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Abstract

We consider a firing rate model of a neural network of excitatory and inhibitory populations with an excitatory feedforward
connectivity. We analyze traveling wave solutions and determine the conditions for their existence and stability. Our study
demonstrates the role of inhibition in stable pulse propagation. In a purely excitatory network, pulse waves are unstable because
of the existence of stable front wave and back wave with different velocities. Pulse waves can propagate stably in the network where
excitation is appropriately balanced by inhibition. Analytical results on the wave speeds and the shape of waves are obtained.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Propagation of patterns of neural activity occurs in various neural systems and seems to play an important role for
information processing in the brain. Traveling waves of synchronized neural excitation have been observed in various
brain regions, including the cortex[12], thalamus[13] and hippocampus[17]. These waves are the consequence
of nonlinear synaptic interactions between neurons. Neural tissues are commonly seen as neural fields which form
and propagate patterns of excitation[24,2]. Propagation of waves in neural network has been the subject of several
recent theoretical studies[18,3]. Mathematical analysis of firing rate models can often lead to some general wave
properties, such as their propagation velocity and its dependence on model parameters[9,19,7].

Two complementary frameworks are commonly used when studying traveling waves of neural activity: spatially
structured neuronal networks with continuous connectivity and layered feedforward networks consisting of pools
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of populations (or neurons). Traveling waves in spatially continuous networks are largely studied[8,3]. There are
now a number of results about the existence and the stability of traveling pulses[25,5,10]. Layered feedforward
networks can be seen as a discrete version of the former where the smooth propagating wave is replaced by a
discrete transmission of activities from one pool to the next[1,6]. If a layer fires in synchrony then the next layer
will also do so and a so called synfire activity will propagate. The capability of feedforward networks composed
of discrete pools to transmit rate code have been analyzed[15,14]. The existence of negative feedbacks such as
inhibition or refractory behavior are crucial for the propagation of pulses. Networks without negative feedbacks
only exhibit front wave whereas traveling pulse fails to propagate. There are a growing number of papers concerned
with propagating pulses in networks with inhibition or with some form of adaptation[19,10]. The present work aims
at a better understanding of propagation in feedforward neural networks consisting of discrete pools and clarifies
the role of inhibition in propagating waves. In particular, we raise the following theoretical questions:

(1) How is the propagation supported by excitatory synapses in layered feedforward networks? What are the effects
of inhibition?

(2) How does the propagation depend on the various parameters including the synaptic strengths, the time constants?

To answer these questions, we consider a simple approach using a firing rate description. Time-dependent firing
rate models are commonly described by

τ
dr

dt
= −r + F (Wr + h) (1)

wherer is the firing rate vector,τ the relaxation time,W the matrix of dimensionless synaptic weights andh an
external input. The functionF is the so-called activation function that describes the steady-state firing rate as a
function of the input current. A common choice is the sigmoidal function

F (Is) = 1

1 + e−λ(Is−θ) (2)

whereθ is a threshold value andλ > 0 determines how rapidly the firing rate increases as a function ofIs. In the
high gain limitλ → ∞ the activation function is rewritten as

F (Is) = Θ(Is − θ) (3)

whereΘ the Heaviside step function defined byΘ(s) = 0 for s < 0 andΘ(s) = 1 for s > 0. We consider a network
of excitatory (E) and inhibitory (I) populations. Each population is described by its firing ratere, ri , for the excitatory
and inhibitory population, respectively. The dynamics is governed by a coupled set of equations identical in form
to (1),

τe
dre

dt
= −re + Θ(weere + wieri + he − θe),

τi
dri

dt
= −ri + Θ(wii ri + weire − θi ),

(4)

where we allow the excitatory and inhibitory populations to have different time constantsτe, τi and different
thresholdsθe, θi , respectively. The synaptic weightsw��, �= e, i and�= e, i, describe the four possible types of
neuronal interactions within a pool andhe is an external input. Synaptic weights from the excitatory population are
positive whereas those from the inhibitory population are negative. We consider a one-dimensional network with
discrete nearest-neighbor coupling with the external input received by thekth excitatory population given by

he,k(t) = wfre,k−1(t)
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Fig. 1. The schematic representation of the one-dimensional feedforward network with local inhibition (I) and excitatory (E) coupling. The pool
at a locationk receives an excitatory effect from the activity of the pool at the locationk − 1.

wherewf is the weight connection andre,k is the firing rate activity of the excitatory population located at thekth pool
(seeFig. 1). Despite its very restrictive architecture, the network shows nontrivial dynamics. The major advantage
of the model is the exact solvability of the equations that allows us to derive analytical conditions for the existence
and stability of propagating waves. Multilayer architectures with purely feedforward connectivity have been used
to explore information transfer in biological networks[23]. Such architecture without recurrent connections is
relevant when studying fast sensory processing where input from feedback connections can be neglected in the
early response.

We explore the propagation properties of the neural network using both mathematical analysis and numerical
simulations. Our analysis provides an analytical characterization of the influence of all the parameters of the
model including the synaptic weights, the inhibitory and excitatory relaxation times and the thresholds. Taking
the advantage of the idealized response function we calculate exactly the velocity and stability of propagating
traveling waves. We investigate analytically the role played by inhibition in the existence and stability of propagating
pulses.

The paper is organized as follows. The dynamics of an isolated pool, i.e. the uncoupled networkwf = 0, is
analyzed in Section2. We use the bifurcations that occur in an isolated pool to understand the propagating waves
described in Section3. The main emphasis is given to traveling pulses. To clearly illustrate the role of inhibition we
distinguish between excitatory network and network with a balance of excitation and inhibition. We conclude by a
discussion.

