic Poincaré map).

6 Conclusion

Periodically forced integrate-and-fire neurons have been proposed to produce
chaotic firing [Chacron et al., 2004], [Chacron et al., 2003]. It is expected that
chaos in spiking neuronal models can also be generated through an applied con-
stant current in agreement with the experimentally observed neural spike trains
variability in this condition. This paper presents a simple nonlinear integrate-
and-fire neuron which can exhibit a chaotic behavior under a constant current.
The model is the quadratic integrate-and-fire neuron with a nonlinear adaptive
current that takes into account the voltage dependence of the adaptive-variable
time constant. The situation significantly differs from those in previous stud-
ies that report chaos in integrate-and-fire models for several reasons: (i) there
is no periodic forcing (ii) threshold or resetting voltage are not periodically
modulated and (iii) the integrate-and-fire model is nonlinear. We proved math-
ematically the existence of chaotic solutions provided that parameters of the
adaptive current are suitably chosen. Numerical simulations are given including
the largest Lyapunov exponent and the bifurcation diagram.

A further development of this work is the study of entrainment in sinusoidally
driven adaptive QIF neuron. It is expected that the model exhibits specific dy-
namics in response to periodic forcing that do not exist in LIF models. Further
research is needed to clarify this point.
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