Optimization duality

[Bonnans et al., 2003]
 
Show BibTeX entry
J. F. Bonnans and J. Ch. Gilbert and C. Lemaréchal and C. Sagastizábal (2003).
Numerical Optimization.
Springer Verlag.
[Hiriart-Urruty and Lemaréchal, 1996]
 
Show BibTeX entry
J.-B. Hiriart-Urruty and C. Lemaréchal (1996).
Convex Analysis and Minimization Algorithms.
Springer Verlag, Heidelberg. Two volumes - 2nd printing.
[Lemaréchal, 2001]
 
Show BibTeX entry
C. Lemaréchal (2001).
Lagrangian relaxation.
In: M. Jünger and D. Naddef (eds.), Computational Combinatorial Optimization. pp. 115--160. Springer Verlag, Heidelberg.
[Lemaréchal, 2002]
 
Show BibTeX entry
C. Lemaréchal (2002).
Borner, convexifier, relaxer_ l'omniprésence de Lagrange.
In: Bulletin de la Roadef, 8:6--9.
[Lemaréchal, 2003]
 
Show BibTeX entry
C. Lemaréchal (2003).
The omnipresence of Lagrange.
In: 4OR, 1(1):7,25.
[Lemaréchal and Oustry, 1999]
 
Show BibTeX entryVisit the webpage of the paper
C. Lemaréchal and F. Oustry (1999).
Semi-definite relaxations and Lagrangian duality with application to combinatorial optimization.
Rapport de Recherche Nr. 3710. Inria. \tt http_//www.inria.fr/rrrt/rr-3710.html.
[Lemaréchal and Oustry, 2000]
 
Show BibTeX entry
C. Lemaréchal and F. Oustry (2000).
Nonsmooth algorithms to solve semidefinite programs.
In: L. El Ghaoui and S-I. Niculescu (eds.), Advances in Linear Matrix Inequality Methods in Control. Advances in Design and Control, 2. pp. 57--77. SIAM.
[Lemaréchal and Oustry, 2001]
 
Show BibTeX entry
C. Lemaréchal and F. Oustry (2001).
SDP relaxations in combinatorial optimization from a Lagrangian point of view.
In: N. Hadjisavvas and P. M. Pardalos (eds.), Advances in Convex Analysis and Global Optimization. pp. 119--134. Kluwer.
[Lemaréchal and Renaud, 2001]
 
Show BibTeX entry
C. Lemaréchal and A. Renaud (2001).
A geometric study of duality gaps, with applications.
In: Mathematical Programming, 90(3):399--427.