2. The two population model

We analyze the dynamics of a single pool. We take the advantage of the piecewise linear function(3) to derive
the analytical expressions of the bifurcations that occur in the model. An isolated pool is described by the two
scalarsre(t) and ri (t) that follow the set of coupled equations(4). For the sake of simplicity, we neglect the
self-inhibition of the inhibitory population by takingwii = 0. This does not change the basic properties of the
model but simplifies the results and their interpretation. Since we consider the excitatory coupled network, i.e.
synaptic interactions between the excitatory populations and no long range connection for the inhibitory one,
we considerhe as a bifurcation parameter. It is convenient to distinguish two cases depending on the relative
strength of the excitatory–inhibitory synaptic connectionwei and the inhibitory firing thresholdθi . Whenwei < θi
the inhibition does not play a role since the excitatory inputweire cannot reach the thresholdθi and thus the
inhibitor field cannot be activated. In the following, we say excitatory network whenwei < θi and balanced network
otherwise.
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2.1. Excitatory network

In this case, the study of a pool reduced to the excitatory population,τe(dre/dt) = −re + Θ(weere + he − θe). It
is straightforward to show thatre = 0 is a stable fixed point as long ashe < θe and a saddle node bifurcation, noted
SN1, occurs at

hSN1
ee = θe − wee

where the stable high activity statere = 1 appears. Due to the Heaviside step function the dynamical system has a
discontinuous right-hand side and a precise definition of the saddle node bifurcation requires additional comments
that are beyond the scope of this paper[11]. Since the saddle point, that lies on the line of discontinuity, does not
play a role in our analysis, we will not characterize it. ForhSN1

ee < he < θe, two stable states coexist untilhe reaches
the saddle node bifurcation (SN2)

hSN2
e = θe (5)

where the low-activity statere = 0 disappears leading to the purely excitatory steady state.

2.2. Balanced network

The two threshold linesweere + weiri = θe − he andweire = θi delimit the domains where the system is linear.
Using a geometrical analysis in the phase plane (re, ri ) (seeFig. 2B) we easily derive that the steady state (re, ri ) =
(0, 0) exists whilehe < θe and an additional steady state (re, ri ) = (1, 1) appears whenhe > hSN1

ei where

hSN1
ei = θe − wei − wee.

Its location depends on the relative strength between excitation and inhibition. Note thathSN2
e given by(5) is still a

bifurcation point leading to the disappearance of the low activity steady state.
Summarizing, the isolated pool has two saddle-node bifurcations that monitor the dynamics. The bifurcation

diagram of the system is shown inFig. 2A. The two bifurcations are closely connected due to the symmetry property

Fig. 2. Analysis of the single pool model. The bifurcation diagram in panel A shows the steady-state firing rate of the excitatory populationre,stat

vs. the external inputhe. Panel B shows the two-dimensional phase plane (re, ri ) of a single pool in the casewei > θi referred as the balanced
network. Domains where the system is linear are delimited by the threshold conditions (dotted lines). Intersections of the threshold lines with
there-axis are indicated. Nullclines of the system, i.e. dre/dt = 0 and dri/dt = 0, are represented (solid lines) for the bifurcation parameterhe

that satisfieshSN1
e < he < hSN2

e . The system has two stable fixed points: a low-activity steady state (0,0) and a high-activity steady state (1,1)
represented by filled black circles.



122 A. Tonnelier / Physica D 210 (2005) 118–137

of Eq. (4). In fact, the system is invariant under the change of variablesre → 1 − re, ri → 1 − ri combined with
he → 2θe − wee− he for the excitatory network andhe → 2θe − wee− wie − he, θi → wei − θi for the balanced
network (withwii = 0). As we will show in the next section, the bifurcations are closely related to the traveling
waves that occur in the connected network. Moreover the symmetry of the two bifurcation points leads to remarkable
properties of the waves.

3. Firing rate propagation in a chain of pools

We consider a chain of identical pools with feedforward connectivity. The firing rate activity of the pool locate
atk ∈ Z is described by

τe
dre,k

dt
= −re,k + Θ(weere,k + wieri,k + wfre,k−1 − θe),

τi
dri,k

dt
= −ri,k + Θ(weire,k − θi ).

(6)

The network(6) has two trivial traveling wave solutions that are standing waves given by the two following
homogeneous stationary solutions: the homogeneous non firing state that is the “all-off” state (re,k, ri,k)k = (0, 0)k
and the “all-on” state (re,k, ri,k)k = (1, 1)k. Both are stable regarding small perturbations: forre,k(t) = re,stat+ δe,k,
ri,k(t) = ri,stat+ δi,k whererstat is an homogeneous solution and|δe,k| 	 1, |δi,k| 	 1, we obtain the time evolution
dδe,k/dt = −δe,k, dδi,k/dt = −δi,k. The “all-on” solution exists for excitatory network ifwee+ wf > θe andwee+
wf + wie > θe for balanced network.

Formally, a traveling wave is a solution of(6) such that

re,k(t) = Re

(
t − k

c

)
,

ri,k(t) = Ri

(
t − k

c

) (7)

wherec is the wave velocity andRe,Ri , the wave function of excitatory, inhibitory, population, respectively. Inserting
(7) into (6), the wave functions satisfy

τe
dRe

dξ
= −Re + Θ

(
weeRe + wieRi + wfRe

(
ξ + 1

c

)
− θe

)
,

τi
dRi

dξ
= −Ri + Θ(weiRe − θi )

(8)

whereξ = t − k/c is the traveling wave coordinate. We will mainly focus on pulse wave, that is a traveling wave
solution that connects the homogeneous steady state (0, 0)k to itself. The properties of pulse wave are closely related
to the existence of two other types of waves: front wave and back wave that connect two different homogeneous
stationary solutions. These two waves differ from the boundary conditions at±∞; wave front advances the “on”
state from left to right whereas wave back also referred as retracting wave advances the “off” state.

Numerically, traveling waves are initiated using an injected current into a group of pools at the beginning of
a finite chain. Starting from the low activity steady state, it is clear from(6) that a necessary condition for the
propagation of an excitatory activity reads

wf > θe, (9)

i.e. the activity of a pool is able to initiate an activity in its neighboring pool. In other words, a propagation of an
excitatory activity is possible if the coupling strength is sufficiently large and at least greater than the excitatory
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thresholdθe. The time-dependent inputwfre,k−1 can be related to the bifurcation parameterhe previously used
(Section2). The saddle-node bifurcation of the single pool model leading to the disappearance of the low activity
steady state is then associated to the propagation condition since(9) could be rewrittenwf > hSN2

e . The velocity of
the propagating front is given by the time to reach the saddle node bifurcation SN2. Indeed, lettthk−1 be the time at
which the activity induced by the poolk − 1 reaches the threshold, i.e.wfre,k−1 = θe, then the time course of the
firing rate activity of the postsynaptic pool is given byre,k(t) = 1 − exp(−(t − tthk−1)/τe). The propagation speed is
defined bycf = 1/(tthk − tthk−1) and we calculate

cf =
[
τe ln

(
wf

wf − θe

)]−1

. (10)

The time interval 1/cf is the time required forwfre to go from 0 toθe and thus represents the time to reach the
bifurcation pointhSN2

e . Note that the speed of a propagating activity is only determined by the initial wave front and
does not depend on its profile. Therefore, traveling fronts and traveling pulses have the same velocity. Of particular
interest is the speed of the propagating front for small and high values of the coupling strength. In the limit of a
strong connectionwf → +∞ the velocity follows the linear lawcf → wf/(τeθe) and at the inset of propagation
obtained aswf → θ+

e the velocity follows the logarithmic lawcf → 1/(τe| ln(wf − θe)|).
The precise conditions for the existence of a traveling wave solution and the determination of its profile is

monitored by the interplay between the excitatory and inhibitory population. We first concentrate on the excitatory
network that allows us to introduce the mathematical tools and techniques. The analysis of the balanced network is
mathematically similar and is done in a separate section. Basically, we take the advantage of the threshold function
(3) observing thatF (Is) depends on the time at whichIs reaches the threshold and not on the shape ofIs.

3.1. Excitatory network

In this section, we consider the case of an excitatory network. The inhibitory population does not affect the
excitatory one that is formally equivalent to takewie = 0. Traveling wave solution are given by Eq.(8) with
Ri (ξ) = 0. Solutions can be easily calculated if we know the intervals where the total input exceeds the threshold.
Let ξ = 0 be the point where the total input received by an excitatory pool reachesθe. The front of the wave is given
by

Re(ξ) = (1 − e−ξ/τe)Θ(ξ). (11)

Whenwf + wee > θe holds the excitatory all-on state exists and therefore the excitation induced by the propagating
front persists. Sincewf > θe is a necessary condition for the existence of a propagating activity then the traveling
front solution given by(11) exists as long as a propagation of an excitatory activity is possible. Traveling pulse
appears when the front is followed by a return to the low-activity resting state, i.e. we require the boundary conditions
lim±∞ Re = 0. We thus request that the interval whereRe increases is bounded: let (0, ξ1

e) be the interval where the

total inputweeRe(ξ) + wfRe(ξ + 1/c) exceeds the thresholdθe (seeFig. 3). A traveling pulse solution is given by

τeR
′
e = −Re, for ξ ∈ (−∞, 0) ∪ (ξ1

e, +∞),

τeR
′
e = −Re + 1, for ξ ∈ (0, ξ1

e).
(12)

The excitatory wave functionRe increases for 0≤ ξ ≤ ξ1
e and decreases forξ1

e ≤ ξ ≤ ∞. The threshold condition
at ξ = 0 readswfRe(1/c) = θe that gives the wave speed previously obtained in(10). The parameterξ1

e satisfies

weeRe(ξ
1
e) + wfRe

(
ξ1

e + 1

cf

)
= θe, ξ

1
e > 0.
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Using the expression of the traveling pulse derived from(12)combines with the expression of the velocity gives

ξ1
e = τe ln

(
wee+ wf − θe

wee+ wf − 2θe

)
.

A traveling pulse exists if the branching pointξ1
e exists. From(9) we havewee+ wf − θe > 0 and thus we need

wee+ wf − 2θe > 0. We obtain the following condition

wee+ wf > 2θe. (13)

Moreover our analysis requires the consistency conditionξ1
e > 1/cf to ensure that the presynaptic population does

not cross down throughθe before the postsynaptic population reaches up toθe. That gives

wee < θe. (14)

Under the two conditions(13) and (14), the traveling pulse is given by

Re(ξ) = (1 − e−ξ/τe)Θ(ξ) + (e−(ξ−ξ1
e)/τe − 1)Θ(ξ − ξ1

e).

As we will show, the traveling pulse is unstable and thus cannot propagate stably in the network. To study the
stability we go back to the network equations(6). Let tk be the pulse width of thekth excitatory population defined
as the time interval during which the total input received by thekth population is superthreshold. In other words,
tk is the interval between two successive threshold reaching for the total input of the pool located atk. This time
interval is defined by

weere,k(tk) + wfre,k−1(tk) = θe

where the rise time ofre,k is used as the origin of time, i.e.re,k(t) = 1 − e−t/τe. In the decaying phase the activity
of the presynaptic pool followsre,k−1(t) = Ce−(t+1/cf )/τe whereC is a constant and the time is shifted forward by
1/cf that is the needed time to initiate the activity of a pool when the presynaptic one is activated. The matching
condition attk−1 givesre,k−1(t) = (etk−1/τe − 1)e−(t+1/cf )/τe. We obtain that the successive intervals are given by

tk = τe ln

(
(wf − θe)(etk−1/τe − 1) − wee

θe − wee

)
= f (tk−1). (15)

A fixed point of the iterated map(15) is defined byf (t∗) = t∗ and gives the rising interval of the traveling pulse
solution t∗ = ξ1

e. Its stability is related to the stability of the corresponding traveling pulse. More precisely, it
gives the evolution through the network of a perturbation on the shape of the wave. Thus, we restrict ourselves to
stability analysis based upon perturbations traveling at the same speed as the wave. This approach is similar to the
stability analysis based on perturbations of the firing times introduced in[3]. The traveling pulse solution is stable
if |f ′(t∗)| < 1. We calculate

f ′(t∗) = (wee+ wf − θe)(wf − θe)

θe(wf − θe) − wee(wee+ wf − 2θe)
.

that gives

f ′(t∗) = wf − θe

θe − wee
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Fig. 3. The traveling pulse of firing rate activity in the excitatory neural network. The dynamics of the wave is decomposed into a rising phase,
ξ ∈ (0, ξ1

e), and a decaying phase,ξ ∈ (ξ1
e, +∞). Parameters areτe = 1,wee = 0.2,θe = 0.5 andwf = 1. We calculate the wave speedcf = 1.44

and the so-called inactivation pointξ1
e = 1.25. The traveling pulse (constant profile) is unstable leading to a pulse propagation with an enlarging

profile.

We havef ′(t∗) > 0 and it is easy to show thatf ′(t∗) < 1 if and only ifwee+ wf ∈]θe, 2θe[. Since the existence of
a traveling pulse requireswee+ wf > 2θe, we havef ′(t∗) > 1, i.e. the traveling pulse is unstable.

The iterated map(15)gives the evolution through the network of an initial pulse and thus allows a characterization
of the propagating activity. In particular, the quantityf (t) − t tends asymptotically towards

f (t) − t ∼ τe ln
wf − θe

θe − wee

and thus at each pool the pulse grows by a fixed amount. For an initial pulse width greater thant∗ the pulse profile
increases leading to an enlarging pulse. The speed of the wake tends towardscb = (f (t) − t + 1/cf )−1 ast → ∞
and we calculate

cb =
[
τe ln

(
wf

θe − wee

)]−1

. (16)

Depending on the initial excitation the propagation fails or leads to an enlarging pulse (seeFig. 4). Note that in
the limit wee+ wf → 2θe we havef ′(t∗) → 1 and thus the transition from a traveling pulse (constant shape) to
a growing pulse could be slow. Note also that the existence of an enlarging pulse requirescf > cb that gives the
condition(13)previously derived.

The propagation of a growing pulse is closely related to the existence of a back wave. Whenwee < θe the excited
state of a postsynaptic pool does not persist if the activity of the presynaptic pool is turned off. Thus, there exists
a propagation that connectsre = 1 to re = 0. The study of the traveling back could be deduced from the traveling
front. In fact, similarly to the single pool model, a symmetry property also holds for the traveling wave solutions.
Equation forRe(ξ) is invariant with respect to the transformationRe → 1 − Re andθe → wee+ wf − θe so the
profile of the back wave can be obtain from(11)and the velocity(16) from (10)by replacingθe by wee+ wf − θe.
We find that the profile of a back wave is given by

Re(ξ) = 1 + (e−ξ/τe − 1)Θ(ξ) (17)

and the velocity is the one of the wake of the enlarging pulsec = cb. The regime where traveling front and traveling
back coexist is the regime where enlarging pulse occurs (seeFig. 5). In this regime we havecf > cb and the enlarging
pulse can be obtained as the merging of traveling front and traveling back. Note that the existence of a back wave
can be interpret in term of bifurcation. The back front is induced by the saddle-node bifurcationhSN1

ee previously
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Fig. 4. (A) The iterated maptk+1 = f (tk) that gives the evolution of pulses. The fixed pointt∗ is related to the width of the traveling pulse
solution, i.e. a pulse with constant shape. The fixed point is unstable and, depending on the initial excitation, propagation failure occurs after a
transient propagation (B) or an enlarging pulse propagates due to the destabilization of the traveling pulse (C). Panels (B and C) are obtained
from the numerical simulation of a network of 50 pools (vertical axes) during 30 units of (normalized) time (horizontal axes) with different
initial conditions. The initial pulse has a rising interval lower thant∗ (B) and greater in (C). Parameters areτe = 0.5, wee = 0.2, θe = 0.5 and
wf = 1. We calculatet∗ = 0.62 andf ′(t∗) = 1.67.

described that leads to the disappearance of the excited state. The time to reach this saddle node also gives the speed
of propagationcb.

The main results of this section are summarized inFig. 5.

3.2. Balanced network

In the previous section, we have assumed thatwei is sufficiently small so that inhibition does not occur. In a
balanced network, the inhibitory population is activated by the excitatory one and thus interacts through with it. The
basic properties of the traveling fronts and the traveling backs remain unchanged and we describe the main results.

As previously noticed, the velocity of the initial front is not affected by inhibition. The profile of the front remains
unchanged and its existence is monitored by the boundary conditionRe(+∞) = 1. We must havewee+ wie + wf >

θe that is related to the existence of the all-on state in the balanced network. Note that the condition for propagation
wf > θe is no longer sufficient to guarantee the existence of a front wave in the balanced network as it is the case in
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Fig. 5. (Top) Locus of existence of traveling waves in the (wee, wf ) plane for the excitatory network. The corresponding traveling waves (indicated
by a small inserting box) are depicted below. Horizontal lines indicate the existence of front waves, vertical lines denote back waves and solid
shading indicates pulses. The speedcf is the velocity of a front andcb is the velocity of a back wave. The traveling pulse is unstable leading to
an enlarging pulse with a velocity of the front,cf , and a velocity of the wake,cb, that are different,cf > cb.

the excitatory network. Complementary to the excitatory wave functionRe there exists an inhibitory frontRi since
the inhibition is activated atξ = ξ0

i whereξ0
i satisfies the threshold conditionweiRe(ξ) = θi . We calculate

ξ0
i = τe ln

(
wei

wei − θi

)
. (18)

The profile of the traveling front of the inhibitory population is given by

Ri (ξ) = (1 − e−(ξ−ξ0
i )/τi )Θ(ξ − ξ0

i ).

Whenwee+ wie < θe an isolated unit cannot maintain a high activity and a back wave could propagate. Exploiting
the symmetry properties previously noticed, back wave can be deduced from front wave. The back wave is given
by (17) for the excitatory population and

Ri (ξ) = 1 + (e−(ξ−ξ1
i )/τi − 1)Θ(ξ − ξ1

i )

for the inhibitory one whereξ1
i is the inactivation point of the inhibitory population defined byξ1

i = τe ln wei/θi .
The speed of the back wave is given by

cb =
[
τe ln

(
wf

θe − wee− wie

)]−1

.



128 A. Tonnelier / Physica D 210 (2005) 118–137

Fig. 6. The wave profile of the traveling front (left panel) and the traveling back (right panel) in the balanced network. The profile of the
excitatory (solid line) and inhibitory (dashed line) traveling waves are shown as a function of the traveling wave coordinateξ. For the traveling
front, the inhibitory population is activated atξ = ξ0

i . The activity of the inhibitory population decreases atξ = ξ1
i for the traveling back solution.

Parameters arewee = 1, wie = −0.7, wei = 0.8 wf = 0.6, θe = 0.5, θi = 0.5, τe = 1 andτi = 0.5. We calculateξ0
i = 0.98 andξ1

i = 0.47.

A representative graph of traveling front and traveling back is depicted inFig. 6. Similarly to the excitatory network,
the front wave is related to the successive reaching of the bifurcation pointhSN2

e for each pools whereas back wave
is associated to the bifurcation pointhSN1

ei .
We now turn to the main part of our analysis of propagation in balanced network through the study of pulse

waves. We require thatRe, Ri , crosses the thresholdθe, θi , exactly twice. We noteξ0
i andξ1

i the parameters related
to the activation and inactivation of the inhibitory population. The traveling pulse is given by

τeR
′
e = −Re, for ξ ∈ (−∞, 0) ∪ (ξ1

e, +∞),

τeR
′
e = −Re + 1, for ξ ∈ (0, ξ1

e),

τiR
′
i = −Ri, for ξ ∈ (−∞, ξ0

i ) ∪ (ξ1
i , +∞),

τiR
′
i = −Ri + 1, for ξ ∈ (ξ0

i , ξ
1
i ).

It is straightforward to solve the equations and to obtain the analytical expressions of the excitatory and inhibitory
wave functions. We show inFig. 7, the profile of these functions. Existence of a pulse wave is given by the existence
of c, ξ1

e, ξ0
i andξ1

i that satisfy the following threshold conditions

weeRe(0) + wieRi (0) + wfRe

(
1
c

)
= θe, (19)

weiRe(ξ
0
i ) = θi, (20)

weeRe(ξ
1
e) + wieRi (ξ

1
e) + wfRe

(
ξ1

e + 1

c

)
= θe, (21)

weiRe(ξ
1
i ) = θi . (22)

The Eq.(19)gives the velocityc = cf , (20) leads to(18) and (22)gives the inactivation of the inhibitory population
at

ξ1
i = τe ln

(
wei(eξ1

e/τe − 1)

θi

)
.
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Fig. 7. The traveling pulse solution in the balanced network. The excitatoryRe and inhibitoryRi wave functions are represented in the traveling
wave coordinateξ. Parameters areτe = 1, τi = 2, wee = 0.4, wie = −1.5, wei = 0.8, θe = θi = 0.5 andwf = 1.2. We calculatec = 1.44 and
ξ1

e = 1.53,ξ0
i = 0.98 andξ1

i = 1.7.

From(21), we derive the main requirement for the existence of a pulse wave that is related to the existence of the
inactivation point for the excitatory population given by

(wee+ wf − θe)e
−ξ1

e/τe + wie

(
wei

wei − θi

)τe/τi

e−ξ1
e/τi = wee+ wie + wf − 2θe (23)

whereξ1
e has to fulfill the two a priori assumptions


1

cf
< ξ1

e,

ξ0
i < ξ1

e.

(24)

The first requirement is a consistence condition for the existence of the wave speedcf . The last assumption states
that inhibition is activated when the excitatory population is in its rising phase otherwise the stability result of the
previous section remains unchanged and a traveling pulse, when it exists, is unstable. Note that the characteristic
point of the inhibitory waveξ1

i exists wheneverξ1
e exists. Of particular interest is the regime of existence and stability

of traveling pulses.
The study of the the stability of pulse waves in balanced network is similar to the analysis of Section3.1. We

introduce the time intervaltk defined by the iteration

tk+1 = f (tk) (25)

that gives the evolution of a pulse, i.e. an arbitrary bounded excited region, through the network, starting from an
initial pulse widtht0. The functionf could be expressed through its inverse given by

f−1(t) = τe ln
θe − wee− wie + e−t/τi (wei/(wei − θi ))τe/τi + e−t/τe(wee+ wf − θe)

(wf − θe)e−t/τe
.

The fixed pointt∗ of the map is related to the traveling pulse solution, i.e.ξ1
e = t∗, and its stability provides

the stability of the traveling pulse solution: the traveling pulse solution is stable if|f ′(t∗)| < 1 or equivalently
|(f−1)′(t∗)| > 1.

To clearly illustrate the role of inhibition and to derive simple tractable conditions for the existence of pulse waves
we will focus on different relaxation times. We distinguish between three different cases monitored by the time
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scale of the inhibitory population. In order to examine the effects of varyingτi on pulse propagation, we consider
the two limiting situationsτi → ∞, τi → 0 that lead to fast-slow systems and turn to the case whereτi = τe.

3.2.1. Slow inhibition
We deal with a network with a slow inhibitory process. Study of traveling waves is formally equivalent to the

analysis of the singular perturbed system(8) obtained asτi → ∞. Let ε = 1/τi be a small positive parameter. In
order to determine the expansion of(23)atε = 0, we need to consider the following two cases:ξ1

e stays constant or
becomes a large parameter asε → 0. In the first case, that isεξ1

e = O(ε), the inhibition does not affect the excitatory
wave and, from the analysis of the excitatory network, we obtain an unstable traveling pulse. Let us consider the
second case whereεξ1

e = O(1). From the leading order expansion of(23)we get

wiee−εξ1
e = wee+ wie + wf − 2θe

and we obtain

ξ1
e = 1

ε
ln

(
wie

wee+ wie + wf − 2θe

)
.

Recall thatwie < 0. To ensure the existence of a positiveξ1
e, the two following conditions have to be fulfilled

wee+ wf < 2θe − wie,

wee+ wf > 2θe.
(26)

Note that the consistence conditions(24)are fulfilled for sufficiently smallε sinceξ1
e → +∞ asε → 0. The linear

stability of the traveling pulse is obtained from|(f−1)′(ξ1
e)| > 1. We calculate

(f−1)′(ξ1
e) = θe − wee− wie + wie(wei/(wei − θi ))ετe(1 − ετe) exp(−εξ1

e)

θe − wee− wie + wie(wei/(wei − θi ))ετe exp(−εξ1
e) + (wf + wee− θe)O−ξ1

e/τe

= 1− εwieτe exp(−εξ1
e)

(θe− wee− wie + wie exp(−εξ1
e))

+ O(ε2) = 1 − ετe(wee+ wie + wf − 2θe)

wf − θe
+ O(ε2).

The traveling pulses are stable if (wee+ wie + wf − 2θe)/(wf − θe) < 0. Using condition(26)and the propagation
conditionwf > θe, it is clear that the stability condition is fulfilled.

Fig. 8shows in the parameter plane (wee, wf ) the regime where a traveling pulse propagates stably in the network.
In the presence of slow inhibition, a pulse exists if the total inputwee+ wf + wie, obtained whenRe andRi reach
their maximal values, is not too large; actually lower than a critical value controlled by the excitatory threshold.
Otherwise the pulse degenerates into a growing pulse as those obtained for the excitatory network.

3.2.2. Fast inhibition
In the caseτi → 0 the neural fieldri varies on a much faster time scale thanre and inhibitory populations are

assumed to act instantly. From(23) the value ofξ1
e is given by

ξ1
e = τe ln

[
(wee+ wf − θe)

(wf + wee+ wie − 2θe)

]
.

Usingwf > θe, the existence ofξ1
e requires

wf + wee+ wie > 2θe. (27)
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Fig. 8. Regime of existence and stability of traveling pulse solutions in the (wee, wf ) plane for a balanced network with slow inhibition, i.e.
τi → ∞.

Under this requirement, the conditionξ1
e > ξ0

i reads

wf < −wee+ θe − wei
wie − θe

θi
. (28)

The local stability of a traveling pulse solution is given studying the iterated map

tk+1 = τe ln
(wf − θe)(etk/τe − 1) − wee

θe − wie − wee
.

The fixed pointt∗ = ξ1
e is stable if|f ′(t∗)| < 1. We calculate

f ′(t∗) = (wf − θe)(θe − wf − wee)

(wf − θe)(wie − θe) − wee(2θe − wie − wee− wf )

that gives

f ′(t∗) = wf − θe

θe − wie − wee
.

Recall thatwf > θe. If wee+ wie < θe, a pulse wave is stable when 2θe − wie − wee− wf > 0. Existence requires
(27) and thus we find that a pulse wave is unstable in this regime. To ensure stability we needwee+ wie > θe and
the stability condition giveswf < wee+ wie.

Inhibition occurs atξ0
i and induces a jump in the input received by the excitatory population. If the jump triggers

the total synaptic input belowθe then the activity ofRe decreases and the inhibition is suddenly stopped. This case
leads to a so called sliding solution where the excitatory population slides alongRe = θi/wei and the inhibitory
wave function has successive jumps. Therefore, no traveling pulse exists. Then the following technical condition is
necessary to avoid sliding solution

weeRe(ξ
0
i ) + wie + wfRe(ξ

0
i + 1/cf ) > θe. (29)

We have the two following possibilities depending on the relative position ofξ1
e andξ0

i + 1/cf .
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1. Forξ1
e < 1/cf + ξ0

i , we haveRe(1/cf + ξ0
i ) = (exp(ξ1

e/τe) − 1) exp(−(1/cf + ξ0
i )/τe) and(29)can be expressed

as (wee+ wie − θe)(wiewei + weeθi − θewei − θeθi + θiwf )/(wei(wf + wee+ wie − 2θe)) > 0. Using the stabil-
ity analysis and the result for existence, the jump condition is rewrittenwf > −wee+ θe + wei(θe − wie)/θi .
Since(28)holds there is no solution.

2. For ξ1
e > 1/cf + ξ0

i , the condition (29) can be written likeweiwf (wf + wie + wee− 2θe) − (wei − θi )(wf −
θe)(wf + wee− θe) < 0. This condition cannot be fulfilled sincewf < wee+ wie.

To conclude, in a network with instantaneous inhibition, traveling pulses do not exist physically, i.e. when they
exist they cannot propagate stably.

3.2.3. Identical relaxation times
When the time scale of the inhibitory and excitatory populations significantly differs, it is possible to reduce the

model to a rate-model for only one population. This reduction is no longer valid when the two relaxation times are
similar. When the excitatory and inhibitory populations have the same relaxation times,τi = τe, the parameter set
of the excitatory and inhibitory populations determines the existence and stability of propagating pulses. Solving
(23), we get

ξ1
e = τe ln

{
(wee+ wf + wiewei/(wei − θi ) − θe)

(wee+ wie + wf − 2θe)

}
.

The existence of a traveling pulse is determined by the existence ofc, ξ1
e, ξ0

i andξ1
i that satisfy the a priori assumptions

(24). The stability is given studying the iterated map(25) that is written, forτe = τi , as

f (t) = τe ln
(wf − θe)(et/τe − 1) − wee− wiewei/(wei − θi )

θe − wee− wie
.

For convenience we introduce the following notations

α = wf − θe,

β = −wee− wiewei

wei − θi
,

γ = θe − wee− wie.

The iterated map is rewritten astk+1 = τe ln[(α(exp(tk/τe) − 1) + β)/γ] and the fixed pointt∗ = ξ1
e is given by

t∗ = τe ln[(β − α)/(γ − α)]. The derivative of the map att∗ is

f ′(t∗) = α

γ
. (30)

Note thatα > 0 is the propagation condition. Depending on the sign ofγ we consider the following two
cases:

1. Caseγ < 0. The existence oft∗ readsβ < γ and stability requiresα < −γ. Expressed using the initial parameters
we obtain the following conditions:wee+ wie > θe, θe/θi > −wie/(wei − θi ) andwf < wee+ wie. We now have
to check if the previous conditions are consistent with the apriori assumptionξ1

e > 1/cf . We get (β − α)/(γ −
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α) > wf/(wf − θe) and we derive the following conditionwf < θe(wei − θi )/(θiwie)(wee− θe + wiewei/(wei −
θi )). Combined with previous inequalities, one can show that the conditions onwf do not give admissible
solution.

2. Case γ > 0. Existence oft∗ leads toβ > γ and stability requiresα < γ. We find the following condi-
tionswee+ wie < θe, wf < 2θe − wee− wie andθe/θi < −wie/(wei − θi ). Moreoverξ1

e > 1/cf leads towf >

θe(wei − θi )/(θiwie)(wee− θe + wiewei/(wei − θi )). In this case a domain can be defined. We have to check the
second a priori conditionξ1

e > ξ0
i . It can be written like (β − α)/(γ − α) > wei/(wei − θi ). It finally follows

wf > weiθe/θi + θe − wee.

The resulting domain where pulses exist and are stable is represented inFig. 9. This is a bounded region in the
parameter space (wee, wf ). All the boundaries are analytically calculated as a function of network parameterswei,
wie, θe andθi . The role of each parameter is clearly illustrated: (i) the stability condition gives the upper bound of
the domain and requires that the maximum of the excitatory inputwee+ wf is not too large; lower than a quantity
given by the excitatory threshold and the I–E connection; (ii) the consistency conditions give the lower bound of the
domain that is determined by a subtle combination of the E–I connection and the ratio between the two thresholds
and (iii) an additional condition, that does not involved the two synaptic connectionswee, wf , gives a maximal value
for the thresholds ratio.

The propagation of a traveling pulse in the balanced network is depicted inFig. 10. The numerical simulation
is done using a finite chain of pools. From the profile of the iterative map, it is sufficient to apply a superthreshol
input to the first pool with a time duration greater thant∗ in order to elicit the propagation of a pulse. Since a single
iteration is related to a transition from one pool to the next, the convergence of an initial activation to the traveling
pulse is achieved according to the global shape of the iterative map.

Similarly to the excitatory network, the region of existence of traveling pulses is enclosed in the traveling front
and traveling back domain. However, in balanced networks the stability criteria and the existence conditions of pulse
waves are not mutually exclusive. More precisely the existence of a stable traveling pulse precludes the existence
of a growing pulse. In fact for largetk values we havetk+1 − tk = τe ln((wf − θe)/(θe − wee− wie)). Pulse stability
requireswf < 2θe − wee− wie and thus we havetk+1 − tk < 0, i.e. the interval of excitation decreases and stabilizes
to the traveling pulse one (seeFig. 10).

Fig. 9. Regime of existence and stability of traveling wave solutions in the (wee, wf ) plane for the balanced network where the two populations
have identical relaxation times. An additional condition that isθe/θi < −wie/(wei − θi ) does not appear explicitly in the diagram but has to be
fulfilled to ensure the stability of the pulse wave. As inFig. 5, the regime of existence of a traveling wave front is indicated by horizontal lines,
traveling backs with vertical lines and growing pulses with solid shading. Dashed lines indicate the new regime of existence and stability of the
traveling pulse solutions. Propagation failure occurs in the other regions.
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Fig. 10. Traveling pulse in a balanced network. (A) The iterated map that predicts the dynamics of traveling pulses. The fixed pointt∗ rep-
resents the rising interval of the traveling pulse solution. Panel (B) shows the propagation of the corresponding pulse wave obtained from the
simulation of a network of 30 (vertical axes) pools during 50 units of normalized time. The initial excitation is a square input of duration 5
(greater thant∗). Parameter values areτe = τi = 1, wee = 1, wei = 0.8, wie = −0.7, θe = θi = 0.5 andwf = 0.6. We calculatet∗ = 2.04 and
f ′(t∗) = 0.5.

3.3. Robustness and limitations

In this section, the generality of the results are tested through numerical simulations. In particular, one might
question the robustness of the results with regard to the limiting cases considered for the relaxation times and for
the transfer function.

The dependence of the stable traveling pulse onτi is shown inFig. 11 for various parameters, together with
results of stability. We represent the rising interval of the excitatory wave,ξ1

e, as a function ofτi . Parameters are
such that a traveling pulse exists whenτi = τe. In agreement with our analysis, traveling pulse exists for largeτi and
disappears asτi → 0. Numerically, we find that there is a critical relaxation timeτ∗

i below which traveling pulse
fails to propagate. Different scenarios are encountered: (I) Traveling pulse destabilizes into a growing pulse due to
the apparition of an additional bump in the tail of the wave (the excitatory traveling pulse solutionRe presents two
distinct rising intervals). (II) The conditionξ1

e > 1/cf is violated atτi = 0.90 and propagation failure occurs. (III)
The traveling pulse presents a sliding regime, i.e.Re = θi/wei on a non-empty interval, that leads to an enlarging
pulse. Note that both destabilizations (I) and (III) are not predicted by the study of the iterative map(25) that only
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Fig. 11. Rising interval of the excitatory traveling pulse,ξ1
e, as a function of the relaxation time of the inhibitory population,τi , for sev-

eral values of parameters. Solid lines represent stable traveling pulse solutions and dotted lines denote unstable traveling pulses. Parameters
(τe, wee, wei, wie, wf , θe, θi ) are (I) (1, 2, 2, −4, 2, 0.5, 0.5), (II) (1, 1, 0.8, −0.7, 0.6, 0.5, 0.5) and (III) (1, 0.6, 0.55, −0.7, 1, 0.5, 0.5). There
is a critical relaxation timeτ∗

i below which traveling pulse fails to propagate or is unstable. We calculate (I)τ∗
i = 0.14, (II) τ∗

i = 0.90 and (III)
τ∗

i = 0.36.

Fig. 12. Propagation of a pulse wave in a network of 30 (vertical axes) pools during 50 units of normalized time. A sigmoidal activation function
is used with a gainλ = 20. Other parameters are as inFig. 10B.

addresses stability of one pulse wave. The instabilities associated with global bifurcations where pools reached the
thresholdθe from below more than once are not captured by our stability analysis.

We perform numerical simulations of the network with the smooth activation function(2). For large gain, results
are in agreement with our study.Fig. 12shows the propagation of a traveling pulse using a gainλ = 20 for the
activation function and other parameters as inFig. 10.

4. Discussion

We analyze traveling waves in a feedforward neural network where synaptic connections are made only from
one pool to the next and excitation is balanced by inhibition. From a mathematical point of view, our model is a
set of differential equations on a lattice and the problem of finding traveling wave solutions leads to an advanced
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differential equation for which the theory is recent[16,4]. Because our model is piecewise linear we are able to
derive analytically the properties of propagating waves. We have constructed the traveling wave solutions and derived
precise conditions for their existence and stability. We use the techniques from bifurcation theory to characterize
front and back waves. The two saddle node bifurcations of an isolated pool allow for a qualitative understanding
of the mechanisms that lead to propagating waves in the connected network. The propagation of a front wave and
a back wave occurs when the corresponding saddle node bifurcation observed in the one-pool model is reached.
The time to reach the first bifurcation is related to the velocity of the backcb whereas the second is related to the
velocity the front,cf . Traveling fronts and traveling backs are robust in the sense that a limited number of conditions
is sufficient to ensure their existence: they are poorly affect by the exact nature of the model and only require a
bistability condition, i.e. the existence of low or high activity steady state for the network.

The purely excitatory network does not support the propagation of stable pulses. We have shown that traveling
pulses are unstable because of the existence of stable front waves and stable back waves with different velocities.
This mechanism presents interesting links with the absolute instabilities reported in[21]. A “reverse” property is
obtained in[20,22]where a stable pulse is obtained when merging unstable front and back. In our network, adding
inhibition allows the propagation of pulses with a constant shape along the network. When excitation is balanced
appropriately by inhibition the growing pulse observed in the excitatory network is suppressed and an initial pulse
converges towards the traveling pulse solution. The regime where a traveling pulse propagates depends strongly
on the kinetic of the inhibitory population. In the limit of instantaneous inhibition, pulse waves disappear. When
the two populations have identical time scales, the regime of existence and stability of pulses depends on the entire
parameter set of the network. Increasing the passive time constant of inhibitory cells gives a regime where traveling
pulses propagate stably that depends only on the parameters of the excitatory pools and the inhibitory feedback (the
I–E connection).
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